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A THEOREM CONCERNING ODD PERFECT NUMBERS 

D. SURYANARAYANA 
Andhra University, Waltair, India 

and 
PETER HAGIS, JR. 

Temple University, Philadelphia, Pennsylvania 

1, INTRODUCTION 

Although the question of the existence of odd perfect numbers is still 
open, many necessary conditions for an odd integer to be perfect have been 
established. The oldest of these is due to Euler (seep. 19 in [1]), who 

a 2 proved that if n is an odd perfect number then n = p k where p is a 
prime, k > 1, (p,k) = 1, and p = a = 1 (mod 4). In 1953, Touchard [6] 
proved that if n is odd and perfect, then either n = 12t + 1 or n = 36t + 9. 
More recently the first author [5] has established upper and lower bounds for 

yl 
LJ p 

where n is an odd perfect number. In fact, these bounds are improved ones 
over those established in [3] and [4]. For convenience, we give in Table 1 
the results of [5] correct to five decimal places. 

Table 1 

(A) 

(B) 

(C) 

(D) 

Lower Bound 

.64412 

.65696 

.59595 

.59993 

Upper Bound 

.67841 

.69315 

.67377 

.66172 

Range 

.03429 

.03619 

.07782 

.06179 

Our objective in the present paper is to improve (some of) the results 
of [5]. Our bounds for 

p(n 

337 



338 A THEOREM CONCERNING ODD PERFECT NUMBERS [Oct. 

are given in Theorem 1 while the five decimal place approximations appear 
in Table 2. In what follows, n denotes an odd perfect number, and p de-
notes a prime. The notation 

11 

2-< p » 
p=5 

for example, will be used to represent the sum 

1 , 1 1 
5 7 + 11 B 

(A) 

(B) 

(O 
CD) 

Ts 

Lower Bound 

.64738 

.66745 

.59606 

.60383 

ible 2 

Upper Bound 

.67804 

.69315 

.67377 

.65731 

Range 

.03066 

.02570 

.07771 

.05348 

Theorem 1. If n is an odd perfect number, then 
(A) if n = 12t+ 1 and 5|n , 

19 
19 log {2 n (P - D/p} 
y l + _ J 2 z 5 < y 1 < 1 + l o g (50/31) 

• ~ P 23 log (23/22) V P 

p=5 & ' p|n 
(B) If n = 12t + 1 and 5^n, 

59 
59 

^ - p 
p=7 

log {2 II (p - l ) /p} 
P=7 

61 log (61/60) 
< £ i < log 2 ; 

p|n . 

(C) if n = 36t + 9 and 5 n , 
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I + 1 + X + log (256/255) ^ 1 < ! +
 X + X + w /«*/«-n 

3 + 5 + 17 + 257 log (257/256) < 2 - p 3 + 5 + T5 + l o ^ ( 6 5 / 6 1 ) ; 

P | n 

(D) if n = 36t + 9 and 5^n , 

I + i + _L + log (80/77) < ^ l < l + i + i. + l 0 f f (37349/3094D 
3 + 7 + 11 + 13 log (13/12) 2 ^ p 3 + 13 + 17 + 1 0 g lJ'J4y/<*U941) • 

P|n 

The upper bounds in (B) and (C) a r e due to the f i r s t author [5] . The 
r e s t of the t heo rem i s new. 

2. THE U P P E R BOUNDS 

In this sec t ion , we shal l es tab l i sh the upper bounds for 

Pjn 

given in (A) and (D) of T h e o r e m 1. Our a rgument p a r a l l e l s that in [5]„ 

According to E u l e r ? s t h e o r e m , we can wr i t e 

a 0 a l a 2 a k 
n = p Q P l p 2 . - p k , 

where p 0 = a0 = 1 (mod 4) and a. = 0 (mod 2) for 1 g j = k. We a s s u m e 

that Pi < p2 < • • • < Pk» Since n i s pe r fec t , we have immedia te ly 

k . k 
a .+l -

(2.o) 2 = n i - l/pj3 n a - i/P.) L , 
3=0 j=0 

so that 
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k k oo . „. 
_ _ , , _ _-^ • + 1 (a +l)i 

(2.1) log 2 = £ i + £ L X / ( i + DPj " i/iPj 3 

3=0 J j=l i=l 

+ i/2p2
0 - i/pfo+1 + f ; i /e + DPS4"1 - i/ip^ao+1)i . 

i=2 

Remark 1. Since a. > 2 for 1 ^ j ^ k each term is positive in the 

second summation of (2,1). 

Remark 2. Since a0 k 1 and i> 2, each term is positive in the last 

summation of (2.1). 
Remark 3. Since a0 2* 1, we have 

l/2p2
0 - l / p ^ + 1 > -l/2pg . 

Remark 4. Since a0 is odd (p0 + l)|o-(p0 °)> and since n =cr(n)/2, it 

follows that (p0 + l)/2jn and a fortiori that n is divisible by a prime p g 

(Po + l)/2. 

Remark 5. If p is the prime mentioned in Remark 4 and p0
 > 5, 

then 

W = l /2p | - l /p*s + l/2p2
0 = l / p ^ + 1 > 0 . 

For since 3 ^ p ^ (p0 + l)/2, a <^2, a0 ^ 1, we have 
s s 

W ^ l/2pg - l/3p2
s - l/2p2

0 ^ 2/3(p0 + l)2 - l/2p2
0 > 0 . 

We consider first the case n = 12t + 1 and 5Jn. Since 3^n, we see 

from Remark 4 that p0 f- 5. Therefore, pA = 5. 

If (p0 + l)/2 ^ 5 i , then we can assume that the p of Remark 4 is 
a s 

not 5. Since aj ^ 2, it follows from (2.1) and Remarks 1 , 2 , 5 that 

00 
1+1 w,-3i 

l / U + ±J0 

p|n i=l 

l o ^ 2 > Z j + E ^ + 1)5i+1 - x/i5 

i i = J j - j - l o g ( l - 1/5) + log (1 - 1/53) 
pjn 
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Therefore, 

£ ± < ± + l o g < 5 0 / 3 1 ) . 
pjn 

Since the smallest prime such that (p + l ) /2 = 5 m is p = 1249 = 2»54 

- 1, we see that if (p0 + l ) /2 = 5 m
5 then p0 > 1249, so that - l /2p§ £ 

-l/2(1249)2. Also, in this case, it follows from Remark 4 that aA ^ 4. From 
(2.1) and Remarks 1, 2, 3, we have 

l o g 2 > 2 p ~ i " l og (1 " l / 5 ) + log(1 ~ l / 5 5 ) " 1/2(1249)2 . 

Therefore, 

^ 1 < 1 + 1/2(1249)2 + log (1250/781) < A + log (50/31) . 
pjn 

This completes the discussion of the upper bound for this case. We 
remark that the upper bound established in [5] for (A) exceeds ours by 1/2738. 

Turning to the case n = 36t + 9 and 5|n we have p^ = 3. We con-
sider four mutually exclusive and exhaustive possibilities. 

Fi rs t , suppose that aj = 2 and p0 = 17. Since cr(32) = 13 and n = 
a(n)/2, we see that 13jn. Let 13 = p . If a = 2 then since o"(132) = 183 
and since p0 + 1 = 18, it would follow from Remark 4 that 33|n. Since this 
is impossible, we conclude that a ^ 4. Since a0 ^ 1, it follows from (2.1) 
and Remark 1 that 

log 2 > J^ i - | - log (1 - 1/3) + log (1 - 1/33) - ^ - log (1 - 1/13) 
pjn 

+ log (1 - 1/135) 1 - log (1 - 1/17) + log (1 - 172) . 
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Therefore, 

S i < I + T5 + T7 + l o g (37349/30941) . 
pjn 

Second, suppose that aj = 2 and p0 = 13. Then the p of Remark 4 
s 

is 7, and it follows from (2.1) and Remark 1 that 

log 2 > 2 i - J - log (1 - 1/3) + log (1 - l /33) - i - log (1 - 1/7) 
pjn 

+ log (1 - 1/73) - A _ log (l _ 1/13) + log (1 - 1/132). 

Therefore, 

S p < l + 7 + T 3 + l o g (21/19) < I T3 TT + log <3 7 3 4 9/3 0 9 4 1) • 
p|n 

Next, suppose that aj = 2 and p0
 > 17. As before, we have 13jn, 

while p0 ^ 37. For if p0 = 29, it would follow from Remark 4 that 5|n 
which is impossible. From (2.1) and Remarks 1, 2, 3, we have 

log 2 > ] T i - J - log (1 - 1/3) + log (1 - 1/33) - ± 

- log (1 - 1/13) + log (1 - 1/133) - l/2(37)2 . 

Therefore, 

£ I < I + T3 + 2758 + l 0 g ( 7 8 / 6 1 ) < 3 + A + 17 + l o g (37349/30941) . 
p|n 
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Finally, suppose that a4 > 4. Since p0 ^ 13, we have -l/2pj; ^ 
-1/338. From (2.1) and Remarks 1, 2, 3, it follows that 

log 2 > 2 } - I " loS (1 - ^3) + l 0 S t 1 " */35> ~ 35s 
pjn 

Therefore, 

2Z | < 3 + ms + l 0g <162/121> < J + JS + T7 + l o S (37349/30941) 

This completes the discussion of the upper bound for this case. 

3. THE LOWER BOUNDS 

In this section, we change our notation and write simply 

a l a 2 \ 
n = p l p2 ' ' ' pk > 

where Pi < p2 < • • • < p^- We first establish two lemmas. 
Lemma 1. If 

a l a 2 \ 
n = P l P2 — P k 

is an odd perfect number and q is a prime such that p N < q ^ PM+I> t n e n 

N / N v 

iog2< logjnp.A^ -i)} +q iog 5 4 T (25-S5 : ) • 
j=l \p|n 3=1 V 

Proof. From (2.0), it follows that 
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2 < 0 (1 - 1 / p r 1 . 

Taking logarithms, we have 

N k oo 

log 2 < log n P, /(P, - i) + 5 ] E 1/iPi 
J= l ]=N+1 i = l 

N k oo 

= log P j / ( P . - i + £ 2 i/a^q1"1) 
3=1 J=N+1 i = l 

N k oo 

= log ri P, / (P 1 » i ) + Ya i: S q/ iq i 
' 3 3 

L 

N 

3=1 j=N+l 3 i=l 

N / N \ 

= log n PJApr i) +qiog-fT(x;j-E5:) 
J=l \p|n j=l V 

The necessary modifications in both the statement and proof of this 
lemma in case q S p- or p, < q are obvious and are therefore omitted. 

Lemma 2. The function f(x) = x log x/(x - 1) is monotonic decreas-
ing on the interval [2,oo) . 

Proof, We easily verify that 

Since log (1 + z) < z if 0 < z g 1, we see immediately that f?(x) < 0 if 
x > 2, 

We are now prepared to prove the lower bounds for 

T.-
JU p 
pjn 
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stated in Theorem 1. We shall defer the proof of (C) until last since it differs 
in spirit from the others. 

From Lemma 19 we have 

™ E ^ E E : 
N log | 2 n (p. - D/p. J 

p ^ P j t JPJ qlog{q/(q- D } 

while from Lemma 2 it follows easily that if s is a prime such that s < q 
then 

(3.i) i + - ^ 4 ( s
y 7 1)/sl < o . 

s q l o g | q / ( q - 1)} 

If n = 12t + 1 and 51n9 then pA = 5. If r is the greatest prime less 
than q then it follows from (3.0) and (3.1) that 

w S^EJ + 
p n 

log J 2 n (P - D/P 
I P=5 

f^ P qlog{q/(q - 1) } 

An hour's work on a desk calculator shows that the right-hand member of 
(3e2) is maximal for q = 239 r = 19, This completes the proof for this 
case. We remark that the lower bound for (A) established in [5] is (3.2) with 
q = 11, r = 7. 

If n = 12t + 1 and 5|ns then p1 ^ 7. With r defined as before9 it 
follows from "(3.0) and (3.1) that 

r log } 2 n (p - D/p 
<3.3, £ i > • £ A • _ L _ E 2 

P | » P £ P <H°S|V(q-W| 
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Some rather tedious calculations verify that the right-hand member of (3.3) 
is maximal for q = 61, r = 59. The lower bound for (B) established in [5] 
is (3.3) with q = 11, r = 7. 

If n = 36t + 9 and 3J[n9 then pj = 3 and p2 = 7. With r defined 
as before, we have from (3.0) and (3.1), 

<«> xk'Zk !

r * 
2 n (P - i ) /p 

P=7 

frj p t ^ + *y°*wi*-»\ 
where the asterisk indicates that the prime 5 is to be omitted from consider-
ation. A few minutes of calculation verifies that the right-hand member of 
(3.4) is maximal for q = 13, r = 11. The lower bound for (D) established 
in [5] is (3.4) with q = 7, r = 3. 

Now suppose that n = 36t + 9 and 5|n. Then 7|n by a result of 
Kuhnel [2]. We consider three mutually exclusive and exhaustive possibilities. 

If either 11 or 13 divides n, then 

V i > i + 1
+ i > i + I + l i log (256/255) 

Z-^p 3 5 13 3 5 1 7 257 fog (257/256) " 
p|n 

If neither 11 nor 13 divides n but 17(n, then p3 = 17 and either 
(i) P4 < 251, or (ii) p4

 > 251. In case (i), we have 

V i > i + i + i - + J L > ± + i + . L + log (256/255) 
L*t p 3 5 17 251 3 5 17 257 log (257/256) 
p|n 

In case (ii), if we take q = 257 in (3.0), we have 

E l s 1 , 1 , 1 , log (256/255) 
p 3 5 17 257 log (257/256) • 

p|n 
[Continued on p. 374. ] 



AN ADDITION: ALGORITHM FOR GREATEST COMMON DIVISOR 
D. E. DAYK1N 

University of Reading, Reading, England 

ABSTRACT 

An elementary algorithm is presented ifor finding the greatest common 
divisor of two numbers. It is trivial to programme and fast, even for large 
numbers. Only addition is used, and the only storage space needed is enough 
to hold the two numbers. 

About three years ago, I discovered an algorithm which K„ Y. Choong, 
C. R. Rathbone and I used to obtain the first 20,000 partial quotients of the 
continued fraction of IT* I here show how an adaptation of the algorithm may 
be used to find the greatest common divisor (g.c.d.) of any two positive inte-
gers . The complete process when the numbers are 1168 and 2847 is : 

N 

Z 

Z 

z 
N 

N 

Z 

Z 

z 
N 

8832 = 

2847 = 

1679 

0511 

9343 

9854 

0365 

0219 

0073 = 

9927 

0000 

10000 -

g. c. d. 

- 1168 

2847 

= 73 

I will now describe the general process. Let P , Q be the two given 
positive integers, and suppose that k is the number of digits in the larger of 
P and Q. From a finite sequence of numbers, each of not more than k 
digits, according to the rules: 

k k 
(a) The first two numbers are 10 - P and Q. Of these 10 - P is 

an N number and Q is a Z number. 

347 
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(b) At each subsequent stage, the next number is the last N number 
plus the last Z number. Carries beyond k digits are ignored. 
If there is no such carry, this nextnumber is an N number; other-
wise, it is a Z number. 

(c) Stop when the next number would be zero. 
Than the last Z number is the g. c. d. of P and Q. 

We start with 10 - P and it might be argued that this requires a sub-
k traction. However, we can obtain 10 - P by applying the transformation 

0 - • 9, 1 -» 8, • ' • , 9 -» 0 to the digits of P , and then adding 1 to P. 
Hence, I am justified in saying that the algorithm only uses addition. 

It will be noticed that, as we move down the sequence, the N numbers 
begin with more and more nines, while the Z numbers begin with more and 
more zeros. Hence the designations N and Z. It is not necessary to eval-
uate the next number in order to determine whether it is an N or a Z. Sup-
pose the last N and Z numbers, respectively, are 

N W i ' " n i 
z V k - i - z i • 

Then we look for the largest integer j such that the sum n. + z . of the j 
digits is not 9. If there is no such j then the g. c.d. is 1. If there is such 
a j , and n. + z. < 9, we will get no carry and so, by the definition in rule 
(b), the next number will be an N number. Moreover, the addition is worked 
out step-by-step from the right, and so we can over-write the digits of the 
last N number, step-by-step, with the digits of the new N number. Simi-
larly, if n. + n, > 9, the next number is written over the last Z number. 
Hence, the space for the storage of the 2k digits of P and Q is sufficient 
for the complete calculation. Once we have n, = p and z, = 0 we can ignore 
these digits, and similarly for n, _-, z, - , etc. Thus the amount of work 
required in the additions steadily diminishes, and this is indicated by the 
dotted line in the example. The simplest flow diagram is also shown. 

I will now prove that the algorithm does produce the g. c. d. At each 
stage, we have N = 10k - p with 0 < p <10 k and Z = q with 0 < q < 10 
and we want the g.c.d. (p,q). By rule (a), this is certainly the case initially. 



1970] AN ADDITION ALGORITHM FOR GREATEST COMMON DIVISOR 349 

Case 1. Suppose N + Z would give no carry; that i s , 10 - p + q < 10 
- 1 or q < p. Then the next number will be 10* - (p - q). It will be an N 
number bigger than N but less than 10 . Since g. c.d. (p - q,q) = g. c.d. 
(p,q) the next stage will be of the correct form, 

Case 2. Suppose N + Z would give a carry; that i s , 10 - p + q> 10 
or q ^ p. This carry is ignored, so the next number will be (10 - p) + (q) 
- 10 = q - p , and 0 < q - p < q0 Again the next stage will be of the correct 
form. Since the size of Z foes down at each stage, we will reach a stage 
where the next Z would be zero; then p = q so that the g.c.d. (p,q) = q in 
Z. 

