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A FIBONACCI CIRCULANT 
D. A. LIND 

University of Virginia, Charlottesville, Virginia 
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where F denotes the Fibonacci numbers defined by 
n J 

Yi = Fo = 1. F = F + F 
1 2 * n+2 n+1 n 

We show that 
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It is known (see [1 , Vol. 39 pp. 374-375] and [3, p. 39]) that 

(3) 

where the 

n - l / ' n - l . \ 

, , 2k?r , . . 2k7T 
Xt) = cos + i sin 

k n n 
th are the n roots of unity* To establish (3) rapidly s multiply 

C S Ctao,.-. .^) 

bytheVandermonde determinant V = Jco?I (isj = 0S 1, 8 8 ° , n - 1). Denoting 
the right side of (3) by P t by factoring out common factors, one finds CV = 
PV, and since V ^ 0, (3) follows. 

Now D is a special case of (2) with 
n9 r 

a. = F . , 
J+r - fl>+r 

j j+r a - 0 

in which a = (1 + N / 5 ) / 2 , /3 = (1 -y/E)/2. Thus by (3), 

- r „r n+r , Ji+r , r r - 1 ,jc-l n+r-1 , ji+v-1-. n-1 a - /3 - a + (r + [a - /3 -a +/S Jo, 
=
 k ^ 0 " " > - 0 ( 1 - « 0 k ) ( l - /3wk) 

n - X F r " F n + r " <Fn+r-l " F r - l ) W k 
" k=o -Ti - <*>kHi - ^ ) 
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Now for any x and y , 

451 

(4) Ivx-y^-y°S(!-"*)-4©" n n = x - y 

Therefore 

£ , CFr " F n + r " ( F n + r - l ~ F r - l ) C \ l ' ( F r " W " " <Fn+r- l " V l * " 

and 

n - 1 n - 1 n - 1 
n a - aoj ){i - pw ) « n a - aoj ) n (i - JSW. > 

= (1 - an)(l - ^) - 1 - L n + ( - l ) n
 f 

where we have used L M = a + p s Th is e s tab l i shes (1). 

We note that 

[ 2] has shown that 

We note that th is evaluation of D . s implif ies if n i s even* Ruggles 
n i ic 

F _,_ - F n+p 

It follows that if n = 0 (mod 4), 

I L F , p n p 

F L , p 
n p F 

even 

odd 

D 

, n f T n T n -i 

2 - L 

and if n s 2 (mod 4) s 

D 

n r n vn -i 

H M 1 ~ r-1+2inJ 
n 9 r 2 - L 
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2. The generalization of (1) to second-order recurring sequences uses 
the same techniques. Consider the sequence { w } defined by 

n+2 * n+1 ^ n 

WQ and Wj arbitrary, where p2 - 4q ^ 0. Let a and b be the roots of 
the auxiliary polynomial, so that a ^ b and ab = q. We shall assume that 
neither a nor b is an n root of unity* Since the roots are distinct, there 
are constants A and B such that W = A a + Bb . Define the sequence 
{Vn} by Vn = an + b n . 

Put 

D (W) = C(W , W ^ , ' •' , W ^ J n , r r r+1 n+n-1 

Setting a. = W.+ r = Aa:i+r + Bb^+r in (3) gives 

n-1 / n - 1 . A 
Dn (W) = n ( £ Aar(ao). ) j + Bbr(bco ) ] ) 

n , r k=0 \ j=0 K K / 

- V /*ar(l - a"> + Bbr(l - b n ) \ 
k=0 \ 1~ a w k 1 ~ b w k / 

nn W r - Wn+r " ^ W r - 1 ~ W n + r - l ^ k 
k=0 (1 - a c k ) d - b a y 

(Wr - W n + r ) n - qn(Wr-l - W ^ ^ ) 1 1 

1 - Vn + qn 

which agrees with (1) by taking p = 1, q = - 1 , W = F , and V = L . 

3, We now consider a slight variant of the above. Put 
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We shall prove 

(5) 
n , r 

(E + F ^_ f + (-l)n(F ^ i + F .)n 
r n+r n+r-1 r -1 

1 + L + (- l ) n 
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A determinant of the form 

sV"'Vi) 
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"an-2 " V l 

" a l ~a2 ~a3 

a n - l 
an-2 
an-3 

is termed a skew circulanfc, Scott [1, Vol. 4, p. 356] has shown that 

(6) 
n-1 / n-1 . \ 

where the 
(2k + l)ir _,_ . . (2k + l)ir 

€k = c o s 1 — J - + i sin — 2 



454 A FIBONACCI CIRCULANT [Dec. 
th a r e the n roots of - 1 . To prove (6) quickly, mult iply S(a0, • • • , a 1 ) by 

the Vandermonde de te rminant | e] | (i, j = 0S 1, * • • , n - 1), and t r ea t as in 

the proof of (3). 

To evaluate E l e t a. * F . , . A development s i m i l a r to Section 1 
n , r j j+r F 

shows that 

n - 1 / n - 1 aT(a€, ) j - /3r(j3€, ); 

k=0 \ j » =0 a - j8 • • ) 

(7) 
n - 1 F 

n 
k=0 

n+r 
+ F + TF , - + F -If. r L n + r - 1 r - U k 

(1 - ar€k)(l - iS€k) " 

F o r a r b i t r a r y x and y , 

(8) Iv^'-SO^M© + 1 n _, n x + y 

Application of this to (7) yie lds the des i r ed r e s u l t (5). 