I have described all this in terms of arithmetic to the base 10* Clearly, 
the algorithm works with any base, and in particular in binary. Sometimes it 
is convenient to work to the base 10 but with several consecutive digits of the 
numbers in a computer word. With a little more programming effort, one can 
speed the process up as follows-

Let r and s be the largest integers such that n ^ 9 and z ^ 0 
r s 

respectively, and suppose that r > s„ Then, instead of replacing N by N + 
Z, it saves work to replace N by N + 10 " ~ Z. For this operation, we 
again only need addition with the appropriate shift* In most cases, we are in 
fact able to improve this to replacing N by N + 10 r " s Z , it is not difficult 
to distinguish the exceptional cases. As one would expect, the corresponding 
situation obtains if r < s. 

Read , k into k 
10K - P into N list 

Q into Z list 

Flow Diagram for g, c@ d. 



ON DETERMINANTS WHOSE ELEMENTS ARE PRODUCTS 
OF RECURSIVE SEQUENCES 

DAVID ZEITLIIM 
Minneapolis, Minnesota 

1. INTRODUCTION 

Let W0, Wj, p ^ 0, and q f 0 be a r b i t r a r y r ea l n u m b e r s , and 
define 

(1.1) W n + 2 = p W n + 1 - qW n , p2 - 4q ^ 0, (n = 0, 1, . . . ) , 

(1.2) U n = (A11 - B n ) / ( A - B) (n = 0, 1, • • • ) , 

(1.3) V = A n + B n , V = V /qR, n • -n n ' ^ ' (n = 0, 1, - . ) , 

where A ^ B a r e roo t s of y2 - py + q = 0. Car l i tz [ l , p . 132 (6)] , us ing 

a well-known resu l t for l i nea r t r ans format ions of a quadra t ic fo rm, has given 

a c losed form for the c l a s s of de te rminan t s 

(1.4) W1^ 
n+r+s 

( r , s = 0, 1, . . . , k) 

As a f i r s t general izat ion of (1.4), we will show that for m = 1 , 2 , • • • , 
and n0 = 0, 1, • • • , 

(1.5) m(n+r+s)+n0 
( r , s = 0, 1, • • • , k) 

k 
= (_1 }(k+l)(k/2) e q (mn+n0)(k+l)(k/2)+(mk/3)(k2- l ) # n / k \ 

3=0 

(Wi - PWQWJ + qWo) 
fc+l)k/2. n n 2 ( k + l - i ) 

m i 
i= l 

350 
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For m = 1 and n0 = 0, Eq. (1.5) gives the main result (1.4) of [ l ] . As in 
[l] 5 our proof of (1.5) will require the following known result for quadratic 

forms (e .g . , see [2, pp. 127-128]): 
Lemma 1. Let a quadratic form 

n n 
E z2 Q>..x.x. (a.. = a..) 

i ] i J i j j i 
1=1 j=l 

be transformed by a linear transformation 

n 

k=l 

to 

n n 
E E c.Y.Y. (a. = c.) 
i=l j=l 

Then 

(1.6) K-I = 1 ^ 1 - ^ 1 tt.J = 1.2.....I1) 

2. STATEMENT OF THEOREM 1 

We note that (1.5) is a special case of Theorem 1* 
Theorem 1. Let W , n = 09 1, 8e% satisfy (1*1 

are the roots of y2 - py + q = 0. Let m,k = 1, 2, • • • , and define 
Theorem 1. Let W , n = 0, 1, ••• , satisfy (1.1), where A £ B ^ 0 

(2.D P n = n w m n + n a, = 0 . 1 , . . . ) . 
i=i 
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where n., i = 1, 2, • • • , k, are arbitrary integers or zero. Let N, = nj 
+ n2 + • • • + n , . Then, with. u + 1 as the row index and v + 1 as the column 
index, we have 

(2.2) n w 
i=l 

m(n+u+v)+n. ( u , v = 0, 1, *•• , k) 

= ( - 1 ) fe+l )k /2 # qmn(k+l)(k/2)+(mk/3)(k2-l) o f ] Q 

r=0 

. (wl - pwow, + qw2
0)(k+1)k/2 n u^ f 1 " " , 

mi 
i= l 

Nk with C0 = A , 

(2.3) 
N, -S(j ,r) G / . v 

E A k B S ( J ' r ) (r = 1, 2, - . . , k) , 

3=1 

(2.4) S(j,r) = n P + n2
(i) + n3

(j) + . . . + n j* H = 1, 2, ••• , Q j , 

where, for each j , S (j, r ) , as the sum of r integers, n/** , i = 1,2, ••• , 
r , represents one of the ( J combinations obtained by choosing r num-
bers from the k numbers, nl9 n2, n3, ••• , % . 

Remarks. If n. = n0, i = 1, 2, • • • , k, then N^ = kn0, S(j,r) = rn0, 
and 

C r = / k \ A ( k - r ) n 0 B r n 0 ^ 

Since AB = q, we have 
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n c r = q
n»<k+1>k/2 • n ft) , 

r=0 j=0 ^ ' 

and thus (2.2) gives (1.5) as a special case. 
For the case rij = n2 = • • • = n, - = d and n, ^ df it is readily seen 

that 

C = fk " A A (k-r )d B ( r~l )d+n k + /k - l\ A (k-r- l )d+nk Brd ^ 

As a footnote to Theorem 1, we have 
Lemma 2. For r < k - r , r = 0, 1, • • • , we have 

(k) 

<2'5) C r C k- r = Vrjq + ^ i- q ' V2S(j,r)-2S(i,r) 
j=2 i=l 

Thus, 

k (k-l)/2 
II cr = n 

r=0 r=0 
(2.6) II C r = n C r C k r (k = 1, 3, 5, . . - ) , 

k (k-2)/2 
(2.7) n C r = C k / 2 • n CrCk_r (k = 2, 4, 6, •••) , 

r=0 r=0 

where 

(2-8) C k / 2 = £ q S ( J ' k / 2 ) - VN 2 s ( j ? k / 2 ) (k = 2 , 4 , 6, . . . ) . 
j=l k 
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Proof of Lemma 2. Since AB = q, we obtain from (2.3), 

G) X ' qn r\ N -2S(j,r) 
Cr = £ qS(j,r) • A k 

Noting that a choice of r numbers from k numbers leaves a complement 
choice of k - r numbers, we have from (2.3) 

(k) ft 
W N.-S(j,k-r) S(j,k-r) W s(j ,r) N.-S(j .r) 

(2.9) C k _ r = £ A * B = Z A B k 

( * ) , . N.-2S(i,r) 
= £ qS*1'1' . B

 k 

i=l 

In forming the product C C. , we note that ( ) product pairs have equal 
i and j indices and the same value q K For the cross products with i / 
j , we combine those pairs having the same values of i and j , noting that 

S ( ] , P ) Nk-2S(j,r) S(i,r) N. -2Sa, r ) S(i,r) N -2S(i,r) S(j,r) N -2S(j,r) 
q A • q B + q A . q B 

S(i,r)-S(j,r)+N^ 
" " ' ^ ( j . r ^S f t . r ) = q V „ 

Set k = 2r in (2*3)w Since a choice of r numbers from a set of 2r 
numbers leaves another set of r numbers, we may again pair off related 
terms of the sum in (2„3)0 Since 

N9 -S(j,r) S(j,r) S(j,r) N -S(j,r) S(j,r) 
A B + A B " * V N 2 r -2S ( j , r ) 
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and 

(?) -» (2v *) , 
we obtain (2.8) from (2.3) with r = k/2. 

3. PROOF OF THEOREM 1 

Since A f B9 the general solution to (1.1) is 

Wn = aAn + bBn, n = 09 1, - - , 

where a and b are arbitrary constants whose values satisfy W0 = a + b 
and Wi = aA + bB. We readily find that (B - A)a = W0B - Wt and (B - A)b 
= Wi - AW0. Since A + B = p and AB = q9 we have that 

(3.1) (A - B)2ab = -(wf - pW0Wi + qW(>) -

We observe that 

k k 
(3.2) P n •= n W ^ ^ = £ K ( B m ( k " 3 ) A m J ) n (n = 0, 1, •••) , 

i=i i j=o 

where K., j = 09 19
 o 8 e

9 k 9 denote arbitrary constants independent of n, 
The quadratic form 

r,s=0 r,s=0 j=0 

k k. 
(3.3) = £ K . ( B m ( k - j ) A m j ) n £ A m J ( r + s ) B m ( k - j ) ( r + s ) y ^ 

j=0 r,s=0 

z 
k 

= i:K.(Bm ( k- j )Am j)nx| , 
j=0 
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where 

(3.4) x j = E ( A m j B m ( k - j ) ) r Y r (j = 0, 1, • • - , k) . 
r=0 

Thus, by means of the linear transformation (3.4), we have reduced Q to a 
diagonal form. If M denotes the determinant of the linear transformation 
(3.4), it follows from Lemma 1 (see (1.6)), that 

(3.5) 

where 

P 
n+r+s 

k n k 

= M*. 11 K . C ^ ^ ^ A ^ ) = M2« q ^ ( k + l ) k / 2 . n K f 
J J 

j=0 j=0 

(3.6) M = | ( A m J B m ( k - » ) r | (J,r = 0, 1, . . . , k ) , 

is a Vandermonde determinant. 
We find now that 

k-1 k 
M = H ( A m r B m ( k - r ) - A m j B m ( k ^ ) = 0 n A m j B m ( k - r ) ( A - B ) U m ( r 

0£j<rgk j=0 r=j+l 

k-1 k-j 
= (A - B ) k ( k + 1 ) / 2 . n TI AmiBm^'B)T3 

ms 
j=0 s=l 

(3.7) 
k-1 k-1 k-i 

= (A - B ) k ( k + 1 ) / 2 . H AmJfc-J)Bm(k-J)0c-J-l)/2. n n n 
ms 

j=0 i=0 s=l 
k 

= (A - B ) k ( k + 1 ) / 2 . q iaktf -W/e . „ ^ 1 - 1 . 
i=l 
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We proceed now to evaluate 

k 

n K, 
3 

3=o 

of (3,5). From (3.2) we have 

( 3 ' 8 ) n Wxnn+n. = B ^ • Z K. ((A/B)11"1 ) J , 
i=l 1 j=0 

which is a polynomial in the variable (A/B) . Since W = aA + bB , we 
have 

Wxnn+n = B ^ ^ V E ) ™ + VB*1 ) , 
i 

and thus 

k k n 
( 3 ' 9 ) n Wmn+n = ^ * ^1 (aA W E ) 1 ™ 1 + bB*1) 

i=l i i=l 

N k 

= B n , k n a k . A k . n ( (A/B)m n + (b/aXB/A)^) . 
i=l 

Recalling the definition of the elementary symmetric functions of the roots of 
a polynomial, we concludes after comparing (3.8) and (3.9), that (see (2«3)) 

N W r n i j > 

(3.10) Kr = a k . A k . ( - l ) r . I ] ( - b / a ) r H (B/A) ' S = a k _ r b r C r 

j=l s=l (r = 0 , V ik) . 
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Using (3.1), we obtain from (3.10) 

k k 
n K = (ab)k(k+1) /2 n c 

r r 
r=0 r=0 

(3.11) k 

= WW+I)/*^ _ Brk(k+l)(w2 _ ^ ^ + qW2o)k(k+l)/2 „ ^ 

r=0 

Thus, (3.5), with the use of (3.7) and (3.11), gives the desired result, (2.2). 

4. THE CASE p2 - 4q = 0 

In [l] , Carlitzgave an alternate proof of (1.4) for the case p2 - 4q = 0. 
Although (1.4) was proved for the case p2 - 4q ^ 0, the two results are 
shown to be the same for the case p2 - 4q = 0. 

In the derivation of (2.2), we assumed that p2 - 4q ^ 0. It can be 
shown (by a repetition of the argument in [l] ) that (2.2) is also valid for the 
case p2 - 4q = 0, where now U = n(p/2) " , and W = (a + bn) (p/2)n, 
with a = W0 and pb = 2Wt = pW0, Since A = B = p /2 , we obtain from 
(2.3) that 

cr - (iK* • 
Moreover, we have 

n ujf+l-i) = „ (mi)2(k+l-i)(p/2)2(mi-l)(k+l--i) 
i=l i=l 

k 
= m k ( k + 1 ) - (p /2 )k(kH-l)(mk+2m-3)/3. n ( r | ) 2 ̂  

r=0 

and 
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k N 

n (i)(n)« = (k.)k+1. 
r=0 

Thus, from Theorem 1, we obtain the simplified result 
Theorem 2 

m(n+r+s)+n. {• 
II (a + bn. + bm(n + r + s)) (p/2) 1 

i=l 
( r , s = 0 , 1 , - . . ,k) 

nr+iHr/9 (k+l)(k(mn+l)+(2/3)mk(k--l)+(k/3)(mk+2m--3)+N, ) 
(4.1) = ( - l ) ( k + W i * (p/2) k 

/ u ,k(k+l) /T, vk+1 • (bm) v ' • (kl) . 

Remarks, If m = 1 and n. = 0, i = 1, 2, *• • , k, then N, = 0, 
and thus (4.1) contains, as a special case, the second (and the last) principal 
result, (7), of [ l ] , 

Additional simplifications of (4,1) are readily obtained, 
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AN APPLICATION OF THE LUCAS TRIANGLE 
VERNER E. HOGGATT, JR. 

San Jose State College, San Jose, California 

1. INTRODUCTION 

Consider the integer triangle whose entries are given by 

A. Q — 1 j A. . = 2 9 j = l , 2, o, ••• ; 

A .- . = A . + A . , (0 < j < n, n > 1). n+l , j n , j n , j - l 

The first few lines of the triangle are listed left-justified below: 

1 - 2 

1 3 2 

1 4 5 2 
A: 

1 5 9 7 2 

1 6 14 16 9 2 

1 7 20 30 25 11 2 

One notes that the recurrence relation is the same as the one for 
Pascal 's triangle. Apart from no A0 0 term the array is really the sum of 
two Pascal triangles. The rising diagonal sums are the Lucas numbers, 
LA = 1, L2 = 3, L + 2 = L - + L . The A0>0 = 2 would also add L0 = 2 
to the rising diagonal sum sequence. The triangular array is now the Lucas 
triangle of Mark Feinberg [1]. It is also closely related to a convolution 
triangle [3]. 

Consider the new array obtained in a simple way from our first array 
A by shifting the j column down j places (j = 1, 2, 3, °°«). The col-
umn on the left is the 0 column. 

360 
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1 

B: 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

8 

2 

5 

9 

14 

20 

. ® . 

2 

7 

16 

The relationship is 

B. . = A. . . 0 < j < fi/21 , 

where [x] is the greatest integer not exceeding x. The recurrence relation 
for B. . is 

B. = 1 for all i , 
1,0 

B i ( j = B i - 1 , 3
 + B i - 2 . J - 1 ' ^ ^ ^ 

along with other useful relations true for all j : 

B„. . = 2 
B Q . ^ . = 2j + 1 

B2j+l , j+l = ° 

2, ANOTHER ARRAY 

Harlan Umansky [2] laid out the following display of formulas for pow-
ers of Lucas numbers* 
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L 1 = L 
n n L2 = L 9 + 2 ( - l ) n 
n 2n 

L 3 = L Q + 3 ( - l ) n L n 3n n 
C: L 4 = L , + 4 ( - l ) n L 2 - 2 n 4n n 

L 5 = L . + 5 ( - l ) n L 3 - 5L n 5n n n 
L 6 = L c + 6 ( - l ) n L 4 - 9L2 + 2 ( - l ) n 

n 6n n . n 
L 7 = IJr7 + 7 ( - l ) n L 5 - 14L3 + 7 ( - l ) n L n 7n n n n 
L 8 = LQ + 8 ( - l ) n L 6 - 20L4 + 16 ( - l ) n L 2 - 2 n 8n n n n 

The display given in [2] contains 7 mi s s ing p a i r s of parentheses. , The above 

displayed form was suggested by E d g a r K a r s t who, along with Bro the r Alfred 

Brousseau , noted the typing e r r o r s in [ 2 ] . Surely , we note that exclusive of 

s i g n s , the coefficients in display C a r e p rec i se ly those of Ar r ay B. We shall 

p rove the theorem: 

Theo rem 1. 

[m/2] 
. m 
J n ~~mn ^—4 ~ m , j ' 

3=1 

Lm = L + Y C .(-if^-V11--23 
£-d m , i v n 

where 

C k , 0 - 1 ' 

C . = C - . + C 0 • , , 1 ^ 3 ^ [ m / 2 ] for m > 2 , 
m , j m - l , j m - 2 , 3 - 1 ' J »• J 

Proof. The proof shall p roceed by induction,, F o r all n , the theorem 

i s t rue for m = 1, the sum being empty. Assume , for n > 1, 

[k/2] 
L k = L . + Y Cy . ( - l ) n J t J - l L k - 2 j 

n nk JL* k , j n 
3=1 

for k = 1, 2 , 3 , °• • , m along with 
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C k , 0 = *' C2k,k = 2> C2k+l ,k = 2 k + 1 ' *»* C2k+l ,k+l = °-

Therefore, 

[m/2] 
L™ = L + V^ c (_1}nj+j-l m-2j 

n mn Z-t m , j v ' n ' 
j=l 

and 

But, 

[m/2] 
L m + 1 = L L + Y C .(_D^+J-lLmH-l-2j 

n n mn Z-r m , j v ' n 

L L = L, _* + ( - 1 ) ^ , , , n mn (m+l)n (m-l)n 

Thus, 

[m/2] 

n (m+l)n (m-l)n Z_/ m , j n 

Returning to the inductive assumption for k = m - 1 yields 

[Cm-D/2] 
(-DnL, .. = (-if^-1 + (-Dn+1 y c 1 A-ifw-1^-1-2) 

(m-l)n n t^ m - l , j n 
j=l 

[(m-l)/2] 
= ( - D V 1 1 - 1 + V C ( . ^ ( j + D + O + D - l L m - l - ^ 

n Z-^ m-1, j n 
3=1 

Now let p = j + 1; then since [(m - l ) /2] + 1 = [Cm + l ) /2] , 
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[(m+D/2] 
( - l ) V . , = (-ifl^-1 + V C , ^ n p + p - l m + l -2p 

(m-l)n n Z_< m - l , p - l v ' n 
p=2 

Therefore, 

. m+1 
L(m+l)n + 

[Cm+D/2] ] 
x ' n L-t m - l , p - l n I 

p=2 

[m/2] 
+ y C ( .Dnp+p-lLm+l^p 

£-J m,p n 
p=l 

(m+l)n 

[(m+l)/2] 
y (C + C , . ( . ^ n p + p - ^ m + l ^ p 
£-j v m,p m - l , p - l n 
P=l 

We examine the possible extra term added to the second summation. If m 
is 2k, then [m/2] = [(m + l ) /2] = k and C 2 k k = 2 and C2 k_x k _ 1 = 
2k - 1; thus, C 2 k + 1 k = 2k + 1. If m = 2k + 1, then [m/2] + 1 ** 
[ (m + l ) /2 ] = k + 1 and the term C2k+1 , + 1 = 0 and C 2 k k = 2; thus 
C0i . o i ,i = 2 . Thus, if one defines 2k+2, k+1 

C k-1 ,0 = *• C 2k,k " 2> C 2 k + l , k = 2 k + X ' 
P = 0 
u 2k+l ,k+l 

for k > 1, and 

m+l ,p m,p m - l , p - l 1 < P * [-T-J- m £ 1 , 

then 

[tm+l)/2] 
Tm+1 _ + V p f ^np-ip-i m+l-2p 
L n - L(m+l)n + L. S n ^ p ^ L n 

P=l 
[Continued on p. 427. ] 



ONE-ONE CORRESPONDENCES BETWEEN THE SET N OF POSITIVE 
INTEGERS AND THE SETS N n AND U N n 

EUGENE A. MAIER 
University of Oregon, Eugene, Oregon 

1. Let N be the set of positive integers and let ]ST be the set of all 
n-tuples of positive integers., It is well known that there exist one-one cor-
respondences between N and N for all N, and between p N N and N. 
In this paper j we give examples of such functions. 

2. Theorem 1, Define f : Nn~* N by n J 

(i) 

where 

k = i 

s k -£-. i=l 

(?) for k ^ n and the combinatorial symbol ( h J is defined to be 0 if m < k. 
Then f is a one-one correspondence. 

Proof. We begin by defining a relation —< on N as follows? 
Definition, (xj, x\9 • • • , xn)—<(xls x2, 8 8 8» x n ) if and only if s n < 

s 9 or s n = s n and there exists k ^ n such that x! < x, and x' = x for 
k < i < n. 

It is readily established tha t -< well-orders N . For a E. N , let 
M = {j3 E Nn | p-z< of} and let f (a) = #(M ) where #(M ) is the number 
of elements in M . Since M is a finite set, it follows that f is a one-a a n 
one mapping from 1ST onto N. We prove by induction on n that f (a) is 
given by (1). 

If n.= 1, we have fi(xA) = #{j3 E N | /3 < x j = x4 which is the value 
(1) gives for fiCxj). Assume (1) is valid for n. Observe that 

( x i > X 2 ' " • ' x n + l ) — ( x i ' X 2 ' • " ' x n + l ) 

365 
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if and only if 

(i) s ; + l < S n + l ' 

or 

( i i ) s ; + l = 8n+l ^ xk+l < Xn+1 • 

or 

(iii) sf. , n = s„ , - , xf , n = x , - and (x\, • • • , xf ) :z< (x-, • • • , x ) n+1 n+1' n+1 n+1 1 n 1 ' n ' 

Thus if 

a - (xv x 2 , ••• , x n + 1 ) , 

M^ may be expressed as the union of three disjoint sets A, B and C which 
consist of those elements of N satisfying, respectively, conditions (i), 
(ii), and (iii). Thus, 

'fn+1(<*) = tKMa) = #(A) + #(B) + #(C) . 

We now compute #(A) +#(B) + #(C). We will have occasion to use the 
combinatorial identity, 

t+r 
(2) 

j=t+l 
gC-l)-0:j) 

(which may be established by induction on r) and the fact that the number of 
n-tuples of positive integers which satisfy the equation xj + • • • + x n = t is 

(.': 0 
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(Think of placing t objects in a row and placing dividers into n - 1 of the 
t - 1 spaces between the objects. Then xt is the number of objects before 
the first divider, x2 is the number between the first and second dividers, 
etc.) 

Note that (3 = (yj, y2, e e o , Yn+l) i s a n element of A if and only if 
y i + y2 + . . . + y n + 1 = j where n + 1 • £ j < s n + 1 . Thus, 

s ^ - 1 n+1 
#(A) = 

j=n+l i =n4 -1 ^ * 

and hence, using (2), 

•"-(Vii 1 ) -
Now p G B if and only if 1 < y n + 1 < x n + 1 - 1 and 

y i + " * + y n + l = X l + 8 e" + X n + 1 = V l ' 

Thus /3 G B if and only if yt + • • • + yn = j where SR + 1 £ j £. s n + 1 - 1. 
Hence, 

S n + 1 " 1 

#(B) = 

n 

Using (2), we have 

n+1 

!(;:!)-£(;:;) •(-.•')-(';)• #(B) = 
j=n " j=n 

Finally, j8 G C if and only if 
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yn+l = Xn+1 ' 

+ y = s Jn n 

and 

^ 1 ' ' " ' ^ ^ ( x l ' , " ' X n ) 

The least such fi is the (n + l)-tuple 

( s n - n + l , 1, 1, • • • , ! , x n + 1 ) 

Thus j 3 6 C if and only if 

(sn - n + 1, 1, •••-, 1) =^{yv ••• , y n ) =^ (x^ • • • , x n ) 

Hence, 

#(C) = f (x-, • • • , x ) - f (s - n + 1, 1, • • • , 1) + 1 . n 1 n n n 

Therefore, using the induction hypothesis and (2), we have 

-•ft)-5f;«)-gr-""J 
-1 S - • 

n-1 % n-1 * x 

k=l x ' k=s -n x n ' 
n 

-t(-r)-(\ ')•(:;::)• 
Thus, since 
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(v-VM^-1)-^) 
and 

we have 

W X 1 ' " • ' x n + l ) 

(v)-ft::)-W-

and the theorem is es tabl ished. 
3e T h e o r e m 2. Define g: U NH—> N by 

gCx1, • •• , x n ) = 2 
k=l % / k=l x / 

whe re 
k 

s 

i= l 

for k < n and ( ^ J i s defined to be 0 if m < k. Then g i s a one-one 
correspondence. 

Proof. Define a re la t ion < on U . N 1 1 as follows: 

Definition, (x^, •• 8 , x j^) <l ( x ^ • • • , x n ) if and only if 

(i) sf < s , 
v ' m n 
o r 

(ii) s m = S n a n d m < n 9 
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or 

(iii) s m = sn* m = n a n d * x l ' " ° ' Xn* ~< * x l ' ° " ' xn* ' 

The relation < well-orders U^ N . For a E UNn, let 

sa = {/3GNn \p 3a}, 

and let g(a) = #(S ). Then g is a one-one mapping from U N onto N. 
We may express S as the union of three disjoint sets X, Y, and Z which 
consist of those elements of U N satisfying, respectively, conditions 
(i), (ii), and (iii) in the definition of <. 

Now p = (yl9 • • • , ym") E X if and only if y 1 + • • • + y m = j where 
1 ^ 3 ^ s - 1, The number of elements in satisfying this equation 
for fixed j is 

mEN \ / m=l > ' 

Thus 

s -1 
n 1 

#(« = j ^ 2J"X = 2 n - * • 
3=1 

We have p Y if and only if y1 + • • • + y = s where m < n. Thus 
n-1 

•sfr:0-#(Y) 
m=l 

Finally, p E Z if and only if p e N11 and j80=^j8 =^ tei* • • • , x n ) 
3 p0 is the n-tuple (s -

of Theorem 1 and (2), we have 
where p0 is the n-tuple (s - n + 1, 1, 1, • • • , 1). Thus, using the result 
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#(Z) = f n (x 1 , • • • . x n ) - f n ( s n - n + l , l , . . . , l ) + l = 

n - 1 / „ \ r / \ n - 1 

• W - E N O - I W - E ^ " " ^ - 1 ) ] 
k=l L k=l / J 

+ 1 

i s - 1 
n - 1 / . v n 

•ten-£j--) 

Therefore 5 

g (x l 9 . . . , x n ) = #(X) + #(Y) + #(Z) = 

n - 1 , , . n - 1 

••'-. .£(t::)-£(v) • 
k=l k=l 

SOME RESULTS IN TRIGONOMETRY 
BROTHER L. RAPHAEL, F.S.C. 

St. Mary's College, California 

Graphs of the six c i r c u l a r functions in the f i r s t quadrant yield some 

pa r t i cu l a r ly elegant r e s u l t s involving the Golden Section. 

Let cp2 + cp = 1, so that cp = (ST5 - l ) / 2 = 0.61803 and notice that: 
a r c cos cp = a r c sin ^ 1 - <j#K= a r c sin ^ = 0.90459 

a r c sin cp = a r c c o s ^ l - cp2 = a r c cos ^ = 0o66621 

F u r t h e r , if tan x = cos x , then sin x = cos2x and sin2 x + sin x = 1, that 

i s 9 x = a r c sin cp in which ca se tanarcs in<^ = c o s a r c s i n ^ = cosarccosN/c^ = "fcp 

[Continued on p. 392. ] 



THE "DIFFERENCE SERIES" OF MADACHY 
R. G. BUSCHMAN 

University of Wyoming, Laramie, Wyoming 

In a recent issue, Madachy [1] has raised two conjectures concerning 
difference series which result at the various levels in the Sieve of Eratosthenes; 
both conjectures are valid. In this modified sieve, the sieving prime is dis-
carded along with its multiples. The difference series associated with a 
prime is the series of differences which occur between the members of the 
remaining list after sievings through that particular prime. 

Conjecture 1. If d (d > 2) is the number of terms in one period of 
the difference ser ies , then the series is symmetrical about the (d/2)th term. 

Conjecture 2. The (d/2) term (d > 2) will always be 4. 
The validity of Conjecture 1 can be argued as follows. Consider the 

numbers which remain after we have sieved by 2, 3, 5, ••• , p n and let 
P = 2-3-5- • «pn. Then, as Madachy shows, there are P + 1 numbers in the 
original set of consecutive integers from which one period of the difference 
series is formed; we note that both endpoints must be included in order to 
generate the differences. Starting from P - 1 of these integers, sieving by 
2 can be done by sieving each second number and beginning at either end, 
since 2 divides P. The numbers 0 and P play like roles, as do the n u m -
bers 1 and P - 1. Similarly, since 3 divides P we can again count from 
either end of the original set and sieve each third number. Likewise we do 
this for each number through p . To illustrate, consider n = 3 so that 
P - 1 = 29. We underline to indicate sieving. 

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 ' • ' 

Thus the difference series begins 6, 4, 2, 4, ••• . The last element of a 
period of the difference series occurs from the pair P - 1, P + 1, and is 
always 2. Since we can apply the process forward or backward over the first 
period (deleting this last difference), the differences are symmetrically 
arranged about the "middle difference," i. e . , about the (d/2) term. 
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Conjecture 2 can be settled by considering how this "middle difference" 
must be formed. Since d > 29 the middle difference must span the number 
P /2 in the original set of consecutive integers 9 which is an odd number; 
actually P /2 = 3-5 ••• p n . Since (P/2) + 1 and (P/2) - 1 are even, this 
"middle difference" must be at least 4. From the results of Conjecture 19 

symmetry then shows that if it is not 4, it must be at least 8, In this case, 
both of the odd numbers (P/2) + 2 and (P/2) - 2 must have been sieved out 
at some stage; i . e . , by some number 39 59 • •• , p n . However, if we con-
sider a decomposition of (P/2) ± 29 we see that this is not possible, for 

(P/2) ± 2 = 3-5 . • • p n ± 2 9 

and the remainder is ±2 when it is divided by any of these primes, hence it 
could not have been sieved out* 

It is of interest to note that no sieving with any prime p greater than 
3, although the actual numbers which are sieved out are not regularly 
arranged, a ratio of exactly l / p of them disappear,, In terms of the dif-
ference series this means that within one period of that series formed after 
sieving by 29 39 59 *e • , p , exactly l /p of the pairs of members of tha p r e -
vious difference series are combined,, An example for P = 30 illustrates 
this. 

4 2 4 2 4 2 4 2__4 2 
6 4 2 4 2 4 6 2 

4 2 4 2 
6 4 2 

From the 10 differences (of 5 periods) of the previous series we form 2 
new differences, a ratio of 2/10 = 1/5 for the sieving prime 5. 

A very difficult problem is to try to determine in general exactly which 
pairs of differences are to be combined to form the next difference series. 
In the above example, pairs numbered 1, 89 11, 18, ••• are combined. For 
the next sequences we combine pairs numbered* 

(7) 1, 13, 20, 24, 31, 35, 42, 54; 1 + 56, ••• • 
(11) 1, 27, 32, 42, 47, 58, 739 77, 93, 1 0 3 , — 
(13) 1, 35, 44, 51, 62, 77, 84, 99, 110, 1 1 5 , — 
(17) 1, 56, 62, 75, 94, 100, 119, 132, 139,°00 . 
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ih No genera l formula for the n difference s e r i e s s e e m s to exis t , 

REFERENCE 

1. Joseph So Madachy, "Recrea t ional Mathemat ics — 'Difference S e r i e s ' 

Result ing from Sieving P r i m e s , " Fibonacci Q u a r t e r l y , 7 (1969), pp. 315-

318, 

[Continued from p. 346. ] 

If n i s not divis ible by 1 1 , 13 , o r 17 , then p2 < 19 ^ p3 . Taking 
q = 19 in (3.0), we have 

E l > 1 , 1 , log (16/15) > 1 1 1 log (256/255) 

p 3 5 19 log (19/18) 3 5 17 257 log (257/256) ' 
p |n 

Th is comple tes the proof of the lower bound for (C) and a lso that of 
the new p a r t s of T h e o r e m 1. 
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INFINITELY MANY GENERALIZATIONS OF ABEL'S 
PARTIAL SUMMATION IDENTITY 

KENNETH B. STOLARSKY* 
Institute for Advanced Study, Princeton, New Jersey 

HI 

It is well known that if 2, = 1 B, (x) is bounded independently of m and 
x (say for all x in an interval I) and A, tends to zero mono tonic ally as 
k —» oo, then 2, 1A, B, (x) is uniformly convergent on I. This follows from 
a finite identity first used systematically by Abel, namely, 

n n-1 

W E \ B k = s n A n " s m - l A m - l + E s k ( A k " W ' 
k~m k=m-l 

where 

\ 

k 
"LB, 

i=l 

The purpose of this paper is to show that an infinite sequence of finite 
identities involving summations (of which (1) is the simplest example) can be 
deduced from the so-called MP. Hall commutator collecting process" which 
is fundamental in the theory of finitely generated nilpotent groups. 

Let G be the free, group on two generators a and b , {G } its lower 
central series (Gt = G, G n + 1 = [G n ,G]) , and {^n} the corresponding 
natural homomorphisms, so <£>. : G -*G/G . P. HalPs commutator collect-
ing process yields for every g E G an integer r = r(n) such that 

(2) 0n(g) = c ? 1 ^ 2 . . . c r
r G n , 

* Supported in part by a WARF fellowship, and also by National Science 
Foundation Grant GP-7952X. 
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where the c. E G are the so-called basic commutators (c* = a, c2 = b , 
c3 = [b , a ] , c4 = [ b , a , a ] , c5 = [ b , a , b ] , c6 = [ b , a , a , a ] , c7 = [ b , a , a , b ] , 
c8 = [b , a ,b ,b ] , • • • ) and the e. are integers uniquely determined by g and 
n. A detailed explanation of these concepts can be found in Chapter 5 of 
Magnus, Kar rass , and Solitar, Combinatorial Group Theory, Interscience 
Publishers, John Wiley and Sons, Inc. , New York, 1966. 

Now let * denote the operator on G which turns words backwards; 
e . g . , (a3b2ab)* = bab2a3. If <p(g) is given by (2), define 0*(g) by 

(3) tf£(g) = c? c*2 . . . c* r G n . 

Since g* can be formed by making the substitutions a —• a~ and b —» b~ 
in g" , it follows that 

(4) 0£(g) = 0n(g*) . 

Similarly, let T denote the operator on G which interchanges a and b; 
e . g . , (a3b2ab)T = b3a2ba. Then, 

(5) 0^(g) = 0n(gf) . 

Equations (4) and (5) provide infinitely many generalizations of (1). 
To obtain specific identities from (4) and (5) write g in the form 

(6) g = b a b • • • b ^ m 

where the x. are integers. Then g* is obtained from (6) by replacing x. 
with xQ ., and gT is similarly obtained by replacing m with m + 1 and 
x. with y., where yA = yn , 0 = 0 and y. = x. - for 1 £ i <> 2m + 1. 

l Ji J 0 J 2m+2 Ji l - l 
Tables I, II, and III of the appendix show how to calculate 05(g) from g, 
where g has the form (6), and 4>$g)9 0|j(g) from </>5(g), where 05(g) has 
the form (2). 
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Example 1. By equating the exponents of c3 in (5) s we obtain 

r m - l \ / m \ m - l / m - 1 

LX2iJlEX2iJ- Hi E X — **« 
(7) 

I £-j ~2j+lJ^2i 
i=0 / \ i=0 / i=0 \ j=4 

m+1 / m + l \ m / m 

= E d 2 y2j+i) = Z ( S 
i=0 \ j=i / i = l \ H 

By letting 

t 
u(t) = Y* 

i=0 
X2i 

and 

t 
v(t) = E x2i+l • 

i=0 

this may be expressed in the more familiar form 

m-1 

u(m - l)v(m - 1) - £ ) v ( i " 1 ) ( u ( i ) " u ( i " 1 ) ) = 

i=0 
(8) 

m 
= Xu(i"1)(v(i"1}"v(i"2)) f 

i=l 

which is the discrete analogue of the familiar uv - Jvdu = /udv . Equation 
(1) is easily verified from (8). 