We r e m a r k that a s before (5) s implif ies for even n. Ruggles [ 2 j has 

shown that 

F ^ + F n+p n -p 
F L , p even 

n p ^ 
L F , p odd 

n p F 

Then if n s 0 (mod 4), 

_ ^(*Hn + F r - l + |n) 
n s r 2 + L 
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while if n = 2 (mod 4) , 

| n l r+ |n r - l + | n j 
E 

2 + L n 

Note that the l a t t e r y ie lds on compar i son with the de te rminan t the identity 

5(F2 , + F2 ) = L2 + L2 = 5FQ _,_- . r+1 r r+1 r 2 r + l 

4. The extension of this to s econd-o rde r r e c u r r i n g sequences involves 

no new i d e a s , and the de ta i l s a r e therefore omit ted. Let W and V be as 
n t h n 

before j with the exception that we r equ i r e a and b not be n roo t s of - 1 
r a t h e r than +1 to avoid division by z e r o . Put 

E (W) = S(W , W ^ , • • • , W ^ , ) . n , r r r+1 r+n-1 

Using (6) and (8), we find 

E (W) ( W n + r + W r ) + q n ( W n + r - l + W r - l ) n 

1 + V H-q11 

n ^ 

which r educes to (5) when q = - q = 1, W = F , and V = L . 
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COMBINATORIAL PROBLEMS 
FOR GENERALIZED FIBONACCI NUMBERS 

VERNER E. HOGGATT, JR. 
San Jose State College, San Jose, California 

Theorem 1. The number of subsets of ( l , 2, 3, • • • , n} which have 
k elements and satisfy the constraint that i and i + j (j = 1, 2, 3, • * • , a) 
do not appear in the same subset i s 

ci i \ / n - ka + a\ fa( n'k ) = \ k J 

(0 where I t ] is the binomial coefficient. We count </), the empty set, as a 
subset. 

Comments. Before proceeding with the proof, we note with Riordan 
[ 1 ] , that for a = 1, the result is due to Kaplansky. If, for fixed n, one 
sums over all k-part subsets, he gets Fibonacci numbers, 

[<n-H)/2] . 

*»+1- L ( n \ k + 1 > tai<» 
k=0 

where [x] is the greatest integer function. The theorem above is a prob-
lem given in Riordan [2], 

Proof. Let g (n,k) be the number of admissible subsets selected from 
——~——- a 

the set ( l , 2, 3, • •• , n}. Then 

y (n + l,k) = g (n,k) + g (n - a, k - 1) , 
d. <x <x 

since g (n,k) counts all admissible subsets without element n + 1 while a 
g (n - a, k - 1) counts all the admissible subsets which contain element a 
n + 1. If element n + 1 is in any such subset, then the elements n, n - 1, 
n - 2 , n - 3 , • • • , n - a + 1 cannot be in the subset. We select k - 1 ele-
mentsfromthe n - a elements 1, 2, 3, ••• , n - a to make admissible sub-
sets and add n + 1 to each subset. The count is precisely g (n - a, k - 1). 

a 
456 
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GENERALIZED FIBONACCI NUMBERS 

Consider 

<a<".» = ( n - i r a ) . k > 0 

But, since the f (n,k) are binomial coefficientss a 

fa(n + l,k) (n + l - k a + a \ [ n - k a + a \ / n - a - (k-l)a + a\ k ; - \ k j { k - i ) 

f (n,k) + f ( n - a, k - 1) 
d d 

Thus, f (n,k) and g (n,k) satisfy the same recurrence relation. Since the a a 
boundary conditions are 

5a(n,l) = fa(n,l) = n , 

and 

g (l,n) = g_(l,n) = 0, n > 1 , 
d II 

the arrays are identical. This concludes the proof of Theorem 1. 
We note that5 for fixed k > 09 the number of k-part subsets of 

( l , 2, 3, •••., n} for n = 0, 1, 2, • • • , are aligned in the k column of 
Pascal1 s left-adjusted triangle. If one sums for fixed n the number of k-
part subsets, one obtains 

[n-fal fn+al 

a+l'J La+lJ V (n,a) 
d 

I^=A lr=A ^ ' k=0 k=0 

where [x] is the greatest integer function. These are precisely the gener-
alized Fibonacci numbers of Harris and Styles [3]. There, 
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[n/(p+D] 
u(n;p,l) = 

k=0 k=o \ / 

so that 

V ( n , a ) = u(n + a; n , l ) a 

Clearly, if we select only certain k-part subsets (b > 1) 

TiH-al 
La+bJ 

T.h...» - Z (•" 'I? + S) 
k=0 

then 

V (n,a,b) = u(n + a; a,b) . a 

Thusj one has a nice combinatorial problem in restricted subsets whose 
solution sequences are the generalized Fibonacci numbers defined in [ 3 ] and 
studied in [4] , [5] , [6] , [7] , [11], and [12], 

GENERALIZATION 

We extend Theorem 1 to all generalized Pascal triangles, 
Theorem 2. The number of subsets of ( l , 2, 3, • • • , n} with k ele-

ments in which i, i + j (j = 1, 2, • • • , a) are not in the same subset nor 
are simultaneously all of the integers i + j a + 1 (j = 0, 1, 2, • • • , r - 1 ) , 
in the same subset, is 

c ( i \ j n - ka + a i fa(n,k,r) = j k ^ 

where 
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n n(r-l) 
(1 +x +x2 + ••• +xr-1) = £ inf -1 

- , X 
1 

i=0 

We call 

n 
i , 

the r-nomial coefficients, and n designates the row and i designates the 
column in the generalized Pascal triangle induced by the expansion of 

i n 

(1 + x + x2 + . - . + x r X) , n = 0 , 1 , 2 , » " . 