Example 2. By equating the exponents of c5 in (4), we obtain 
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m / i - 1 X / i - 1 

E X 2 i (E x 2 j | (E X 2j + l 
i=l \j=0 /\j=0 

m-1 / m 

1=0 \j=i+l / \ j=i 

/m-1 \ / m 

i ( 2 * 

m / v /m-1 

r > (E 
i=0 V ' \ j=i 

X 2 j + 1 1 + 

m 

2J+1, 

21 Z ^ 2J+1II Z v ~2j 
j=0 / \ j = 0 / i=0 

m - 1 

EX2j) "SX2i(Z X2j+i 

m 

J \ j = o 

It follows by equating the coefficients of Xj in (9) that 

m i - 1 
(10) X2il E X 2 j 

1=1 V j=0 1 = 0 N / \ j = 0 / \ j = 0 
^2j 

Equation (10) i s a lso d i rec t ly obvious, and can be considered a d i s c r e t e a n a -
logue of 

/ u d u = ^- u2 . 

I t i s c l e a r that these ident i t ies provide new t e s t s for the convergence of 

infinite s e r i e s , but the author has ne i the r been able to use them to decide 

the convergence of any s e r i e s whose convergence i s p re sen t ly unknown, no r 

to show that these ident i t ies always have in tegral analogues . 

APPENDIX 

F o r a g given in the form (6), Table 1 gives the exponents e. of (2) 

for r(5) = 8, and Tables 2 and 3 give the exponents f. and h. of $%(g) 

and ^ ( g ) , respectively* If p i s a complicated expres s ion , (p) shall d e -
note the binomial coefficient ( „ ) • The author h a s extended these tables 
(by hand) to r(6) = 14. The formula for e j 4 i s an unwieldy sum of five 
t e r m s , one of which i s 
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m-1 / m \ 

SwJ E U • 
i=0 \ j= i+ l / 

where 

m-1 
p = x2i E X2j+1 

ei 

e3 

m-1 
= E X2i+1 

i=0 

m-1 /m-1 
= E x2i( E x2j+l 

i=0 V j=i 

TABLE 1 
HI 

e2 = E X2i 2i 
i=0 

m=l /m-1 
V 2 j + l | 2 

e * = E x2i E x< 
i=0 \ j=i 

m-1 / m - 1 \ / m 
es = E x2i( E x2j+i)( E 

i=0 \ H / \ j=i+l i=0 X \ j=i 
2J+1H Lu x2j ! + ^ V 2 M Z ^ ~2j+l 

m-1 / m - 1 
ee = E x2i(Ex2 j + lJ 3 

i=0 \ j=L 

m-1 . . / m - 1 \ m-1 / m - 1 \ / m 
e? = E ffj l E x2j+i)2

 + E J E x2j+i)J E x
2j 

i=0 X ' \ j=i / i=0 \ j=i / \j=L+l 

m - 1 / \ / m - 1 \ m-1 x / m - 1 

= Eff)(E,1+1)+E(f)(E 
m 

x„..,|| 2 x„ e » B M 3 ) l ^ X2j+1 r ^ ^ A ^ X2j+lji Z . x2j 

m-1 / m - 1 \ / m 

+ E X 2 i E x 2 j + i E x2 j / 2 
i = 0 \ J = L / \ j = i + l 

[Continued on p. 405. ] 



THE SMALLEST NUMBER WITH DIVISORS 
A PRODUCT OF DISTINCT PRIMES 

K. U. LU 
California State College, Long Beach, California 

1. INTRODUCTION 

L e t P . denote the i p r i m e . This paper contains a proof that t he re 

i s a number k such that for k > K, the number 

P - 1 P - 1 P - 1 P -1 
„ k+s , / k - l + s - , / k - r + l + s T» 1+s 
p i ?2 • • ' p

r " " P k 

i s the sma l l e s t number having 

P P • • • P 
k+s k - l + s 1+s 

d i v i s o r s , where &£ 0, . 1 ^ r £ k - 1. 

2. LEMMAS 

The following L e m m a i s repeatedly used in the proof of L e m m a 2. 

L e m m a 1. T h e r e exis t posi t ive constants 

9 log 2 

and d such that c r log r < P < d r log r . See [2 p . 186] , 

L e m m a 2„ Let P . denote the i p r i m e . T h e r e ex i s t s a number K 

l a r g e enough such that for k > K, we have 

p
P k - r + l > 
r k 

for r = 1, 2 , • • • , k - 1. 

Proof. F o r r = 1, we do have 

(1) 2 K > P k 

380 
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for a l l k. 
F o r r = 2 , by L e m m a 1, we have 

3
P k - l > 3 c (k- l ) log(k~l ) 

T h e r e ex i s t s a k2 such that for k > k2, we have 

(2) S ^ " 1 > a^-Dlogfc-l) > d k ^ g k 

By L e m m a 1 and Eq. (2), the re i s a constant k2 such that for k > k2s 

we have 

P, 1 
(3) 3 • > P, 

S imi la r ly , for 

k 

3 < r ^ k + 1 
2 

t h e r e i s a constant k such that for k > k , we have 
r r 

(4) P ^ " r + 1 > P k • 

F o r r = k - 1 , by L e m m a 1, we have 

P k - 1 > ( c ( k " 1 ) l o § ( k " 1 ) ) 2 

= c2(k - l ) 2 log2 OK - 1) . 

Hence , the re i s a constant k ^ such that for k > k ^ , we have 

(5) P 2 ._ 1 > c2(k - l ) 2 log2 Os - 1) > dk log k > P k . 

S imi la r ly , for 
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K^< r < k - 2 , 

there is a constant k such that 

p p 
^ k-r+1 > / , v k-r+1 
P'r > (cr log r) 

> dk log k 
> \ 

for k > k . r 
Let K be the maximum of kl9 k2, •" • , k, ^ Then for k > K, we have 

P 
P r > P k ( r = 1 » 2 » - * ° ^ - l ) Q . E . P . 

Immediately following from Lemma 2, we have 
Lemma 3. There is a constant K such that for k > K, we have 

p * k - r * U s > p k > P . , 

for r = l , 2, • ° • , k - 1, and s > 0, where r < i < k - 1. 
Since we know p f B " 1 > p f _ 1 p f "X if A > 1, B > 1, and PjA > P2 

([1, Lemma 1]), together with Lemma 3, we conclude the following theorem. 
Theorem. There Is a constant K such that for k > K, 

P -1 P -1 P -1 P -1 
•o k+s - V k - l + s , / k - r + l + s -D 1+s 
p i p 2 • • • p

r * " P k 

is the smallest number such that it has P k + s P k _ 1 + s * *' P k - r + l + s ' ' ' P l+s 
divisors. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania, 17745, This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-172 Proposed by David Englund, Rockford College, Rockford, Illinois. 

Prove or disprove the "identity,n 

t=l 

where F and L denote the n Fibonacci and Lucas numbers, respect-n n 
ively, and [x] denotes the greatest integer function. 

H-173 Proposed by George Ledin, Jr., Institute of Chemical Biology, University of 
San Francisco, San Francisco, California. 

Solve the Diophantine equation, 

x2 + y2 + 1 = 3xy . 

H-174 Proposed by Daniel W. Burns, Chicago, Illinois. 

Let k be any non-zero integer and {S } be the sequence defined 
n=l 

by Sn = nk . 
Define the Burnfs Function, B(k), as follows: B(k) is the minimal 

value of n for which each of the ten digits, 0, 1, • • • , 9, have occurred 
383 
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in at least one S where 1 ^ m < n. For example, B(l) = 10, B(2) = 
45. Does B(k) exist for all k? If so, find an effective formula or algo-
rithm for calculating it. 

SOLUTIONS 

OLDIES BUT GOODIES 
The following problems are still lacking solutions: 
H-22 H-46 H-74 H-86 H-94 H-IM H-108 H-115 H-125 
H-23 H-60 H-76 H-87 H-100 H-105 H-110 H-116 H-127 
H-40 H-61 H-77 H-90 H-102 H-106 H-113 H-118 H-130 
H-43 H-73 H-84 H-91 H-103 H-107 H-114 H-122 

GENERATING FUNCTIONS 

H-144 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

A. Put 

[(1 - x)(l - y)(l - ax)(l - by)]" 1 = ] T A ^ x 3 ^ 1 1 

m,n=0 

Show that 

n=0 

A x n = 1 - abx2 

n ' n ( 1 - x)(l - ax)(l - bx)(l - abx) 

B. Put 

(1 - xr\l - y ) ^ ( l - axyrA = y B x m y n 

JL~4 m,n J 

m,n=0 

Show that 
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^ B _ x n = (1 - x)""1!! - ax)~X 

n,n 
n=0 

Solution by the Proposer. 

Solution, A. We have 

m n 
A 

m,n 
i=0 j=0 

M m+1 v M , n+1 x (1 - a )(1 - b ) 
(1 - a ) ( l - b) 

so that 

zL* n»n x " 2-J 
n+1 n+1 , (1 - a ^ H l - b " x ) n 

(1 - a) ( l - b) X 

n=0 n=0 
b + ab 

(1 - a ) ( l - b) J l - x ~ l - a x ~ l - b x 1 - abx 

1 \ 1 _ b | 
1 - b | ( 1 - x ) ( l - ax) (1 - bx)(l - abx) \ 

1 - abx2 

(1 - x ) ( l - ax)( l - bx)( l - abx) 

Solution, B. We have 

(1 - x p ^ l - y ) " 1 ! ! - axy)" A 

00 

• E 
(A) 
~tT 

t t r+t s+t a x y 

r , s , t = 0 

where 

(A)t = (X - D(X - 2) • • • (A - t + 1) (t > 1) and (X)0 = 1, 
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so that 

min(m,n) ,^ 
= V —1 

1̂ 1 L-d t! 
t=0 

Hence 

bo oo oo /x \ 

n=0 n=0 t=0 

t 

oo / x \ oo 

- E^ «'IX 
t=0 n=0 

= (1 •- x)"1(l - ax)"A 

Also solved by M. Yoder and D. Jaiswal. 

FACTOR ANALYSIS 

H-145 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

If 

e l e 2 e r 
n = PX P2 ••• P r 

is the canonical factorization of n, let A(n) = e- + ••• + e . Show that A(n) 
th r 

^ MFn) + 1 f o r ^ n> where F is the n Fibonacci number. 

Solution by the Proposer. 

Clearly, A(mn) = A(m) + A(n), and if mjn then A(m) < A(n). Also, 
1 = A(p) ^ ^-(F

D) ^ o r anY prime p. We show by induction that A(p ) S 
A(F fc) for all k, except when p = k = 2, when A(4) = A(F4) + 1. The 

p j ^ 
cases when p < 12 are checked directly. Assume the result is true for 
k-1 k 

p . Then since p > 12, by CarmichaeFs theorem ("On the Numerical 
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Factors of the Arithmetical Forms an ± 0 n , " Annals of Math. (2n d Ser.), 15, 
pp. 30-70, Theorem XXIII) there is a prime dividing F , not dividing F , - . I p& p^-J-
Then since F , -, F , , we have 

p K - l | pK 

A(F . ) > 1 + X(F . - ) * k , 

completing the induction. Hence A(p ) ^ X(F t ) except when p = k = 2. 
In the factorization 

e. e 
1 r 

n = Px °80 P r > 
we can assume pj = 2, and ej = 0 if necessary. Then 

F ,-••• ' , F 
e,- e„ 

P ? pr
r 

are pairwise relatively prime since p i , ••• , p r a r e , and since F e# 

divides F for each i , so their product *i 
n 

F e i ' - ' F e l F n . 
Pi p r I 

Hence, 

X(F ) £ X(F e ••• F e ) = X(F e-,) + ••• + X(F e ) * 
V P / P l P r 

£ (et - 1) + e2 + • • • + e r = X(n) - 1 , 

which completes the proof. 

^4/so so/ve<2 fry M. 7o<ier. 

CONVERGING FRACTIONS 

H-147 Proposed by George Ledin, Jr., University of San Francisco, San Francisco, 
California. 

Find the following limits. F, is the k Fibonacci number, L^ is 
the k t h Lucas number, 1T = 3.14159—, a = (1 + V§) /2 = 1 .61803-- , 
m = 1, 2, 3, ••• . 
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F ^ 
Xi = l i m •n+1 

F F 

[Oct. 

X2 = lim 
& n - * Q 

X* = lim 6 n - > o 

XA = l i m 4 n —• o 

F 
m 

m n 

F m 

n 

F 
m 

XR lim n ->o 

m - L n F 

L n - 2 

Solution by David Zeitlin, Minneapolis, Minnesota. 
EDITORIAL NOTE: We have assumed Binet Extensions, 

aX - f 
x a - jS ' x p ' 

in the calculations of x2, x3, • • • , x5 since we are concerned with neighbor-
hoods of zero I 

(1) As n-+oo, F Ja11-> (a - p) . Let p = F ,- and q = F . 
Then, as n->oo, 

F a n -+ (a - p)'1 and -F ?
d fa J%1 -> (a - 0"« 

Since aqQ - p _• o, we have xt = (a - /3)a_1 = 5
( a _ 1 ) / 2 * 5 ' 3 0 9 ^ 1.644. 

For x real , we define L = a + '•(P and F = (<*x - f)/(a - /3). 
X X 

Let Y., i = 2, 3, 4, 5, denote the limits without absolute value signs; 
then X. = Y. 

i 1 

(2) Using LfHospital1 s rule, we have (since ap = -1) , 
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Yo = lim / F / x m \ = lQg <* - lQg P =
 2 l Q g <* - i* 

where i2 = - 1 , and log (-1) = i77, using principal values. Thus* 

X2 = |Y2| = ^(4: log2 a -f TT2)/5 . 

(3) Using LfHospital's rule, we have 

ry ,. x a - p a - ° 
x—*>o F log a - log p 2 log a - irr 

x 

Thus, 

(v/f) - *• Y3 = A l * mIK) = Y 2 - Z ^ • 

and so 

x3 = ir, i = |T , | . i z , r = x 2 | Z s r = ( 4 i o ^ + ff2)"(m"1)/2 

(4) We readily find that 

(vr1**) Y4 = lim F /xx l i XF ] = Y2 • Z3 = 1 , 

and so X4 = 1. 
(5) Using LfHospital's rule,-we have 

Y5 = lini (L - 2)/x = log a + log 0 = iff' , 
X > 0 X 

a n d s o X 5 = | Y 5 | = 7T , 

Also partially solved by the Proposer, and also solved by M. Yoder and D. Jaiswal 
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SHADES OF EULER 

H-149 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee. 

For s = a + it , let 

P(s) = 2 p ~ S , 

where the summation is over the primes. Set 

CO 

^ a ( n ) r T s = [1 + P ( s ) ] " 1 , 
n=l 

00 

^ b ( n ) n " s = [1 - P ( s ) ] " 1 . 
n=l 

Determine the coefficients a(n) and b(n). 

Solution by the Proposer. 

For n = p * ••• p m let p(n) = a- + • • • + a and Xn) = ( - l ) p ( n ) . * i ^m 1 m 
We claim that 

, i I a l M M n ) ( a l + " ' + a m ) ; 
a(n) = a ^ P ] . . . p J = . . . 

x ' 1 m 

and that b(n) = |a(n)|. 
The proof is by induction on p(n), If p(n) = 1, n is prime and we 

have a(n) + a(l) = 0 and the validity of the assertion is obvious. Since in 
general, we have 

a(n) + a(n/Pi) + •*• + a(n/p ) = 0 , 

the result follows by induction. A similar method works for b(n), except 
that here we have 
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b(n) - bdi/pt) - . . . - b(n/p m ) = 0 . 

Also solved by L. Carlitz, D. hind, D. Khmer, and M. Yoder. 

TRIPLE THREAT 

H-150 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

Show that 

n-1 p q 
2 5 E E E F 2 r - l = F4n + < n / 3 >< 5 n 2 " 1 4> ' 

p=l q=l r=l 

where F n is the n Fibonacci number. 

Solution by the Proposer. 

To establish this results we need the following identities which have 
already been established earlier (Fibonacci Quarterly, December, 1966, 
pp. 369-372): 

5(F2i + F | + . . . + F2
2 n - 1 ) = F 4 n + 2n 

F4 + F8 + . . . + F 4 n = F 2 n F 2 n + 2 

5(F2F4 + F4F6 + . . . + F 2 n _ 2 F 2 n = F 4 n - 3n 

Hence, 

q 
5 E F2r-1 = % + 2c* • 

1 

Or, 
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p q p p 
5 EE F 2r- l = Z% + 2 L q = W2 + *> + «P 

q=l r = l 1 1 

[Oct. 

Hence , 

n - 1 p q 
2 5 Z E F2r-1 

p=l q=l r = l 

n - 1 n - 1 n - 1 

(L*F2pF2p+2 + 

1 1 

5X>2 + 5I>= 

= F 4 n - 3n + (5/6)n(n - l)(2n - 1) + (5/2)n(n - 1) = 

•= F 4 n . + (n/3)(5n2 - 14) . 

Also solved by C. Peck, M. Yoder, A. Shannon, S. Hamelin, and D. Jaiswal. 

EDITORIAL NOTE. C. B. A. Peck , in h is solution, obtained the identi ty 

25 
n q 

EE 
q=l r = l 

2 r - l L4n+2 + 5 n ( n + 1 ) . " - 3 -

[Continued from page 371. ] 

and a lso ctn a r c cos <p = sin a r c cos cp =sJqi. The r e s u l t s a r e summar i zed 
below. 

a 
-̂ 2/2 -

Wr 
^ v 

iK 
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ANGLE MULTISECTION BY PARALLEL STRAIGHTEDGES 
JANET WATERMAN GLAZE 

La Sierra High School, Carmichael, California 

Trisection of an arbitrary angle is* of course, impossible by means of 
compass and unmarked straightedge alone, but the attempt to do this by other 
means has fascinated mathematicians since the time of the ancient Greeks. 

The simplest trisection is probably Archimedes1 famous paper strip 
construction. This method involves using a straightedge with two marks , 
known as an application of the "insertion principle.n It is illustrated in 
Fig. 1. 

The angle to be trisected here is 8. A circle of arbitrary radius r is 
drawn whose center O is the vertex of the given angle. The sides of the 
angle intersect the circle at points A and B. BO is extended. A segment 
of length r is marked on a straightedge or paper strip. The edge is placed 
so that it passes through A and so that one endpoint of the marked segment 
intersects the circle at C and the other endpoint falls at D on BO, outside 
the circle. Then m / C D O , here marked a, is one-third m0. The proof 
is easily seen:^\ OCD, having two sides of length r , is isosceles, so that 
m/COD = m/CDO = a. By the exterior angle theorem, m/ACO = m/_CAO 
= 2a, since / OAC is also isosceles. The given angle 6 forms an exterior 
angle of ^OAD. Thus m6 = 2a + a = 3a. 

A solution of the problem using parallel straightedges, and a general-
ization are given here. 

In Fig. 2, let the angle to be trisected be 6; a circle of arbitrary rad-
ius r is drawn with center at vertex O. A and B are the intersection 
points of the sides of the angle and the circle. K and F represent the two 
parallel straightedges; K passes through point A and F passes through 
center O. C and E are points where each straightedge intersects the cir-
cle,, Mark point D on straightedge K such that CD = r. Adjust the 

393 
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straightedges so that CEj[_BO. When this occurs, point D will fall upon 
BO, for the reason that QOCDE is a rhombus. To prove it , let D! be the 
point of intersection of K and BO. AOPC and AOEP are = by H-L; 
I CDfP = [_ EOP by alt. int. angles; CP = EP by cpctc. Therefore, AOEP 
= AD'CP bySAA. It then follows that OE = OC = CD', CD* parallel to 
OE, diagonals are _[_, therefore QOCD'E is a rhombus, and D = D'. 
Thus m / ODA = a = 1/3 m0. /_ DOE and the angle vertical to it have 
measure a. 

It is possible to broaden the scope of the previous method to certain 
problems of multisection — that of dividing an arbitrary angle into a given 
number of equal parts — combining the ideas used in the Archimedes t r i sec-
tion with the properties of what might be thought of as a set of "collapsing 
rhombuses. M Specifically, it makes possible division of a given arbitrary 
angle into 2 + 1 equal par ts , where n may be any positive integer. In 
fact, the angle may be divided into any number of parts which is a divisor of 
a number of the form 2 + 1 — for example, if n = 5, it is possible to di-
vide the angle into 33 parts or 11 parts by taking three of the parts each equal 
to 1/33 of the angle. The method shown above for trisection represents the 
case where n = 1; that i s , 2 = 3 . When n = 2, 3, 4, o , ° , it may be 
seen that any given angle may be divided into 5, 9, 17, ••• equal par ts , 
respectively. 

If n = 2 so that 2 + 1 = 5, we have a 5-sectLon as shown in Fig. 3. 
In each case, incidentally, there appear n rhombuses — we see two here. 
As before the angle to be 5-sected is represented by 6 , the circle is drawn 
with radius r and center O. An inserted length equal to r on straightedge 
K has endpoints C and D, with C on the circle. Straightedge F is par-
allel to K. K and F pass through points A and O, respectively. E is 
the point of intersection of F and the circle. This time D OEDC is a rhom-
bus with diagonals OD and CE (sides CD and OE are equal in length and 
parallel). H is the point of intersection of diagonal OD and the circle. K 
is adjusted so that HE J[_ BO. Now using OD as radius, O as center, 
draw a circle concentric to the original. The intersection of F and this c i r -
cle is point M. Draw DM. It can be seen that DM J_ BO. • ODGM is a 
rhombus so that OD = DG. If m/DGO = a, then m/DOG = a. By the 
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exterior angle theorem m / CDO = m/_ COD = 2a. Now / AGO is an exter-
ior angle to ACOG, so that m / AGO = m / COG + m / CGO = 3a + a = 4a = 
m/OAC. The given angle, 69 is an exterior angle to AAOG, so that 
m = 4a + a = 5a. By alt. interior angles, m / GOE = m/DGO = a, which 
is the measure also of the angle vertical to /_ GOE. Thus the angle 6 is 
5-sected. 

In each case, it may be seen, as in Fig. 4, which shows a 9-section 
with 3 rhombuses, that a diagonal of each small rhombus becomes a side of 
the next larger rhombus. Each succeeding case is similar to that outlined in 
the 5-section, in principle. The properties of the rhombus, in particular its 
equal sides and perpendicular diagonals, provide the means for this interest-
ing method whereby the chain of rhombuses could be extended to infinity. 

Fig. 1 Archimedes1 Trisection 
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Fig. 2 Trisection Using Parallel Straightedges 
I (Proved, not Given) 

Fig. 4 Nine-Section 



A NOTE ON FIBONACCI FUNCTIONS 
W. R. SPICKERMAN 

East Carolina University, Greenville, North Carolina 

Recently, a number of authors [1 , 2, 3] have considered Fibonacci 
functions — continuous functions possessing properties related to Fibonacci 
sequences. In this note, some Fibonacci functions are derived and their 
properties verified. The derivation is based on the following definition,, 

Definition: If f is an infinitely differentiable function and f satisfies 
the recursion relation: 
(1) f(x + 2) = f(x) + f(x + 1), 

then f is a Fibonacci function. 
An immediate consequence of the definition is : 
Theorem 1. If f(x) is a Fibonacci function, then fT(x) and Jf(x)dx 

are also. 
The theorem is established by elementary calculus, 

f (x + 2) = [f(x) + f(x + 1)]' = 
= ff(x) + f'(x + 1) 

/f(x + 2)dx = J[f(x) + f(x + l)]dx = 
= /f(x) dx+Jf(x + l)dx. 

Theorem 2. If f(x) and g(x) are Fibonacci functions, then their sum 
is also. 

Proof. Let F(x) = f(x) + g(x). Then 

F(x + 2) = f(x + 2) + g(x + 2) = [f(x + 1) + g(x + 1)] + [f(x) + g(x)] = 
= F(x + 1) + F(x) . 

Theorem 3. If f (x) is a Fibonacci function and c is a real constant, 
then cf (x) is a Fibonacci function. 

Proof. Let F(x) = cf(x). Then 

397 
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F(x + 2) = cf(x + 2) = c[f(x + 1) + f(x)] = cf(x + 1) + cf(x) = 

= F(x + 1) + F(x) . 

Since the function e ^ where p is a real constant, k an integer, 
and i = V ^ T is real for integer values of x, we look for Fibonacci functions 
of the form y = e 
relation (1) yields 

dx of the form y = e where d is complex. Substitution into the recursion 

(3) e d ( x + 2 ) ' - e d ( x + 1 ) - e * * = 0 

or , 

tA\ d x , , 2 d d -v A 
V4) e (d - e - 1) = 0 

Since 0 is omitted by the first factor of (4), 

(5) e - e - 1 = 0 

Solving (5) for e : 

e
d i =- f ( i + N/5) = a , 

ed2 = i ( l - NT5) = p . 

Let dj[ = aA + bji, then 

aa i(cos bj + i sin bj) = a 

and 

Since a > 0, a4 = lno- = 0.48 and bj = 2k7T for k an integer. Similarly, 
if d2 = a2 + b2i, then 

e 2(cos b2 + i sin b2) = ft . 
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Since p < 0, a2 = In |/31 and b2 = (2k + i ) for k an integer. Further-
more , 

1 = | (e a i cos 2k)(ea2cos (2n + l ) | = | e a i | | e a 2 | 

and so a2 = -Ina = -0.48, or a2 = -a4. Thus, the subscript on a is not 
necessary and two solutions of (1) are: 

y(x) = e cos 2k7JX 

and 

y(x) = e cos (2k + 1)TTX 

Applying Theorems 2 and 3, we have: 

(6) y(x) = cje cos 2k7jx + c2e cos (2n + l)7Tx, 

where a = lna; k and n integers. Equation (6) may be written: 

/r7, , x (a+2k7Ti)x , (-a+(2n+l)7T)x 
(7) y(x) = cje ' + c2ev , 

Some interesting and useful relations between e and e can be de-
rived by substituting the values of dj and d2 into Eq. (5). 

(a+2k7Ti)2 a+2k7ri - „ n e — e — x — u 

e 2 a e 4 k 7 r i _ e a e 2 k 7 r i _ ± = Q 

e 2 a - e a - 1 = 0 , 

or 

(8) e 2 a = 1 + e a 

Also, 
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(-a+(2k+l)7Ti)2 (-a+(2k+l)iri) - A e - e - 1 = u 

-2a 2(2k-M)77i - a 2k7Ti 771 - n e e - e e e - 1 = 0 
-2a , -a - n e + e - 1 - 0 . 

o r 

(9) e " 2 a = 1 - e~ a 

F u r t h e r m o r e , 

(10) e a + e~ a = |or| + |j81 = \/5 . 

The t r igonomet r ic identity cos kn"(x + 2) = cos kirx = - c o s k7T(x + 1), 

re la t ions (8) and (9), and some a lgebra verify that (6) i s a solution to (1). 

Since (6) i s a different!able function satisfying re la t ion (1) in view of 

T h e o r e m 1, 

(11) y!(x) = (cje L cos 2k7rx + e2e~ cos (2n + l)7rx)T 

and 

(12) Jy(x)dx = ![cte cos 2k7rx + c2e cos (2n + l)?Tx]dx 

a r e also Fibonacci functions. 

The values of ct and c2 for which Eq. (6) a s s u m e s the Fibonacci n u m -

b e r s for in teger x can be computed by applying the conditions y(0) = 0 and 

y(l) = 1. That i s , 

ci + c2 = 0 
(13) 

a —a -
c^e - c2e = 1 . 

The solutions to the sys t em (13) a r e cj = 1/N/5 and c2 = - I N / 5 . Thus , the 

Fibonacci functions that ag ree with the Fibonacci numbers for in teger x a r e 
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(14) y(x) = ( e ^ cos 2k77x - e - a x cos (2n + 1)7IX)/N/"5 . 

The function f(x) = (a - b cos 77x)/ N/5 [2] is a special case of (14), where 
X X 

k = 0, n = 0, and a and b are not identified as exponentials base e. 
The usual extension of the Fibonacci sequence to the negative integers 

satisfies the relation F_ = (-1) F . For integer values of x, the Fib-
onacci functions (14) have the same property* 

Since 

cos 2kn77 = (-1) = 1 j 

and 

cos (2kn + n)7T = ( - l ) 2 k n ( - l ) n = (-l)n 

we have 

NH> y(-n) = e" a n cos 2k7r(-n) - e a n cos (2n + l)7T(-n) = 

-an , .,11 an . -Ji+1, an -an> 
e - (-1) e = (-1) (e - e ) = 

= (-l)n+1y(n) N/5 . 
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COMPLETE DIOPHANTINE SOLUTION OF THE PYTHAGOREAN TRIPLE 
(a, b = a + l,c) 
ERNST M. COHN 

National Aeronautics and Space Administration, Washington, D. C. 

In connection with problem B-123 (Fibonacci Quarterly 5 (1967), p. 238) 
the question was raised whether Pell numbers provide the only possible Dio-
phantine solutions for the Pythagorean triple (a,b = a + l , c ) . To prove that 
this is indeed so, it is necessary and sufficient to show that the general solu-
tion for the Pythagorean triple, when modified for this special case, acquires 
a form identical with relationships that are characteristic for Pell numbers, 
P . n 

The proof is based on a property of a class of sequences, of which both 
the Fibonacci and the Pell sequences are particular cases. By applying the 
recursion formula that is specific to the Pell sequence, an identity for the 
general sequence is transformed into one that is valid only for the Pell 
sequence. It is precisely this identity that must be satisfied by the special 
Pythagorean triples. 

We start with the single-membered, purely periodic, infinite continued 
fraction 

J_ "' ' = -g + \ /g2 + 4 
g+ 2 

where g is a positive integer. The limiting value shown is the positive root, 
xl3 of x2 + gx - 1 = 0„ The numerators and denominators of the convergents 
are obtained by the well-known recursion formula 

( 1 ) Gn+2 = SGn +l + Gn (G„ = 0, G, = 1) . 

These numbers appear in the powers of, e. g. , 

£ , Vg2 + 4 

2 2 
-x2 = 
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Now 

( 3 ) ( f G n + 3 + Gn+2)2 = t G ^3 + S G n + 3 G n + 2 + G n + 2 

and 

( 4 ) (Gn+3 ^ f l ) 2 = i G^+3 + g G n + 3 G n + 2 + G ^ G ^ 

By subtracting (4) from (3) and using (1), we obtain 

<5) - < G n + l " G n + 2 G n > = G n + 2 " G n + 3 G n + l 

(the left s ide being s imply a t rans format ion of the r ight ) , 
Since (5) holds for all values of n? each side m u s t equal the s a m e 

constant . Upon subst i tut ing G0 = 0 and Gj = 1 on the left (note that the 
value of G2 = g i s not r ea l ly needed) , we find - ( l 2 - g-0) = - 1 , and hence 

<6> G n + 2 G n " G n + 1 = ^ ^ = G n + * Gn+1 Gn " G n + 1 

When . g = 1, the left side reduces to the well-known Fibonacci-number 
identity 

F ^ F - F 2 , . = ( - l ) n + 1 
n+2 n n+1 N 

When g = 2, the right side of (6) can be rewritten as the Pell-number 
identity 

(P + P ^ ) 2 - 2P* = ( - l ) n + 1 , n n+1 n+1 N ' 9 
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whence 

(7) P n + P n + 1 = V2P^ + 1 + (-l)n+1 

Also, since the recursion formula for Pell numbers is 

P n + 2 " 2 P n + l + P n ( P o = °* P* = « 

from (1) above, we have 

n+2 n+1 n+1 n 

These equations have thus been shown to be characteristic for Pell numbers, 
The Diophantine solution for the Pythagorean triple, with legs a and 

b and hypotenuse c, is 2 p q = a or b, p2 - q2 = b or a, and p2 + q2 = 
c, where p and q are positive integers of different parity and p > q. 
When b = a + 1, p2 .- q2 - 2pq = ±1. Solving for p and q, and rearrang-
ing terms, 

(9) p + q = V 2 P 2 ±. 1 

(10) p - q = V2Q2 * 1 • 

Since (7) and (8) are obviously equivalent to (9) and (10), p and q must be 
Pell numbers. In fact, when q = P then p = Pn+1« The even leg of the 
triangle is 

2P , - P = a or b , n+1 n n n 

the odd leg, 

and the hypotenuse, 

p2 - p2 = b or a , 
n+1 n n n 
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p2 + p2 = p „ c 

n+1 n ^2n+l c
n 

Also, the smaller leg is 

2n 

S P _ = a or b . m n n 
m=l 

Except for the lowest nontrivial value 3, the values for both legs are obviously 
composite numbers. 

[Continued from p. 379. ] 

TABLE 2 

fi = ej f2 = e2 f3 = ete2 - e3 

f4 = e3 - eie2 - e ^ + e4 + e2 ( 2 ) • f 5 = -ete2 + e3 - a%ez + e5 + e J 2 j 

f8 = e ^ - e3 + 2ete3 - 2e4 - 2e2^ 2 J + e ^ - e6 - e2^ 3 j - e3(^ 2 j 

f7 = eAe2 - e3 + ete3 - e4 - e21 2 ) + e 2 e 3 "" e5 "" e i ( 2 ) 

+ eie5 - e7 + e2e4 - e j e ^ + ( 2 )( 2 ) 

f8 = eje2 - e3 + 2e2e3 - 2e5 - 2eA 2 J + e2e5 - e8 - e3^ 2 / ~ e * \ 3 / 

TABLE 3 

hi = e2 h2 = e t h3 = e ^ - e3 

hA = -eK + e 

h7 = -e 7 + 

i ( 2
2 ) h5 = - e* + e2( 2 J ^ = _ e 8 + e i \ 3 / 



FIBONACCI TO THE RESCUE 
J. A. H. HUNTER 

Toronto, Ontario, Canada 

Every year my PUZZLER problem in the December issue of the mag-
azine Canadian Consulting Engineer is made the subject of a contest, the 
prize being won by the first acceptable theoretical solution that is opened on 
a specified date. This last December, in 1969, the problem was as follows: 

Charlie was through with the paper,, HeTd read the comics, 
studied the sports pages, and even glanced at the headlines of world 
news, And now he was doodling on the margin of the front page. 

"It's funny about all our ages ," he said suddenly. "Yours is in 
the same proportion to mine as mine is to one less than our two ages 
combined. " 

Mary had been watching the two children playing with the boyfs 
new scooter on the sidewalk outside. "What of i t ? " she asked. "A lot 
of fractions." 