Proofs Let g (n9ksr) be the number of admissible subsets selected 
— — — — • • — 3 , 

with elements from {l , 29 3, • • • , n}. Then 

g (n + l ,k,r) = g (n,k,r) + g (n - a,k - l 5 r ) + g (n - 2a,k - 2,r) a a. a. d 
+ ••• + g (n - (r - l')a, k - r + l ,r) a 

Consider the set of numbers n + 1, n - a + 1, n - 2 a + l , n - 3 a + 1, * ° ° * 
n - (r - l)a + 1. The general term g (n - sa5 k - s9r) gives the number of 

a 
admissible subsets which require the use of n + 1, n - a + l 5 n - 2a + 1„ 
• « ' , n - ( s - l)a + 1? disallows the integer n - sa + 15 but permits the use 
of the integers n = 1, 2, 3? • • • , n - sa in the subsets subject to the con-
straints that integers i, i + j (j = 1, 2, 3, * •e , a) do not appear in the 
same subset,, This concludes the derivation of the recurrence relation. 

Next9 consider 
o , , x In - ka + a j f a ( n > k > r ) = j k Jr 

Since f (n.k.r) is an r-nomial coefficients then aN 

f (n + l ,k ,r) = f (n,k,r) + f (n - a, k - l , r ) + ••• + f (n - sa9 k - s s r) a a a a 

+ . . . + f (n - (r - l)a, k - r + l , r ) . a 
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Thus, f (n,k,r) and g (n,k,r) both obey the same recurrence relation, and 

f a (n , l , r ) = g a (n , l , r ) = n 

f ( l ,n , r ) = g ( l ,n , r ) = 0, n > 1 
d d. 

for all n > 0, so that the arrays are identical for all k > 0. 
Summing, for fixed n > 0, over all numbers of all k-part subsets 

yields 

Rn+a)(r-l)1 
L l+a(r-irj 

T7 / \ V * J n - ka + a [ 
Va(n,a,r) = ^ j fc ^ 

If we now generalize the "generalized Fibonacci numbers, u(n; p,q), of 
Harris and Styles [3]Tf to the generalized Pascal triangles obtained from the 
expansions (1 + x + x2 + • • • + x r " 1 ) , n = 0, 1, 2, 3, • • • , 

f n(r-l) 1 
[q+p(r-l)J 

u(n;p9q,r) = ^ j n " q
k ^ 

k=0 

there are precisely 

ones at the beginning of each u(n; p ,q , r ) sequence. Our application starts 
with just one 1. Let 

m • [ A ] • 
the greatest integer in q/(r - 1). Then, 
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Rn+a+mHr-lfl 
L b+a(r-l) J 

u(n + a + m; a ,b , r ) 
k=0 

n + a + m - kal 
kb | 

461 

Thus the solution set to the number of subsets of {l, 2, 3, a • • , n} subject 
to the constraints that no pairs i, i + j (j = 1, 2, 3, • • • 5a) are to be 
allowed inthe same subset, nor are all of i + ja + 1 (j = 0 , 1 , 2 , 3 , - * - , r - 1) 
to be allowed in the same subset, are the generalized Fibonacci numbers of 
Harris and Styles generalized to Pascal triangles induced from the expansions 
of 

-1 n 
(1 + x + x2 + ••• + x ) , n = 0, 1, 25 3S " ° . 

One notes that the r-nacci generalized Fibonacci numbers 

rn(r- l) ' 

u(n; 1,1, r) = J j | n - kj 

k=0 

are not generally obtained by setting a = 0 in the above formulation. How-
ever, the generalized Fibonacci sequences for the binomial triangle are ob-
tained if r = 2e The other r-nacci number sequences are obtained if the 
subsets are simply restricted from containing simultaneously r consecutive 
integers from the set {l , 2, 3, * * - , n} but there is no restriction of r > 2 
about pairs of consecutive integers8 Thus, for these r-nacci sequences 
(r > 2), we cannot simply set a = 1. However, the formulas look identical. 

Let 

V(n; 1,1, r) = u(n + 1; 1,1, r) ; 

then 
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(n+l)(r-l)1 
r 

V(n; 1,1, r) = ^ 
k=0 

which is seen to be the generalization of Kaplanskyfs lemma to generalized 
Pascal triangles. 
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APPLICATION OF RECURSIVE SEQUENCES 
TO OiOPHANTINE EQUATIONS 

RAPHAEL FINKEISTEIN 
Bowling Green State University, Bowling Green, Ohio 

EDGAR KARST 
University of Arizona, Tuscon, Arizona 

HYMIE LONDON 
McGill University, Montreal, Canada 

ABSTRACT 

In a f o r m e r ve rs ion of th is paper ("Iteration Algor i thms for Cer ta in 

Sums of Squares") 5 K a r s t s by composit ion of s imple sums of s q u a r e s 9 found 

six i tera t ion a lgor i thms of which he could prove the f i r s t by m e a n s of the gen-

e ra l i zed Pe l l equation and the second by the pe rmanence of formal laws* F o r 

the remain ing four, equivalent to the solution of x2 - (k2 + l)y2 = k2
? with k 

= . 1 , 2 , and 35 Finkels te in and London were able to furnish a unifying proof 

by the use of c l a s s number s and quadrat ic fields* This just i f ies the new t i t le . 

The following t h r e e - s t e p i tera t ion a lgor i thm to genera te x in 2x + 1 = 

a2 and 3x + 1 = b2
9 s imul taneously! was mentioned in [6, p. 211] : 

1-10-1 = 9 92 = 81 (81 -D/2 = 40 = X l 

9-10-1 = 89 892 = 7921 (7921-1)/2 = 3960 = x2 

89-10-9 = 881 8812 = 776161 (776161-1)/2 = 388080 = x3 

881-10-89 = 8721 87212 = 765055841 (76055841-1)/2 = 38027920 = x4 

8721- 10-881 = 86329 863292 =7452696241 (7452696241-D/2 = 3726348120 =x 5 

Proof. F r o m 2x + 1 = a2 and 3x + 1 = b2 comes 3a2 - 2b2 = 1. If 

a s b is any solution of this genera l ized Pe l l equation, then 

a ,- = 5a + 4b , b ^ = 6a + 5b n+1 n n n+1 n n 

is the next l a r g e r one« F r o m the se , we can obtain immedia te ly 

a „ + a ., = 10a , b ,- + b - = 10b , n+1 n - 1 n n+1 n - 1 n 

which i s equivalent to the algorithm,, 

463 
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F o r the n formula , we use the usual approach by l i nea r substi tution 

(for example , [ 1 , p. 181]) and obtain 

x
n
 = [<V6 + 2)(5 + 2 \ / 6 ) n + (\/6 - 2)(5 - 2 \ / 6 ) n ] / 4 8 - 1/2 . 

Th is formula has th ree shor tcomings : (1) it u se s f rac t ions , (2) it employs 

r o o t s , ancl (3) i t has n in the exponent. The a lgor i thm above has none of 

them. 

Simi lar a rgument s a r e valid for a four - s tep i tera t ion a lgor i thm [4] to 

genera te x in x2 + (x + I)2 = y2. 

Somet imes , the n t e r m formula m a y be s imple , .as for a2 + b2 + (ab)2 

= c 2 , a and b consecutive posi t ive in t ege r s [ 2 ] . H e r e , we have 

(n - I)2 + n2 + (n - l )n 2 = (n2 - n + I)2 , 

and hence we need no a lgor i thm. But for a = 1, an a lgor i thm would be 

helpful. Let us f i rs t find some c lues to such an a lgor i thm. We have by hand 

and by a table of s q u a r e s : 

12 + o2 + 02 = l 2 = (02 + I ) 2 

l 2 + 22 + 22 = 32 = (22 - l ) 2 

I 2 + 122 + 122 = 172 = (42 + l ) 2 

l 2 + 702 + 702 = 992 = (102 - l ) 2 . 

The a l te rna t ing +1 and - 1 in the l a s t column, which shows a constant pa t -

t e r n , sugges ts the possibi l i ty of an a lgor i thm. If we can find all b , say 

from D3 = 12 on, we will also have all c . After some t r i a l s and e r r o r s we 

obtain 

I terat ion Algori thm I 

6-2 - 0 = 12 
6-12 - 2 = 70 

6-70 - 12 = 408 
6-408 - 70 = 2378 

6-2378 - 408 = 13860 
6-13860 - 2378 = 80782 
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which yields eas i ly the next four r e su l t s : 

I2 + 4082 + 4082 = 5772 = (242 + I) 2 

l 2 + 23782 + 23782 = 33632 = (582 - I ) 2 

l 2 + 138602 + 138602 = 196012 = (1402 + I) 2 

I 2 + 807822 + 807822 = 1142432 = (3382 - I ) 2 

S imi lar ly s we approach the case a = 2 , We have by hand and by a table of 

squa re s : 

22 + I 2 + 22 = 32 = (I2 + 2)2 

22 + 32 + 62 = 72 = (32 - 2)2 

22 + 82 + 162 = 182 = (42 + 2)2 

22 + 21 2 + 422 = 472 = (72 - 2)2 

The a l ternat ing +2 and -2 in the l a s t column, which shows a constant pa t -

t e r n , suggest the poss ibi l i ty of an a lgor i thm. If we can find all b , say from 

b3 = 8 on, we will also have all c„ After some t r i a l s and e r r o r s we obtain 

I tera t ion Algori thm II 

3-3 
3-8 
3-21 

3-55 -
3*144 -
3-377 -

- 1 
- 3 
- 8 
• 21 
• 55 
144 

= 
= 
= 
= 
= 
= 

8 
21 
55 
144 
377 
987 

which yie lds eas i ly the next four r e s u l t s : 

22 + 552 + HO2 = 1232 = ( l l 2 + 2)2 

22 + 1442 + 2882 = 3222 = (182 - 2)2 

22 + 3772 + 7542 = 8432 = (292 + 2)2 

22 + 9872 + 19742 = 22072 = (472 - 2)2 . 

Slightly differently behaves the case of a = 3* We have by hand and by a table 

of s q u a r e s 
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32 + 

32 + 

32 + 

32 + 

32 + 

02 + 

22 + 
42 + 

182 + 

802 + 

02 = 

62 = 
122 = 

542 = 

2402 = 

32 = 
72 = 

132 = 

572 

2532 = 

(02 + 3)2 

(22 + 3)2 

(42 - 3)2 

(162 - 3)2 

32 + 1542 + 4622 = 4872 = (222 + 3)2 

32 + 6842 + 20522 = 21632 

Here the doubly alternating +3 and -3 in the last column would show a con-
stant pattern, if the exceptional values 572 and 21632 could be eliminated. 
This suggests obviously the possibility of two algorithms. To obtain further 
results , we write an Integer-FORTRAN program for the IBM 1130 which 
yields: 

32 + 30382 + 

32 + 58482 + 

32 + 259742 + 

32 + 1153642 + 

32 + 2220702 + 

32 + 986S282 + 

32 + 43807942 + 

91142 = 

175442 = 

779222 =" 

3460922 = 
6662102 = 

29589842 = 

131423822 = 

96072 = 

184932 = 

821372 

3648132 = 

7022472 = 

31190432 

138532872 = 

(982 

(1362 

(6042 

(8382 

(37222 

+ 3)2 

- 3)2 

- 3)2 

+ 3)2 

+ 3)2 

Now we want to find an algorithm which should generate the sequence 80, 154, 
3038, 5848, 115364, 222070, 4380794, • • • . Let the terms bt = 0, b2 = 2, 
and b3 = 4 be given; then b0 = -4 is the left neighbor of ht = 0, since 

32 + (_4)2 + („ 1 2 )2 = 1 3 2 = (42 „ 3)2 

is. the logical extension to the left. With this new initializing and some trials 
and e r ro r s , we obtain the Iteration Algorithm III on the following page. Now 
there remains only to find an algorithm which should generate 25974, 986328, 
• •e . Here, we have not far to go, since such an algorithm is already con-
tained in the former one, and we obtain Iteration Algorithm IV on the following 
page. 