"I mean the complete yea r s . " Her husband smiled. "But the 
funny thing is that the same applies to the ages of the two kids ." 

Do you know MaryT s age ? 
Many acceptable solutions were received from readers. But one of 

these, not the first opened however, was most ingenious in its use of the 
Fibonacci concept for dealing with the relevant diophantine equation. For this 
reason, I give it in full, as received from the originator, Michael R. Buckley 
of Toronto, Canada. 

We notice Fibonacci lurking between the lines. Let MaryTs and 
CharlieTs ages be x and y respectively. Then: 

i = x + y - 1 

x y 

Obviously, the larger x and y are , the more golden becomes 
their ratio. The simplest solution is x = y = 1: here x and y being 

[Continued on p. 420. ] 



A PRIMER FOR THE FIBONACCI NUMBERS: PART VII 
MARJORIE BICKNELL 

A. C. Wilcox High School, Santa Clara, California 

AN INTRODUCTION TO FIBONACCI POLYNOMIALS 
AND THEIR DIVISIBILITY PROPERTIES 

An elementary study of the Fibonacci polynomials yields some general 
divisibility theorems, not only for the Fibonacci polynomials, but also for 
Fibonacci numbers and generalized Fibonacci numbers. This paper is intend-
ed also to be an introduction to the Fibonacci polynomials. 

Fibonacci and Lucas polynomials are special cases of Chebyshev poly-
nomials, and have been studied on a more advanced level by many mathemat-
icians,, For our purposes, we define only Fibonacci and Lucas polynomials. 

1. THE FIBONACCI POLYNOMIALS 

The Fibonacci polynomials {F (x)J- are defined by 

(1.1) Fi(x) = 1, F2(x) = x, and Fn+1(x) = xFn(x) + F ^ ^ x ) . 

th Notice that, when x = 1, F (1) = F , the n Fibonacci number. It is easy 
to verify that the relation 

(1.2) F_n(x) = (-l)nHLlFn(x) 

extends the definition of Fibonacci polynomials to all integral subscripts. The 
first ten Fibonacci polynomials are given below: 

Fi(x) = 1 
F2(x) = x 
F3(x) = x2 + 1 
F4(x) = x3 + 2x 
F5(x) = x4 + 3x2 + 1 
F6(x) = x5 + 4x3 + 3x 
F7(x) = x6 + 5x4 + 6x2 + 1 

407 
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F8(x) = x7 + 6x5 + 10x3 + 4x 
F9(x) = x8 + 7x6 + 15x4 + 10x2 + 1 -

F10(x) = x9 + 8x7 + 21x5 + 20x3 + 5x . 

It is important for Section 4, to notice that the degree of F (x) is | n| - 1 for 
n ^ 0. Also, F0(x) = 0. 

In Table 1, the coefficients of the Fibonacci polynomials are arranged in 
ascending order. The sum of the n row is F , and the sum of the n 
diagonal of slope 1, formed by beginning on the n row, left column, and 
going one up and one right to get the next term, is given by 

2(n-l) /2 = 2 t 2(n-3)/2 

when n is odd. 

Table 1 
Fibonacci Polynomial Coefficients Arranged in Ascending Order 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

x°  
1 

0 

1 
0 

1 

0 

1 
0 

1 

X1 

1 

0 
2 

0 

3 

0 

4 

0 

X2 

1 

0 

3 

0 

6 

0 

10 

X3 

1 

0 

4 

0 

10 

0 

X4 

1 

0 

5 

0 

15 

X5 

1 

0 

6 

0 

X6 

1 
0 

7 

X7 

1 

0 

To compare with Pascal1 s triangle, the sum of the n row there is 2 , and 
the sum of the n diagonal of slope one is F . In fact, the (alternate) dia-
gonals of slope 1 in Table 1 produce Pascal1 s triangle. 

If the successive binomial expansions of (x + 1) are written in de-
scending order, 
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n = 0. 

n = 1 

n = 2 

n = 3: 

n = 4; 

the sum of the 4th diagonal of slope 1 i s F4(x) = x4 + 3x2 + 1, and the sum of 

the nth diagonal of slope 1 i s F (x), or 5 

(1.3) F (x) n 

[(n-D/2]. N 

j=0 

for [x] the g r e a t e s t in teger contained in x9 and binomial coefficient [ . j . 
a s given by Swamy [ l ] and o t h e r s . 

20 LUCAS POLYNOMIALS AND GENERAL FIBONACCI POLYNOMIALS 

The Lucas polynomials | L (X)} a r e defined by 

(2.1) L0(x) = 25 Li(x) = x9 L n + 1 (x ) =xL n (x ) + L n ^ 1 ( x ) 

th Again 9 when x = 1, L (1) = L , the n Lucas number . Lucas polynomials 

have the p r o p e r t i e s that 

(2.2) Ln(x) = F n + 1 W + F ^ W = xFn(x) + 2Fn_1(x) 

x L n ( x ) = F n + 2 ( x ) " F n - 2 ( x ) 

and can be extended to negative subsc r ip t s by 

(2.3) L (x) = (-1)"L (x) . - n n 
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The degree of L (x) is Jn|, as can be observed in the following list of 
the first ten Lucas polynomials: 

L4(x) = x 

L2(x) = x2 + 2 

L3(x) = x2 + 3x 

L4(x) = x4 + 4x2 + 2 

L5(x) = x5 + 5x3 + 5x 

L6(x) = x8 + 6x4 + 9x2 + 2 

L7(x) = x7 + 7x5 + 14x3 + 7x 

L8(x) = x8 + 8x8 + 20x4 + 16x2 + 2 

L9(x) = x9 + 9x7 + 27x5 + 30x3 + 9x 

L10(x) = x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2 . 

If the Lucas polynomial coefficients are arranged in ascending order in a left-
justified triangle similar to that of Table 1, the sum of the n row is L , 
and the sum of the n diagonal of slope 1 is given by 3 - 2 for even 
n, n ;> 2. 

When general Fibonacci polynomials are defined by 

(2.4) Ht(x) = a, H2(x) = bx, HR(x) = x H ^ x ) + Hn_2<x) , 

then 

(2.5) H (x) = bxF -(x) + aF Q(x) 
N n • ' n - 1 ^ n - 2 N 

If the coefficients of the | H (x)|, written in ascending order, are placed in a 
left-justified triangle such as Table 1, then the sum of the n diagonal of 
slope 1 is 

(a + b) • 2<n"3>/2 = (a + b ) - 2 t < n - 2 ^ 
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for odd n, n > 3. (Notice that, if a = 2, b = 1, then H ^ ( x ) = L (x), 
n+1 i r " and if a = b = 1, H (x) = F (x).) n n 

3. A MATRIX GENERATOR FOR FIBONACCI POLYNOMIALS 

Since Fibonacci polynomials appear as the elements of the matrix de-
fined below, many identities can be derived for Fibonacci polynomials using 
matrix theory, as done by Hayes [2"] and others, and as done for Fibonacci 
numbers by Basin and Hoggatt [3], 

It is easily established by mathematical induction that the matrix 

Q 
• ( ; ! ) • 

when raised to the k power, is given by 

k / F k + l ( x ) F k ( x ) 

(3.1) QK = ' K l K 

~ Fk(x) Fk_ l (x) 

for any integer k, where Q° is the identity matrix and Q~ is the matrix 
inverse of Qk. Since det Q = - 1 , det Qk = (det Q)k = (- l )k gives us 

(3.2) F k + l ( x ) F k - l ( x ) - F k ( x ) = ( " 1 ) k ' 

Since Q m Q n = Q m + n for all integers m and n, matrix multiplication of 
Q m and Qn gives 

^ n / F m + l ( x ) W x ) + F m ( x ) F n ( x ) F
m + l ( x ) F n < x ) + F m ( x ) F n - l < x ) 

Q Q = ' F m < x ) F n + l ( x ) + F m-l< x ) F n< x ) F m ( x ) F n ( x ) + F
m - l < x ) F n - l ( x V 

Anv 

while 

n m + n § F m + n + l ( x ) W x ) 

y " I F ± W F • . , . 
m+n m+n-lix), 
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Equating elements in the upper right corner gives 

(3.3) F _, (x) = F ^Ax)F (x) + F (x)F - (x) . 
v ' m+n ' m+1 n m n-1 

Replacing n by (-n) and using the identity 

F_n(x) = (-l)n + 1Fn(x) 

gives 

Then, 

F m - n ( x ) = ( - 1 ) n < - F m+l ( x ) F n ( x ) + F m ( x ) W x » ' 

F j . (x) + (-l)nF (x) = F (x)F Ax) + F (X)F' - (X) m+n m-n m n-1 m n+lx 

= F (x)L (x) . m n 

If we replace n by k and m by m - k above, we can obtain 

(3.4) F m W = Lk(x)Fm_k(x) + ( -Dk + 1Fm_2 k(x) , 

which results in the divisibility theorems of the next section 

4. DIVISIBILITY PROPERTIES OF FIBONACCI AND LUCAS POLYNOMIALS 
Lemma. The Fibonacci polynomials F (x) satisfy 

(2i+l)k-2im(x) ' 

, ,p(m-k)+m+l ( v 
+ (-1) F(2p-l)m-2pk(X) 

for all integers m and k, and for p ;> 1. 
Proof: If p = 1, the Lemma is just Equation (3.4). For convenience, 

call Q (x) the sum of Lucas polynomials in the Lemma. Then, assume that 
the Lemma holds when p = j , or that 
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<A> V x > = *m-*WQj« + ( - 1 ) 3 ( m " k ) + m + l F (23 - l ) m -2 j k « • 

Substitute (2jk - (2j - l)m) for m in Equation (3.4), giving 

F2Jk-<2j-l)mW = L k . W P 2 J k - C l J - D m - k . W + ^ ^ ' ^ V l ^ - D m ^ W • 

Since we want to express F2'k-(2"-l) ^ i n t e r n i s °̂  F _k^9 S 6 t 

2jk - (2j - l)m - k! = m - k 

and solve for kf
9 yielding kf = (2j + l)k - 2jm, so that 

F2jk-(2j- l)m( x ) = L(2j+l)k-2jm( x ) Fm-k( x ) + ( - 1 ) F(2j+l)m-(2j+2)k(x) ' 

Substituting into (A) and using 

F (x) = (- l ) n + 1F (x) -n n 

to simplify gives 

Fm(x) = (Q.(x) + ( -D 3 ( m - k ) L ( 2 j + 1 ) k „ 2 j m (x) )F m „ k (x) 
(j+l)(m-k)+m+l 

+ {"1} *(2j+l)m-(2j+2)kW ' 

which is the Lemma when p = j + 1, completing a proof by mathematical 
induction. 

Notice that the Lemma yields an interesting identity for Fibonacci num-
bers , given below: 

^ ' p £ 1 

To establish (4.1), use algebra on the subscripts of the Lemma and then take 
x = l . 
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T h e o r e m 1: Whenever a Fibonacci polynomial F (x) i s divided by a 

Fibonacci polynomial F , (x), m f k , of l e s s e r o r equal d e g r e e , the r e -
m—j£ 

mainde r i s always a Fibonacci polynomial o r the negative of a Fibonacci poly-

nomia l , and the quotient i s a sum of Lucas polynomials whenever the division 

i s not exact . Expl ici t ly , for p £> 1, 
(i) the r e m a i n d e r i s ±F/r> 1X 01 (x) when 

(2p- l )m-2kp v 

2plmj , , . (2p - 2) M 
2p + 1 IKI > 2p - 1 

o r , equivalently, if ± F
m . _ 2 p ( m . - k ) ( x ) f o r 

J H - < i m - k I < lm? • 
2p! + l ^ I K I 2p - 1 ? 

(ii) the quotient i s ±L,(x) when | k | < 2Jm!/3; 

(iii) the quotient i s given by 

Q P « - E M)i ( m-k ,
L ( 2 1 + 1 ) k .2 t o« - L <-»i<m"k)^.,a+1,<,„-k,« 

i=0 i=0 

for m , k , and p re la ted a s in (i), and by Q (x) + ( - l ) p ( m " k ) if 

_2PHL 
2p + 1 ' 

(iv) the division i s exact when 

2 P m o r k = ( 2 p " 1 ) m 

2p + 1 o r K 2p 

Proof: When 

2 E l m L > | k | (2p - 2)jm| 
2p + 1 i i 2p - 1 
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and the degree of Fm(x) is greater than that of Fm_k(x) , we can show that 
|m| > |m - k| > |(2p - l)m - 2pk|. Since the degree of F n is |n | - 1, we 
can interpret the Lemma in terms of quotients and remainders for the res t r ic -
tions on m, k, and p above, establishing (i), (ii), and (iii). As for (iv), the 
division is exact if 

ir - ( 2 P - ! ) m 

for then 

F / o ^ o , (X) = F0(X) = 0 
(2p-l)m-2pk u 

When k 2pm 
2p + 1 5 

F/o -n Q , (x) = F. (x) = ( - l ) m ~ k + 1 F . (x) (2p-l)m-2pk k-m m-k 

- '"^X^w 
because k is even. Referring to the Lemma, increasing the quotient by 

, -.pdn-kj+m+l+m+l _ , -vp(m-k) 

will make the division exact. 
Corollary 1.1: F (x) divides F (x) if and only if q divides m. 
Proof: If q divides m, then either m/2p = q or m/(2p + 1) = q, 

Let q = m - k and apply Theorem 1. 
If F (x) divides F (x), then let q = m - k and consider the remainder q m 

of Theorem 1. Either 

or 

F(2p-l)m-2pk( x ) = F» ( X ) 

F(2p-l)m-2pk<x) = ± F m-k ( x ) ' 

giving 
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k = ( 2 p - l ) m = (2p - 2)m Q r = 2pm 
2p 2p — 1 9 2p + 1 

by equating subscripts. The possibilities give q - m - k = m/2p or q = 
m/(2p - 1) or q = m/(2p + 1), so that q divides m. 

Corollary 1.2: If the Fibonacci number F is divided by F , , m f 
k, then the remainder of least absolute value is always a Fibonacci number or 
its negative. Further, 

(i) the remainder is ±F 0 , , v when 
m-2p(m-k) 

M T < | m - k | < 1 M . m-M2, 2p + 1 - | - - - l - 2p 

and the quotient is the sum of Lucas numbers; 
(ii) the quotient is ±L, when |k| < 2 |m | /3 , for Lucas number L,0 

Proof: Let x = 1 throughout Theorem 1. Since the magnitudes of Fib-
onacci numbers are ordered by their subscripts, ±F « / , v represents a 
remainder (unless m - k = 2 since F2 = FA = 1). 

To illustrate Corollary 1.2, divide F13 by F7: 

233 = 17 . 13 + 12 = 18 • 13 + (-1) . 

Now, 12 is the remainder in usual division, but we consider the positive and 
negative remainders with absolute value less than that of the divisor, so that 
(-1) = -F j is the remainder of least absolute value. Here, m = 13, k = 6 
< 2m/3, p = 1, and the quotient is L6 = 18. The remainders found upon 
dividing one Fibonacci number by another have been discussed by Taylor [ 4 ] , 
and Halton [5] k 

Corollary 1.3: The Fibonacci number F divides F if and only if q 
divides m, jq|' f 2. 

Proof: If q divides m, let x = 1 in Corollary 1.1. If F divides 
F , let q = m - k. The remainder of Corollary 1.2 becomes F 0 , , v m ^ J m-2p(m-k) 
= F0 = 0 or F __? , , v = ±F . . The algebra on the subscripts follows 
the proof of Corollary 1.1, which will prove that q divides m, provided that 
there are no cases of mistaken identity, such as F = F , |sl r |ql> and 

s q 



1970] A PRIMER FOR THE FIBONACCI NUMBERS 417 

such that s does not divide m9 Thus, the restriction jqj f 2 since 

F2 = Fi = 1. 

Unfortunately, as pointed out by E. A, Parberry5 Corollary 1.3 cannot 
be proved immediately from Corollary 1.1 by simply taking x = 1. That F 
divides F does not imply that F (x) divides F (x), just as that f(l) 
divides g(l) does not imply that f(x) divides g(x) for arbitrary polynomials 
f(x) and g(x). Also, Webb and Parberry [8] have proved that a Fibonacci 
polynomial F (x) is irreducible over the integers if and only if m is prime. 
But, if m is prime, while F is not divisible by any other Fibonacci num-
ber F , I qj ^ 3, F is not necessarily a prime. How to determine all-val-
ues of m for which F is prime when m is prime, is an unsolved problem, 

Corollary 1.4: There exist an infinite number of sequences | s \ having 
the division property that, when S is divided by S , , m / k, the r e -
mainder of least absolute value is always a member of the sequence or the 
negative of a member of the sequence,, 

Proof: We can let x be any integer in the Lemma and throughout Theo-
rem 1. If x = 2, one such sequence is . . . , 0, 1, 2, 5, 12, 29, 70, 1 6 9 , " ° * 

Theorem 2: Whenever a Lucas polynomial L (x) is divided by a Lucas 
polynomial L , (x), m ^ k, of lesser degree, a non-zero remainder is 
always a Lucas polynomial or the negative of a Lucas polynomial. Explicitly, 

(i) non-zero remainders have the form ± L(2D_i) i n_2Dk^ w n e n 

2p|m| , . , (2p - 2)1 ml 
2p + 1 > ! K ' > 2p - 1 

or , equivalents, ± L
2 p ( m „ k ) - m ( x ) f o r 

2p + l | m » - 2p - 1 ' 

(ii) if | k | < 2 f m | / 3 , the quotient is ±Lk(x); 
(iii) the division is exact when k = 2pm/(2p + 1), p ^ 0. 
Proof: Since the proof parallels that of the Lemma and Theorem 1? de-

tails are omitted. Identity (3.4) is used to establish 
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(4.2) L <x) = L, (x)L . (x) + ( - l ) k + 1 L Q1 (x) . 

m k m-k ' m-2k 

Since L (x) = (-1) L (x), it can be proved that -n n 

L (x) = Q (x)L . (x) ±L/0 -v 0 , (x) , mN ^p N ' m - k x (2p- l )m-2pk v ' ' 

for I m | 2 > J m - k | j > |<2p - l)m - 2pk|. Since the degree of L (x) is | n | , 
the res t of the proof is similar to that of Theorem 1. However, notice that it 
is necessary to both proofs that F_ (x) = +F (x) and L (x) = ±L (x). 

Corollary 2.1: The Lucas polynomial L (x) divides L (x) if and only 
if m is an odd multiple of q. 

Proof: If m = (2p + l)q, let q = m - k and Theorem 2 guarantees 
that L (x) divides L (x). q w n r 

If L (x) divides L (x), then let q = m - k. For the division to be 
exact, the term ±L,2 -* 2 , (x) must equal L , (x) since it cannot be 
the zero polynomial. Then, either k = 2pm/(2p + 1) or k = 2pm/(2p-1), so 
q = m - k = m/(2p + 1) or q = m/(2p - 1). In either case, m is an odd 
multiple of q. 

Corollary 2.2: If a Lucas number L is divided by L ,.> then the 
non-zero remainder of least absolute value is always a Lucas number or its 
negative with the form ±L2D/m._u-\ m for 

\m\ < i m . k i< H s 
2p + 1 ^ '- K | 2p - 1 ' 

and the quotient is ±L, when | k | < 2 |m| /3 . 
Proof: Let x = 1 throughout the development of Theorem 2. 
Corollary 2.3: The Lucas number L divides L if and only if m = 

(2s + l)q for some integer s. (This result is due to Carlitz |j>3). 
Proof: If m = (2s + l)q, let x = 1 in Corollary 2.1. If L divides 

L , take q = m - k and examine the remainder LQ , . v of Corollary m 4p\m—K;—m 
2.2 which must equal L , or L. since it cannot be zero. The algebra 

^ m-k k-m 
follows that given in Corollary 2.1. Since there are no Lucas numbers such 
that L = L where | q | f\ s j , and since L f 0 for any q, there are no 
restrictions. 



1970] A PRIMER FOR THE FIBONACCI NUMBERS 419 

Since the genera l ized Fibonacci polynomials H (x) satisfy H (x) = 
b x F ^ - (x) + a F ^ 0 (x), we can show that 

(4.3) H m (x) = L k (x)H m _ k (x) + ( - D k + 1 H m - 2 k ( x ) > 

but s ince H m (x) f ±H_ m (x) , we have a m o r e l imi ted theorem. 

T h e o r e m 3: Whenever a genera l ized Fibonacci polynomial H (x) i s 

divided by H , (x), 2 m / 3 > k > 0, any non-ze ro r e m a i n d e r i s a lways a n -m—vL 
other genera l ized Fibonacci polynomial o r i t s negat ive , and the quotient i s 

L k (x) . 

As a consequence of T h e o r e m 3 , when a genera l ized Fibonacci number 

H i s divided by H , a non-zero r e m a i n d e r of l e a s t absolute value i s g u a r -

anteed to be another genera l ized Fibonacci number only when jm - q| < 2 m / 3 . 

Tay lo r [4 J has proved tha t , of al l the genera l ized Fibonacci sequences JH | 

satisfying the r e c u r r e n c e H = H - + H _ 2 , the only sequences with the 

division p rope r ty that the non-ze ro r e m a i n d e r s of l e a s t absolute value a r e 

a lways a m e m b e r of the sequence o r the negative of a m e m b e r of the sequence , 

a r e the Fibonacci and Lucas sequences . F o r your fur ther read ing , Hoggatt 

[ 7 ] gives a lucid descr ip t ion of divisibil i ty p r o p e r t i e s of Fibonacci and Lucas 

n u m b e r s . 
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the first two terms in the Fibonacci series0 Who could resist the 
temptation to test the conjecture that y/x = F - / F ? 

Now let x = kF , y = kF ,-. Then, 
n J n+1 

Fn+l / Fn = !MFn + F n + 1 ) - l ] /kP n + 1 . 

so 

but 

k(Fn+l " V W = "Fn • 

F n + 1 " F n F n + 2 = (" 1 ) U • 

hence n is odd, and we have k = F . So, 

x = F | m _ 1 = 1, 4, 25, 169, etc. , 

y = F 2 m - l F 2 m = 1 ' 6 ' 4 0 ' 2 7 3 ' e t c -

Hence, the children were 4 and 6 years old, Charlie 40, and Mary 25. 



AN EXTENSION OF A THEOREM OF EULER 
JOSEPH ARKSN 

Spring Valley, New York 

Leonhard Euler, the great mathematician of the 18th Century, wrote 
some of the greatest works ever read by man. Among the numerous mathe-
matical interests of this genius was the study of the problem of partitions. 

A partition of an arbitrary positive integer, say n, is a representation 
of n as the sum of any number of integral parts . For example, the number 
6 has 11 partitions, since 

6 = 5 + 1 = 4 + 2 - 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 
= 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 . 

(Problem. Show that the number of partitions of 7 is equal to 15.) 

It is apparent that to find the partition of some positive integer n using 
the same methods we used to find the solution for n = 6 above is a clumsy 
and difficult procedure. To overcome this difficulty, Euler combined the 
partition with a generating function which led to his discovering a powerful 
recurrence formula with which to attack the study of partitions. 

(For those readers who wish to discover how Euler found his recurrence 
formula, the author recommends they read a chapter on partitions in any 
good book on number theory. One such book is An Introduction to the Theory 
of Numbers by Niven andZuckerman, published by John Wiley and Sons, Inc.) 

EULER'S FAMOUS RECURRENCE FORMULA is usually written as 
follows: 

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + . . . 

+ (- l)k + 1p(n - fk(3k - 1)) + (-l)k+1p(n - | k ( 3 k + «) + • • • , 

where p(0) = 1 and n,k = 1, 2, 3, ••• . 
To understand the above theorem (1)$ let us go back to the beginning of 

this paper where we have shown that the number n = 6 has 11 partitions. 

421 
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Then, what the formula says in a very precise way is that p(6) = 11, or 
more generally, p(n) is the number of ways an arbitrary positive integer, 
say n, can be partitioned into equal or distinct parts . 

Now that we know what p(n) means, let us find out how to use the 
formula (1) and in so doing, it will become evident how greatly the genius of 
Euler reduced the work required in order to find a solution for each p(n) 
(n = 0, 1, 2, • • • ) . 

We define p(0) = 1 so that in (1) when n = 1, we have 

p(l) = p(l - 1) = p(0) = 1 , 

and now that we have found a value for p(l) , we are in a position to find a 
value (or the number of partitions) for p(2) since for n = 2, we have 

p(2) = p(2 - 1) + p(2 - 2) = p(l) + p(0) = 1 + 1 = 2 . 

We continue in this exact way, using the information that p(0) = 1, p(l) = 1, 
and p(2) = 2 to find a value for p(3) and then step-by-step values for p(4), 
p(5), p(6), and so on. 

In the following are examples of how to find values for the p(n) when 
n = 1, 2, 3, • • • , 7 by using Leonhard Euler1 s very important recurrence 
formula (in (1)): We define p(0) = 1, then 

p( l ) 

p(2) 

P(3) 

p(4) 

p(5) 

p(6) 

= P(1 

= p(2 -

= p ( 3 -

= p ( 4 -

= p ( 5 -

= p ( 6 -

- 1) = p(0) = 

- 1) + p(2 - 2) 

- 1) + p(3 - 2) 

- 1) + p(4 - 2) 

- 1) + p(5 - 2) 

- 1) + p(6 - 2) 

1, 

= p( l ) +p(0) = 1 + 1 = 2 , 

= p(2) + p ( l ) = 2 + 1 = 3 , 

= p(3) +p(2) = 3 + 2 = 5, 

- p ( 5 - 5 ) = p(4) +p(3) - p ( 0 ) 

- p(6 - 5) = p(5) + p(4) - p( l ) 

(Compare this way of finding p(6) = 11 with the way we showed that the num-
ber n = 6 has 11 partitions at the beginning of the paper, and you will 
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realize the magnificence of Eulerfs formula as a systematized labor-saving 
device, especially for large n where his formula is really needed/) 

For our last example, we find p(7): 
p(7) = p(7 - 1) + p(7 - 2) - p(7 - 5) - p(7 - 7) = 

= p(6) + p(5) - p(2) - p(0) = 11 + 7 - 2 - 1 = 15 . 
Continuing in this exact way, we may, of course, step-by-step find values for 
p(8), p(9), p(10), • • • , p(n)9 •••••, where n runs through the positive inte-
gers n = 8, 9, 10, ••• , to infinity. 

It is evident that Euler1 s great recurrence formula (1) systematized the 
study of partitions,, However, to determine the values of p(n) for still large 
n required an enormous amount of work. (For example, to show that p(243) 
= 133978259344888, we must first find a value for each p(n) (n = 0, 1, 2, 
8 8 8 , 242) from p(0) through p (242) inclusive.) To this end, in what follows 
of this paper, we show how to greatly reduce the work required in finding 
values of the p(n) by applying a new theorem from a paper entitled "Recur-
rence Formulas ," by Joseph Arkin and Richard Pollack (The Fibonacci Quar-
terly, Vol. 8, No. 1, February, 1970, pp. 4-5). 

In fact, using formula (1) of "Recurrence Formulas" and applying the 
method that has been found by this author to formula (1) so greatly reduces 
the work involved that to find the value of, say, p(243), it would only be 
necessary to know the value of each p(0) through p(122). The reduction in 
work is evident, since in Euler1 s recurrence formula, to find a value for 
p(243), we must first find a value for each p(0) through p(242). 

To explain the new method of determining the value of any partition 
(p(n)), we shall, as examples, find the values of p(16) and p(17). 

Then, to find the value of p(16), we set up the table on the next page. 

EXPLANATION OF HOW TABLE WAS MADE 
1. On row A we have placed the values of (-1) ^k(3k T 1) for k = 1,2,3, 
2. We then take half of 16 to get 8 and so we write under column a the con-

secutive numbers from 8 through 16. 
3. Now, next to the number 8 (under column a) we place under column b the 

value p(16 - 8), next to the number 9 (under a) we place under column b 
the value p(16 - 9) and so on to complete column b with p(16 - 16) = p(0). 
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A 1 2 - 5 -7 12 15 
1 a b 
| 8 p(8) 

9 p(7) 
pL(f p(6) 

11 P(5) 
12 p(4) 

1 13 p(3) 
14 p(2) 

15 p(l) 
16 p(0) 

p(7) p(6) 
p(7) 

-p(3) 

-p(4) 
-p(5) 
-p(6) 
-p(7) 

-p(D 
-p(2) 
-p(3) 
-p(4) 
-p(5) 

-P(6) 
-p(7) 

p(0) 

P(D 
p(2) 
p(3) 
p(4) 

I 

p(0) 

P(D 1 

4. We fill in the rest of the table in the same way we plot a graph. For 
example, the p(7) under the column where A = 1 and on the row where 
a = 8 is said to be in box (8,1) or more generally this p(7) is found in 
box (a, A) where a = 8 and A = 1. Now, it will be observed that in each 
box (a, A) we find the term p(a - A), or in box (a, -A) we find the term 
-p(a - A) except that there are no terms =Fp(a - A) entered at all when 
£ . 16 = 8 ^ a - A < 0. 

Let us consider a few numerical examples of what was just said. 
Written into the five boxes (8,1), (8,2), (13,-7), (13,15), and (16,7) we 
find respectively the following: p(8 - 1) = p(7), p(8 - 2) = p(6), -p(13 - 7) = 
-p(6), no entry (since 13 - 15 = -2 < 0) andno entry (since 16 - 7 = 9 >8). 

Now that we have filled in the table, we then multiply each partition 
under the column b in the table together with the sum of the partitions direct-
ly to its right and on the same row. We then have the following products 
(row-by-row) i 

p(8)[p(7) + p(6) - p(3) - p(l)] 
p(7)[p(7) - p(4) - p(2)] 
p(6)[-p(5) - p(3)] 
p(5)[-p(6) - p(4)] 
p(4)[-p(7) - p(5) + p(0)] 
p(3)[-p(6) + p(l)] 
p(2)[-p(7) +p(2)] 
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p(l)[p(2) +p(0)] 
p(0)[p(4) + p(l)] 

and after replacing the p( ) with their numerical values, we find p(16) as 
follows: 

22(15 + 1 1 - 3 - 1 ) 

15(15 - 5 - 2) 

11 (-7 - 3) 

7 ( - l l - 5) 
5(-15 - 7 + 1) 

3 ( - l l + 1) 

2 (-15 + 2) 
1(3 + 1) 

1(5 + 1) 

= 

= 

= 
= 
= 

= 

= 
= 
= 

22-22 

15-3 

-11-10 

-7-16 

-5-21 

-3*10 

-2-13 

T 4 

1-6 

= 484 

= 120 

= -110 

= -112 
= -105 

= -30 
= -26 

4 

= _ _6 
Total 231 = p(16) 

To find a numerical value for p(17), we use the exact methods that 
were used to find a numerical value for p(16). The important difference is 
that since 17 is an odd number, we must then take half of 17 - 1 and then 
complete the following table using the same methods that we used to com-
plete a table for p(16) (that i s , we shall begin by writing under column a the 
consecutive numbers from 8 through 17, e t c ) , 

To find the value of p(17), we erect the following table: 

A 

a b 
8 p(9) 
9 P(8) 

10 p(7) 
11 p(6) 
12 p(5) 
13 p(4) 

1 14 p(3) 
15 p(2) 

1 16 p(l) 
[17 p(0) 

1 

p(7) 

2 

p(6) 
p(7) 

- 5 

-p(3) 
-P(4) 
-P(5) 
-P (6) 
-p(7) 

- 7 

-p( l ) 
- p 2 ) 
-P(3) 
-p(4) 
-P(5) 
-p(6) 
-p(7) 

12 

p(0) 
p(l) 
p(2) 
p(3) 
p(4) 
PTBF 

15 

P(0) 
PW 

~R(H 
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We now multiply each partition under column b in the table together 
with the sum of the partitions directly to its right and on the same row to get 
the following products: 

p(9)| 
p(8)| 

P(7), 
P(6)[ 

P(5), 
p(4) 

P(3)! 

p(2)| 

P( l ) | 
P(0)| 

Vp(7) + 

; P ( 7 ) -
; - P ( 5 ) 

; - P ( 6 ) 

; - P ( 7 ) 

; - P ( 6 ) 

•-p(7) 
>(3) + 

>(4) + 

>(5) + 

p(6) -

p(4) -

- P(3)] 

- P(4)] 

p(3) - p ( l ) ] 

P(2)] 

- p(5) + p(0)] 

+ p(D] 
+ P(2)] 

P(0)] 

P( l ) ] 
P(2)] 

and after replacing the p( ) with their numerical values, we find p(17) as 
follows: 

30(15 + 1 1 - 3 - 1 ) 

22(15 - 5 - 2) 

15(-7 - 3) 

1 K - 1 1 - 5) 
7(-15 - 7 + 1) 

5 (-11 + 1) 
3(-15 + 2) 

2(3 + 1) 

1(5 + 1) 

1(7 + 2) 

= 

= 
= 

= 

= 

= 
= 

= 

= 

= 

30-22 

22-8 

-15-10 

-11-16 
-7-21 

-5-10 
-3-13 

2:4 

1-6 

1-9 

= 660 

= 176 

= -150 

= -176 

= -147 

= -50 
= -39 

8 
6 

9 

Total 297 = p(17) . 

In conclusion, it may be interesting to mention that we could have used 
smaller p( ) to find p(16) and p(17). For example: Since p(0) through 
p(8) will determine p(16) and by the methods used in this paper, it is evi-
dent that the numerical values of p(0) through p(4) will enable us to find 
values for p(0) through p(8) then we need only have used the values of the 
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partitions p(0) through p(4) to find p(16). This reduction rule is applicable 
in finding the value of any p(n), however it defeats the purpose of the method 
to reduce too much. 

Of course, applying the method of this paper to find small partitions' 
like p(16) or p(17) does not show the method to its fullest — but when used 
to find a value for large partitions, like say, p(243) = 133978259344888, the 
method shown in this paper very greatly reduces the work involved. 

[Continued from p. 364.] 

and the induction is complete. Thus the C-array is precisely the B-array. 
Thus, !B = C , and further, the pattern observed by Umansky and 

m,p m,p 
Karst persists for all n > 1 , m ^ 2. The case m = 1 was earlier verified. 

Theorem 2 (Independent). If one ignores the signs of the coefficients in 
Array C, then the sum across the m row is L . 

Proof. Interchange the first column on the right with the column on the 
left and set n = 1. The left column is now -L and all of the terms on the 
right are negative. Equality still holds since Theorem 1 is true. Thus 

[m/2] 
y c . = 
Z-/ m,j j=l 

[m/2] 

• X 
j=o 

1 + > C . = > C . = L 
— - ' m , j m 
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FIBONACCI SERIES IN THE SOLAR SYSTEM 
B. A. READ 

Captain, Canadian Armed Forces 
U. S. Army Satellite Communications Agency, Fort Monmouth, New Jersey 

ABSTRACT 

The Fibonacci Series is shown to predict the distances of the moons of 
Jupiter, Saturn and Uranus from their respective primary. The planets are 
shown to have a trend which follows the Fibonacci Series with individual offsets 
attributed to planetary densities. 

1. INTRODUCTION 

Many series exist where successive terms are a function of previous 
terms* When this function is a linear combination, each term can be 
expressed as 

n 
z = V* a.z . + C 

n L< ] n - j 
3=1 

where {a.} is a weighting function acting upon each successive {z _ . } , and 
C is a constant. 