1970] TO DIOPHANTME EQUATIONS 467 

I terat ion Algorithm HI 

38*2 - (-4) = 80 
2°80 - 2:4 + 2 = 154 

38-80 - 2 = 3038 
2-3038 - 2*154 + 80 = 5848 

38*3038 - 80 = 115364 
2*115364 - 2t5848 + 3038 = 222070 

38-115364 - 3038 = 4380794 

I tera t ion Algori thm IV 

38-684 - 18 = 25974 
38*25974 - 684 = 986328 

Final ly s one could ask: Does the re exist a genera l formula for solving x2 + 

y2 + z2 = w2 ? The answer is yes0 Le t 

x = p2 4- q2 - r 2 , y = 2pr3 z = 2qr5 and w = p2 + q2 + r2; 

then x2 + y2 + z2 = w2 becomes 0 = 0. But this formula has two s h o r t -

comingss (a) it u s e s f rac t ions , and (b) it employs r o o t s , s ince , for example , 

the solution 32 + 22 + 62 = 72 r e q u i r e s p =\/~2/29 q = 3 \ / 2 / 2 s and r = 

V2. 
Now we shall prove how the in teger solutions of cer ta in Diophantine 

equations of the second d e g r e e , equivalent to I terat ion Algor i thms I-IV, can 

be found by r e c u r s i v e sequences . We will cons ider the equation 

(1) x2 - (k2 + l)y2 = k2 

with k = 1, 29 and 3. F u r t h e r , x and y will denote in teger so lu t ions of 

(1). 

If k = 1, Eq. (1) becomes x2 - 2y2 = 1. By Theorem 3 of [ 3 ] , the 

r e c u r r e n c e formula for this equation i s given by 

y = 6y ,- - y - , n > 2 9 
J n J n + 1 J n - 1 

with y1 * 2 and y2 = 12. 
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If k = 2 , Eq. (1) becomes 

(2) x2 - 5y2 = 4 . 

This equation belongs to the quadrat ic field Q(0), 0 = V ^ s which has 

(1 , (1 + 0 ) /2 ) a s an in tegral b a s i s , and i t s fundamental unit i s €0 = (1 + 0)/2,, 

Since the c l a s s number of Q(0) i s 1 and the d i s c r iminan t D = 5 (mod 8), 

the ideal (2) i s p r i m e [5, p . 66] , Hence, all the a lgebra ic in tegers of Q(0) 

of norm 4 a r e a s soc i a t e s of 2. T h u s , if x + y 0 is an a lgebra ic in teger of 

norm 4 , we get 

n o 2n n n x + y 0 = 2€0 = 26-t , n J n u 1 9 

where et = e\ = (3 + 0) /2 . 

Remark . Since we want all the a lgebra ic in tegers of norm 4 , we have 

only cons idered the even powers of €0. Noting that 

€n + l _ o n n - 1 

we obtain 

y , i = 3y - y - , n > 2 , J n + 1 J n J n - 1 

with ji = 1 and y2 = 3. It can eas i ly be shown, by using the 

well-known identity 

L2 - 5F2 = 4 ( - l ) n 
n n N 

of the Lucas and Fibonacci n u m b e r s , that y = F Q and x 
n 6X1 n 

= L ? . If k = 3 , Eq. (1) becomes 

(3) x2 - 10y2 = 9 . 

This equation belongs to the field Q(0), 0 = \ / T 0 , which has (1,0) a s an 
in tegra l b a s i s , €0 = 3 + 6 a s i t s fundamental unit , and c l a s s number 2. 
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Since the discriminant D = 1 (mod 3), the ideal (3) becomes PjPg, where 
Pi and P2 are distinct prime ideals of norm. 3. Thus there are 3 distinct 
ideals of norm 9. Since 3, 7 - 26, 7 + 26 are non-associated integers of 
norm 9, all the integers of norm 9 are associates of one of these 3 integers. 
It follows that 

(4) 

X3n + Jan* = 3 €' n = 3€? -
X3n+1 + W = ( 7 " 26^R = <7 - 2*>€? • 
X3n+2 + yan+26 = (7 + W)€^ = ( 7 + W)^ 

By applying Theorem 3 of [ 3 ] , we find that e? satisfies the recurrence 
formula 

u , 0 = 38u (1 - u , n+2 n+1 n ' 

where u is either the constant term of the coefficient of 6 for €̂ j\ Thus 
the recurrence formulas for Eqs. (4) a re , for n > 2, 

bQ = 38bQ Q 3n 3n-3 
b Q ^ = 38bQ 0 3n+l 3n-2 
b3n+2 = 3 8 b 3 n - l 

" b 3 n - 6 9 

" b3n-5> 

- b3n-4> 

^ = 57, 

bj = 2, 

b2 = 4 , 
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ON A CLASS OF DIFFERENCE EQUATIONS 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, Pennsylvania 

The purpose of this a r t i c l e i s to examine sequences genera ted by a c e r -
tain c l a s s of difference equations and to encourage fur ther invest igat ions into 
the i r p r o p e r t i e s . We shall be in te res ted in sequences satisfying the r e c u r -
rence re la t ion , 

(1) v _, 0 = v , 1 + v + kv v , n ; vi = Vo = 1 (n > 1) , 
n+2 n+1 n n n+1 \ L — / » 

where k i s a posit ive integer . 