The Fibonacci series {f } = {0, 1, 1, 2, 3, 5, 8, 13, • • •} which is of 
the form 

(1) f = f , + f o 
v n n-1 n-2 

is an excellent example of this with {a.} = {l, 1, 0, • •• , 0} and C = 0. 
Subsequently, however, a modified Fibonacci Series will be employed 

having the form {l, 2, 3, 5, • • •} but with again Eq. (1) holding. 

2. PLANET MOONS 

The distances of moons from their parent planet have not been known to 
follow any sequence. The mean distances z of the moons of Jupiter, Saturh, 

428 
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and Uranus, as shown in Figs* 1 through 5, respectively, can be assigned to 
terms in the Fibonacci Series f in the form 

(2) z n = m f n ••+ b 

The following table shows the "best fit" values of m and b for Jupiter, 
Saturn, and Uranus and the possible values for Mars and Neptune which, be-
cause they have only two moons each, cannot be fitted to a linear relationship. 

Table: Values of m and b 

Primary No. of Moons m" 
Mars 2 

Jupiter 

Saturn 

Uranus 

Neptune 

12 

9 

5 

2 

(103 km) 
m 
(14 

7 

f 3.5 

240 

50 : 

70 

420 j-

250 (: 

b 
r-4.8 

2.3 

5.8 

-50 

L40 

60 

-66 

104 

Equation (2) is expressible in the form 

comparable to Eq. (1). 

z = z - , + z 0 - b , n n-1 n-2 

3. PLANETS 

Figure 6 shows the mean distance of the planets from the sun, z , 
plotted against the Fibonacci Series f . As can be seen, the trend of the dis-
tances follow the ser ies , although the individual values seem to be offset in a 
sinusoidal manner from it. Figure 7, however, shows the quantity z /f for 
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Fig. 1 First Moons of Jupiter 



1970] FIBONACCI SERIES IN THE SOLAR SYSTEM 431 

4 0 0 -

200 -

100 -

7 0 -

40 -

20 -

10 -

7 -

4 -

2 -

1 

/ 
/ 

/ 2 

1 

! t 

/ # 4 

1 

/ @ 5 

j 

® 

/ 

® 

z = 240 f -n n 

. i \—. L-

1 1 , 1 2 : / 

/ 6 ® 

® 

- 50 (103km) 

1 -J l . -,. 
13 21 34 55 89 144 

Fig. 2 Moons of Jupiter 



432 FIBONACCI SERIES IN THE SOLAR SYSTEM [Oct. 

/ z = 50 f +140 (103km) 
' 2 n n 

F ig . 3 F i r s t Moons of Saturn 
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z = 50 f + 140 n n 
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f 

Fig* 4 Moons of Saturn 



434 FIBONACCI SERIES IN THE SOLAR SYSTEM [Oct, 
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Fig. 5 Moons of Uranus 
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each planet. Superimposed upon this figure are the respective planet densities 
$ n (in terms of earth densities)* Figure 8 is a plot of z /f against 8 
which yields 

z /f = 0856 - 0.28 8 , n ' n n-1 

(in astronomical units). The actual form of the density dependence of the off-
set is not readily determinable. It is conjectured from further study that the 
offset of a particular planet is either due to the average density of that planet 
and the planet previous, or is due to some weighting of previous densities with 
terms of the Fibonacci Series* 

4. CONCLUSIONS 

The significance of the values of m and b for the moons of the planets 
is left for subsequent interpretation. The quantity m may be regarded as a 
planetary scale length although neither m, b , or the ratio b /m seems to 
bear any relationship to such planetary parameters as density, mass , or 
volume. 

The fact that the distance of the moons follows the Fibonacci Series 
means that a particular moon!s position is dependent upon the positions of the 
previous two moons closer to the primary. Also, the moons seem to reside 
and, in the case of Jupiter, even congregate at "potential levels" predicted by 
the series . 

5. ADDENDUM 

The offset of a planet from the Fibonacci Series f being a function of 
the density of the previous planet is found to hold also for the offset of the 
moons of Jupiter and Saturn. The "normalized" offset for the moons of these 
two planets and for the planets of the sun is of the formf 

z . + C 
— = 1.0 - 0.09 8 n _ 1 (cgs) 

mf n 

although the reliability of the density data is poor. 
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.55 

.50 

z / f n / n 
(A. U.) 

56 - .28 8 
n-1 

>n-l 

Fig. 8 "Offset" versus Previous Planet Density 
[Continued on p. 448. ] 



A LUCAS ANALOGUE 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

The Lucas sequence is defined in terms of the roots r1 and r2 of the 
equation x2 = x + 1 by the formula: 

n , n 
L n = rt + r2 

For this simple quadratic equation* the roots can be calculated as: 

- j + V5 _ i - yi> 

2 2 
It can be ascertained directly that r j + r2 = 1 and rj + r2 = 3. Thens since 

n+1 n , n-1 
r i = r i + r l 

and 

n+1 n n-1 
r2 = r2 + r2 

it follows by mathematical induction that if: 

n-1 , n-1 
Jn-1 

and 

T n , n 
L n = ^ + r2 , 

then 

n+1 , n+1 
Ln+i = r * + r2 n+1 

by direct addition of the two equations, 

439 
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If we seek to extend this idea to a sequence in which the last three con-
secutive terms are added to get the next terms the corresponding equation to 
be used is : x3 = x2 + x + 1, which has three roots r l f r29 r3. These need 
not be calculated. It suffices to know that: 

3 3 

iL* ri = l j XT"] = "1 and rlr2r3 = 1 > 
i=i 1,3=1 

using the standard relations between roots and coefficients of an equation. The 
analogous definition of a sequence in terms of the roots would be: 

m n , n ., n 
T n = r4 + r2 + r3 . 

The first three values calculated on the basis of symmetric function formulas 
would be: 

3 
Ti = S ri = X 

i=l 

3 
T,2 = V r? = (Sr.)2 - 2Sr.r. = 3 

i=l 

T3 = ! > ? = ( S ^ ) 8 - S G r . X S r . r . ) + 3 r i r 2 r 3 

T3 = 1 + 3 + 3 = 7 . 

With these values defined, T4 would be equal to 

2 r i 

on the basis of the relation 
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r? = r? + r? + r . • 
1 1 1 1 

Carrying the procedure one more step, if the last four quantities in a 
sequence are added to obtain the next quantity, the roots of the equation 

X4 «= X3 + X2 + X + 1 

would be employed with the sequence defined by: 

i=l 

With the aid of symmetric functions, it can be shown that: 

Qi = 1, Q2 = 3, Q3 = 7, Q4 = 15. 

From these preliminary investigations, two points emerge: (1) As we 
extend the Lucas analogue, the basic starting quantities carry over from one 

k stage to the next; (2) All the initial quantities are of the form 2 - 1 , That 
these relations remain generally true is not difficult to prove* 

Consider the n order recursion relation: 

x n = x11"1
 + x n ~ 2

 + x n - 3 + . . . + x + 1 , 

which corresponds to adding the last n quantities to obtain the next quantity 
in a sequence. Expressed as a polynomial equated to zero, this becomes: 

n n-1 n-2 n-3 - A 
x - x - x - x . - • • • - x - 1 = 0 , 

so that regardless of the degree of the equation: 

IT. = 1, IT. r . = - 1 , IT. T. r, = 1, etc. l I j 1 3 k 
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Then, since 

1 

is expressible in terms of those summations which have j or less compo-
nents, it follows that the sum must be the same for any two equations having a 
degree greater than or equal to j . This accounts for the persistence of the 
basic starting quantities from one stage to the next. 

Now assume that for the equation of degree n - 1 

Ir} = 2̂  - 1 (j = 1, 2, • • • , n - 1) . 

By the equation for the n degree: 

v n x n-1 , v n-2 , v n-3 , j_ v , v i Zr. = z r . + Zr. + z r . + ••• + z r . + Z l l I 1 1 I 

= (211""1 - 1) + (2n"2 - 1) + (2n""3 - 1) . . . (2 - 1) +n 

n-1 
= j 2 k = 2 n - l , 

i=0 

This proves the second contention, 

CONCLUSION 
For an n order recursion relation of the form 

X = T + T + T + • • • + T 
m+n+1 m+n m+n+1 m+n-2 m+1 

it is possible to define a Lucas-type sequence using the roots of the equation 
n n-1 , n-2 , n-2 , , , i -4.u 

x = x + x + x + • • • + x + 1 with 
T = lvm . m I 

With such a definition, the first n starting values would be given by: 

T k = 2k - 1 (k = 1, 2, • • • , n) . 



ELEMENTARY PROBLEMS AND SOLUTIONS 
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A. P. HILLMAN 
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Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico, 87106o Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets in the format used below. Solutions should 
be received within three months of the publication da te 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

B-190 A repeat of B-186 with a typographical error corrected. 

Let L be the n Lucas number and show that 

L^ /L = [L Q - 3 ( - l ) n ] 2 + (-l)n25F2 . 5 n ' n l 2n J n 

B-191 Proposed by Guy A. Guillottee, Montreal, Quebec, Canada. 
In this alphametic, each letter represents a particular but different 

digit, all ten digits being represented here. It must only be that well-known 
mathematical teaser from Toronto, J9 A. H. Hunter, but what is the value 
of HUNTER? 

MR 
H U N T E R 

MADE 
A_ 

T E A S E R 

B-192 Proposed by Warren Cheves, Littleton, North Carolina. 
Prove that FQ = L F 0 - (-l)nF . 3n n 2n n 

443 
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B-193 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that L , ± L i s 5F F o r L L depending on the choice n+p n -p p n p n ^ & 

of sign on whether p i s even o r odd. 

B-194 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Show that L ^A. -» L = 5F, [ F ^ + ( - l ) n F ^ ] . n+4k n kL n+3k ' n+k 

B-195 Proposed by David Zeitlin, Minneapolis, Minnesota. 

Let , denote L L • • • L ,- / L - L 0 • • • L . Show that r | n n - 1 n - r + 1 1 2 r 

Following i s a l i s t of so lve r s whose n a m e s w e r e inadvertent ly omit ted 

from l i s t s in recent i s s u e s : 

B-144 Don Allen 

B-148 , B-149, B-150, B - 1 5 1 , B-153 - D. V. Ja iswal 

B-160, B - 1 6 1 , B - 1 6 3 — H . V. Kr i shna 

B-166 Michael Yoder 

B-167 T. J . Cullen, Bruce W. King, R. W. Sielaff, Michael Yoder 

B-168 Michael Yoder 

B-169 Wray G„ Brady , Michael Yoder 

B-170, B-171 — Michael Yoder 

SOLUTIONS 

A CUBIC IDENTITY 

B-172 Proposed by Gloria C Padilla, Albuquerque High School, Albuquerque, New 
Mexico. 

Let F 0 = 0, F t = 1, and F n + 2 = F n + F n + 1 for n = 0, 1, - • • . 
Show that 

?a = F 3 + F* + 3F F ± 1 F ± „ n+2 n n+1 n n+1 n+2 
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Solution by C B. A. Peck, State College, Pennsylvania. 

We obtain the de s i r ed r e su l t f rom (x + y)3 = x3 + y3 + 3xy(x + y) on 

subst i tut ing F n = x and F - = y and hence F + 2 = x + y. Note that the 

r e s u l t does not depend on the init ial values 

Also solved by W. C. Barley, Wray G. Brady, T. J. Cullen, Andrew Dias, David Englund, 
Herta T. Freitag, Bernard G. Hoerbelt, John E. Homer, Jr., John Ivie, Bruce W. King, 
Peter A. Lindstrom, Bruce Lynn, John W. Milsom, Klaus-Gunther Recke, Michael Rennie, 
Gerald Satlow, A. G. Shannon, Richard W. Sielaff, Charles W. Trigg, John Wessner, 
Gregory Wulczyn, Michael Yoder, and the Proposer. 

ANOTHER CUBIC IDENTITY 

B-173 Proposed by Gloria C Padilla, Albuquerque High School, Albuquerque, New 
Mexico. 

Show that 

Y = F 3 - F 3 - 3F F F 
r 3 n n+2 n - 1 n n+1 n + 2 ' 

Solution by T. J. Cullen, California State Polytechnic College, Pomona, California. 

F r o m F o r m u l a XXI on p . 68 of Vol. 1, Fibonacci Quar te r ly ; 

*3n n n+1 n - 1 ' 

Hence , by B-172, 

TT = T?3 _ p3 - 3F F F 
•^3n n+2 J n - 1 °* n r n+1 * n+2 

Also solved by W. C Barley, Wray G. Brady, Herta T. Freitag, Bernard G. Hoerbelt, 
John E. Homer, Jr., John Ivie, Bruce W. King, Peter A. Lindstrom, John W. Milsom, 
C B. A. Peck, Klaus-Gunther Recke, A. G. Shannon, Charles W. Trigg, Gregory Wulczyn, 
Michael Yoder, David Zeitlin, and the Proposer. 

MODULO 10 

B-l 74 Proposed by Mel Most, Ridgefield Park, New Jersey. 

Le t a be a non-negat ive in teger . Show that in the sequence 
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2 F a + l ' 2 2 F a + 2 ' 2 3 F a + 3 ' " ' 

all differences between success ive t e r m s m u s t end in the s a m e d i g i t 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

The sequence sa t is f ies the r e c u r r e n c e 

S lQ = 2S ,- + 4S (S = 2 n F , ) . 
n+2 n+1 n n a+n 

Thus 

S n + 2 " S n + 1 = ( S n + l " Sn> + 5 S n 5 S n + 1 " S n < m o d 1 0 ) • 

s ince all S a r e even. 

Also solved by T.J. Cullen, David Englund, Hertd T. Freitag, C B. A. Peck, Klaus-Gilnther 
Recke, A. G. Shannon, Charles W. Trigg, John Wessner, David Zeitlin, and the proposer. 

A GENERALIZED 2-BY-2 DETERMINANT 

B-175 Composed from the Solution by David Zeitlin to B-155. 

Let r and q be constants and le t U0 = 0, Uj = 1, U 2
 = r U

n - M " 
qU . Show that ^ n 

U , U ^u - U _,_ ,, U = q n U IL . n+a n+b n+a+b n ^ a b 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New 
Mexico. 

F o r a = 0, the identi ty i s obviously t rue; and if it i s t rue for a = 1, 

i t will be t rue by induction for all a. S imi la r ly , the identi ty need only be 

proved for b = 1, and the p rob lem reduces to that of proving u
n + i " u

n + 9 U
n 

= q . F o r n = 0, th is i s t rue ; and s ince 
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Un+2 " U n + 3 U n + l = U n + 2 <rUn+l " * u
n > " ( r U n + 2 " ^ n + l ) U n + l 

= <*(Un+l - Un+2Un> • 

the identity is verified for all as bs and n„ 

Also solved by Wray G. Brady, T. J. Cullen, Herta T. Freitag, C. B. A. Peck, Klaus-Giinther 
Recke, A. G. Shannon, Gregory Wulczyn, and David Zeitlin. 

CUBES IN TERMS OF FIBONOMIALS ON DIAGONAL 3 

B-176 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let denote the Fibonomial Coefficient [-] 
n n-1 n - r + l / £ 1 2 r 

Show that 

n - [-;s] -'p1 r]-[i] 
Solution by David Zeitlin, Minneapolis, Minnesota. 

Let Hn satisfy H n + 2 = H n + 1 + Hn, and define 

j n = H H - ••• H ^ , /H-KL ••• 1 r i n n-1 n - r + 1 / 1 2 H r 

where H. > 0 , i = 1 , 2 , ••• . Since 

<*> 2 H n = H n + 2 H n + l " 2 H n + l H n - l " H n - l H n - 2 ' 

multiplication of (1) by Hn gives 

The desired result is obtained from (2) for 
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H = F , where W = n . n n I r J |_ r J 

Also solved by L. Carlitz, T J. Cullen, Herta T Freitag, John E. Homer, Jr., Peter A. 
Lindstrom, John W. Milsom, C B. A. Peck, Klaus-Gunther Recke, A. G. Shannon, 
Charles W. Trigg, Gregory Wulczyn, Michael Yoder, and the Proposer. 

FOURTH POWERS IN TERMS OF FIBONOMIALS 

B-177 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Using the notation of B-176, show that 

n-["rM°i2]-*[%+1H?]-
for some in teger a and find a. 

Solution by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Lett ing n = 2 , we find that a would have to be 4. Then le t t ing a = 

4 , both s ides satisfy the s ame fou r th -o rde r (i. e0 , f ive- te rm) r e c u r r e n c e 

re la t ion . Hence it suffices to verify the formula for n = 0, 1, 2, 3 and i t 

follows for all va lues of n by induction, 

Also solved by L. Carlitz, T. J. Cullen, Herta T. Freitag, John E. Homer, Jr., C. B. A. 
Peck, Klaus-Gunther Recke, Charles W. Trigg, Gregory Wulczyn, Michael Yoder, David 
Zeitlin, and the Proposer. 

[Continued from p . 438. ] 

It i s found, a l s o , that the slope m of the d i s tances ZR v e r s u s the Fibonacci 

Se r ies f for each planet sy s t em i s a power law function of the m a s s M and 

rad ius R of the planet in the form 

m oc M3R"7 . 
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The F ibonacc i Associa t ion is making available a binder which 
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This binder is desc r ibed as follows by the company producing it: 
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a c l ea r label holder extending 2 - 3 / 4 " high from the 
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a 1 1/2' " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is da rk 
g reen . There is a s ma l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rder if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
f rom 50£ to 80£ for one b inder ) . The tabs will be sent wi th the 
rece ip t or invoice. 

All o r d e r s should be sent to: Bro ther Alfred Brousseau , 
Managing Edi tor , St. Mary1 s College , Calif. 94575 