It may be shown by a s imple inductive a rgument that 

F 

(2) v n = — ~ — — - (n ^ 1) , 

where F denotes the n Fibonacci number . n 
When we wish to emphas ize the dependence on the p a r a m e t e r , k , we 

shall wr i te v 5 v (k). n n 

A MODEL FOR ( v }°° , L nJ n= l 

Let b denote an in teger (b > 2). Consider the sequence defined a s 

follows: 

F n 
(3) 6Q = 1 1 . . - 1 (b) (n > 1) 

where (b) denotes base b. Obviously, 

F - 1 F 
(4) 6R = E b1 = ^ ^ i (n> 1) 

i=0 D 

470 
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As above* we shall write 6n = 6R(b), From Eqs. (2) and (4), we see that 

vn(k + D = ena>) . 

b - 1 has been called the n Fermatian function of b and 

Bn = T ^ T 

has been called a reduced Fermatian of index be (See [1].) We note that 

F n 
n 

If we are willing to abuse the language, we may extend the allowed 
values of b. Formally9 if k ~ os Eqa (1) becomes the usual Fibonacci r e -
currence relation. Then b = k + 1 = 1, and if we interpret the l f s in (3) as 
tally marks, 

F -1 
en = i d ) n + . . . + i ( i ) ° 

F 
= 11 . . . I (1) . 

Similarlyj if k = - 1 , then b = 0e With the agreement that 0° = 1, 

F -1 
en = i(o) n + . . . + KO)0 

= 1 1 - . . 1 (0) 

Thus 6 = 1. But the solution of (1) in this case is 

vn(-l) s i (n > 1) . 

Using similar interpretations for negative bases, we can extend (1) and (3) to 
negative integers* 
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DIVISIBILITY PROPERTIES OF { v j ^ 

It is interesting to note that if 

contains an infinite number of primes, then there would be an infinite number 
of Fibonacci and Mersenne primes. 

In this section, we shall assume k = 9 (b = 10) unless otherwise 
specified. 

Theorem 1. 
(a) (6n, n + 1 ) = 1 (n> 1) ; 

(b) < V n + 2 ) = 1 ( n ^ 1 ) -
Proof, a) Deny! Then there is a pair such that (0 ,0 - ) = d > 1. 

But d|v + 2 , d|v - implies d|v . Thus, after repeated use of the above, 
we would have (0i,02) — ^ — l e Contradiction. 

b) Similar to part a). 
Theorem 2. None of the 0 are perfect. 

n ^ Proof. Any odd perfect number is congruent to 1 modulo 4 (see [2]). 
But 

0 = 3 (mod 4) for n > 3, 

Theorem 3. 3|fl if and only if 4|n. 
Proof. Clearly, s\e if and only if S |F • Thus F J F and t h e r e -

suit follows. 
Theorem 4. 11 \6 if and only if 3|n. 
Proof. 110 if and only if 2 = F 0 F and the result follows. i n J 31 n 
Theorem 5. a) 7 0 if and only if 12 n; 

b) 1310 if and only if 12 |n. 
Proof, a) Consider the congruences, 

1 = 1 (mod 7) , 10 = 3 (mod 7) , 100 = 2 (mod 7), 
1,000 = -1 (mod 7), 10,000 = -3 (mod 7), 100,000 = -2 (mod 7). 
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Clearly 7|fl if and only if 6 | F . But 6 |F is equivalent to 2 | F and 
F of 3|n and 4|n and the result follows, 

b) Similar to a) 9 considering the congruences modulo 13. 
In light of the above, we have the unusual result that 3\6 and l l | e 

implies T| 6> and 13|# . * ' n ' n 
We mention some other results which the reader might like to establish. 
Assertion Is 18 |F implies 19|0 . 
Assertion 2: 4 1 l ^ n ^ anc^ o n ^ y ^ 5ln° 
Assertion 3; 271|0 if and only if 5|n. 
Assertion 4s 73J0 , 10l|6 , 137J0 if and only if 6|n . 

GENERATING FUNCTIONS FOR {v (k )}*^ 

One area which might be worth investigating is that of obtaining gener-
ating functions for the sequences. Of course, since 

i - i (6) - = Z V 
1 - x - x2 i=l 

we have 

oo i o g [ l + kv.(k)] . , 
(7) 77777-5 * * » * * 
but one should be able to do better than this. 

ALTERNATE RELATIONSHIPS 

We present two results along these lines. 
Theorem 6. 

6 (2) = 2 TT [1 + 0.(2)] - 1 (n > 1) 
i=l 

Proof. Since 
F 

2 n = i + e (2) 
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and 

£ Fi = Fn+2 -1 (n " X) • 
1=1 

the result easily follows., 

Theorem 7. 

i + e2n(2) = 7 T [i + 02 i_i ( 2 ) 1 < n ^ D-

Proof« The result is readily obtained from 

n 
£j F2i-1 = F2n • 1=1 

GENERALIZATION TO OTHER RECURSIVELY DEFINED SEQUENCES 

We conclude our discussion with one result in this area., 
Theorem 80 If 

1 nJ n=l 

is a recursively defined positive integer sequence satisfying the linear dif-
ference equation 

m 
(8) £ ^ u „ ^ = P (n > 1) (order m) , 

i=0 * n + 1 

and boundary conditions {ul9 u2, °®B, u m - l ) » where jS and a. for i £ ( 0 , 
1, • • • , m} are constants, and if 
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u n 
0n = 1 1 - . °1 (b) (n > 1) ; 

then 

ni a. 
(9) 0 [1 + (b - l)p ] i = b13 (n > 1) 

i=0 n + 1 

Proof, Since 
u 

n̂ = T A H T <n * x> • 

uk 
we have 

b ~ = 1 + (b - 1)/^ 

for k > 1 and the result readily follows, 
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ON A CONJECTURE OF DMITRI THORO* 
DAVID G. BEVERAGE 

Sao Diego State College, San Diego, California 

Denoting the n term of the Fibonacci sequence 1, 1, 2, 3, 5, • • • , 
by F , where F , 0 = F , - + F , it is well known that J n9 n+2 n+1 n 

F2 - F F = ( - l ) n + 1 

n n - l n + 1 K 1 ; 

If odd prime p divides F - , then 

F2 = ( _ D n + 1 (modp) , 

so that (-1) is a quadratic residue modulo p* Clearly, for n = 2k, this 
implies -1 is a quadratic residue modulo p , and accordingly, p = 1 (mod 

[Continued on page 537* ] 



THE FIBONACCI NUMBERS 
CONSIDERED AS A PISOT SEQUENCE* 

MORRIS JACK DeLEON 
Florida Atlantic University, Boca Raton, Florida 

Char l e s P i so t [1] was the f i r s t to cons ider the sequence , {a n } 0 0 _ o S of 
na tura l number s de te rmined from two na tura l n u m b e r s a0 and aj such that 

2 < a0 < a4 

(1) and 

a2 

I < _ n+1 < A 
"2 an+2 a - 2 n 

for all n > 0. The Fibonacci number s with the f i r s t two t e r m s deleted s a t -

isfy Eq. (1). 

P e t e r F l o r [2] called the sequences which satisfy (1) P iso t sequences 

of the second kind. F l o r a lso cons idered the sequence of na tura l number s 

de te rmined from two na tura l n u m b e r s a0 and aj such that 

2 < a0 < a t 

(2) and 

A< a _!*+!< I 
2 - n+2 a 2 

n 

for all n > 0. He cal led these sequences Pisot sequences of the f i rs t kind. 
F o r a P i so t sequence of the f i r s t (second) kind a i s s imply the n e a r e s t 
in teger to a2 - / a , where in case of ambiguity we choose the s m a l l e r 

*This paper i s taken from Chapter F o u r of the author7 s doctora l d i s se r t a t ion 
a t the Pennsylvania State Universi ty . The author would l ike to e x p r e s s h is 
grat i tude to Resea rch P r o f e s s o r S. Chowla* his advisor . 
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(larger) integer. By Pisot sequence we shall mean a sequence that satisfies 
(1) and (2). 

By 

{F + k f L n J n=n0 

we mean the sequence formed by adding k to each term of the sequence 

Kr . 
n=n0 

where F is the n Fibonacci number. In this paper necessary and suf-
ficient conditions for 

{F +k}°° 1 n J n==n0 

to be a Pisot sequence are given, 
The main result is 
Theorem. Let 

1 nJ n=l 

be the Fibonacci sequence. The sequence 

{F + l}°° 1 n J n=n0 

is a Pisot sequence of the first kind (second kind) iff n0 > 6 (n0 > 4), The 
sequence 

( F - l}°° 1 n J n=] n=n0 

is a Pisot sequence iff n0 > 7. The sequence {^n} is a Pisot sequence of 
the first kind (second kind) iff n0 > 4 (n0 > 3). If |k | > 1 then there exists 
no integer n0 such that 

( F + k}°° 
1 n } n=n0 
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i s a P i so t sequence. 

We shall need two l e m m a s in o r d e r to prove the theorem. 

L e m m a 1. F x 0 - 2 F M +F = F 0 . — n+2 n+1 n n-2 
Proof. F ^Q - 2F _ + F = (F _ + F ) - 2F ^ + F 

n+2 n+1 n n+1 n n+1 n = - F ^ + 2F = - (F + F n ) + 2F n+1 n n n - 1 n 
= F n " F n - 1 = F n - 2 " : : 

L e m m a 2. ( F n + 2 + k)(FR + k) - (FR+1 + k)2 

= ^ + 1 + k F n - 2 ' 
Proof. (F J Q + k)(F + k) - (F , . + k)2 

n+2 n n+1 
• ( r » « r „ - Fn+1> + k ( V 2 - 2F»« + V 

The l a s t equality i s t rue since 

2 _ / ixn+1 F ^ 0 F - F^ = (-1) 
n+2 n n+1 

We a r e now able to begin the proof of the theorem. F r o m the definition 

of a P iso t sequence and L e m m a 2 , we have that 

L n Jn=n0 

i s a P i so t sequence of the f i r s t kind iff 

(i) 2 < F + k < F ^ + k 
n0 n0+l 

and 

(iia) - ( F n + k) < 2 [ ( - l ) n + 1 + k F n _ 2 ] for all n > n0 

(iib) 2 [ ( - l ) n + 1 + kFM 0 ] < F M + k for all n > n0 

a r e sat isf ied. Also ( F + k ) ° ° i s a P iso t sequence of the second kind iff 1 n J n=no 
(i) and 
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(iiia) -(Fn + k) < 2 [ ( - l ) n + 1 + kFn_2] for all n > n0 

(iiib) 2[ ( - l ) n + 1 + kFn_2] < F n + k for all n > n0 . 

We shall first consider the case k = 1. 

Fn + 1 = 2 F n-2 + F n-3 + 1 > 2 [ F n -2 + ^ * 2 [ F n - 2 + ^ ^ 

iff n > 6. Thus (iib) is satisfied iff n > 6* Also, 

F + 1 = 2F 0 + F Q + l > 2[F 0 + 1] > 2[F 0 + ( - l ) n + 1 ] n n-2 n-3 L n-2 J L n-2 J 

iff n > 4. Thus (iiib) is satisfied iff n > 4, Since 

2 [ ( - l ) n + 1 + F J > 0 > -(F + 1 ) for all n > 3, 

(iia) and (iiia) are satisfied for n > 3„ It is clear that (i) is satisfied if n0 > 
2„ Thus 

( F + l } 0 0 
1 n J n=n0 

is a Pisot sequence of the first kind iff n0 > 6 and it is a Pisot sequence of 
the second kind iff n0 > 4„ 

Nexts we consider the case k = - 1 . If n = 6§ both (iia) and (iiia) are 
not satisfied. If n = 7, both (iia) and (iiia) are satisfied., Now 

F - l = 2F Q + F Q - 1 > 2[F « + 1] if n > 8 „ 
n n-2 n-3 L n-2 J 

Thus, 

- ( F n - 1 ) < 2 [ - l - F n _ 2 ] < 2 [ ( - l ) n + 1 - F n _ 2 ] 

if n > 8„ Therefore, (iia) and (iiia) are satisfied iff n > 7* Since 
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2 [ ( - l ) n + 1 - F J < 0 < F - 1 L n-2J n 

if n > 3, both (iib) and (iiib) are satisfied for n > 3, It is clear that (i) is 
satisfied for n > 4. Thus, 

{F - i}00 

*• n J n=n0 

is a Pisot sequence iff n0 > 7. 
Now we consider the case k = 0, It is clear that (i) is satisfied iff 

n > 3. Both (iia) and (iiia) are satisfied for n > 3. Also (iiib) is satisfied 
for n > 3, but (iib) is satisfied iff n > 4, Thus 

{F }°° 
n=n0 

is a Pisot sequence of the first kind iff n0 > 4, and 

(F }°° 
n=n0 

is a Pisot sequence of the second kind iff n0 > 3. 
We shall show that if |k| > 1, then there exists no integer n0 such 

that 

{F *k}°° 

is a Pisot sequence. This will be accomplished by showing that (iia) or (iiia) 
implies that k > -2 and that (iib) or (iiib) implies that 2 < k. 

Dividing (iia) by F 0 yields that 
n—di 

F F - , 0 / ^vn+1 £- . J±± . ^JS- < 2^1) + 2 k 
F F F ~ F 

n-1 n-2 n-2 n-2 

for n > n0„ After taking the limit of both sides as n —• oo and remembering 
that 
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l i m V i = L l _ v i < 2 > 

n~» °° n 

we have that 

-M • 
2. 

-4 < - l im I • — * 1 < 2k 

Thus 

-2 < k . 

In a similar manner, one can show that (iib) or (iiib) implies that k < 
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MODULO ONE UNIFORM DISTRIBUTION OF THE SEQUENCE 
OF LOGARITHMS OF CERTAIN RECURSIVE SEQUENCES 

J. L. BROWN, JR., and R. L. DUNCAN 
The Pennsylvania State University, University Park, Pennsylvania 

Let {x.}°° be a sequence of real numbers with corresponding fractional 
parts {/3.}°°, where 0. = x. - [x.] and the bracket denotes the greatest inte-
ger function. For each n > 1, we define the function F on [ 0,1] so that 
F (x) is the number of those terms among /31$ • • • , /3R whichlie in the inter-
val [0,x), divided by n. Then {x.} is said to be uniformly distributed 
modulo one iff lim F (x) = x for all x € TO, 11. In other words, each n oo—*n L J 
interval of the form [0,x) with x € [ 0 , 1 ] , contains asymptotically a pro-
portion of the p f s equal to the length of the interval, and clearly the same 
will be true for any subinterval (a9p) of [0,1]. The classical Weylcriter-
ion ([1], p. 76) states that {x.}00 is uniformly distributed mod 1 iff 

(1) lim i Y e2nivXj = 0 v > 1. 
n —» oon £—i J — 

j=l 

An example of a sequence which is uniformly distributed mod 1 is { nf} °(10 

where £ is an arbitrary irrational number (see [1], p. 81 for a proof using 
Weyl's criterion). 

The purpose of this paper is to show that the sequence ( in V }°° is uni-
" l 

formly distributed mod 1, where ( v }°° is defined by a linear recurrence of 
the form 

(2) V , = a, ,V , , + • • • +aAV n > 1 , 
n+k k-1 n+k-1 O n 

the initial terms Vj, V2s
 8 °9 , V. being given positive numbers. In (2), we 

assume that the coefficients are non-negative rational numbers with a0 ^ 0, 
k k-1 

and that the associated polynomial x - a, -x - • • • - a-jx - a0, has roots 
Pi> ft•» e o°? Pk which satisfy the inequality 0 < \Pi\< ••• < j/3, | . Addi-
tionally 9 we require that |/3.| f 1 for j = 1, 2, • •• , k.-. 

482 
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In par t icu la rs our r e su l t impl ies that any sequence {u }°° which s a t -
n J 

isfies" the Fibonacci r e c u r r e n c e U , n = U M + U for n > 1 with U< = k-i 
n+2 n+1 n ~ i i 

and U2 = k2 a r b i t r a r y posi t ive initial t e r m s (not n e c e s s a r i l y integers) will 
have the p rope r ty that ( i n U } i s uniformly dis t r ibuted mod 1. With kA = 
1, k2 = 1, we obtain this conclusion for the c lass ica l Fibonacci sequence 

(see [ 2 ] , Theorem 1), while for k1 = 1, k2 = 3 , an analogous r e su l t is 

seen to hold for the Lucas sequence. 

Before proving the ma in t heo rem, we prove two l e m m a s : 

L e m m a 1. If ( x . ) i s uniformly dis t r ibuted mod 1 and {y.} is such 
— J i ( .oo J i 

that .lim ( x . - y . ) = 0, then \ y . ) is uniformly dis t r ibuted mod 1. 
Proof. F r o m the hypothesis and the continuity of the exponential func-

tion, it follows that 

l i m (e 1 - e j ) = 0 . 

But it i s well known ( [ 3 ] , Theorem B , p. 202) that if {y } is a sequence of 

r ea l number s converging to a finite l imi t L , then 

n 
l im — > y. = L 

n—» 00 £2>i= 
1 

rr, , . 27rii/x. 2irii/y. u 
Taking y. = e j - e J ] , we have 

t . 1 \ ^ , 2-nivx. 2mvy., A 
l im - > (e ] - e J j ) = 0 

n - » 00 n Z-^ v J J 

Since 

n 
1 \ " ^ 27T1VX. A 

l im — 7 e 1 = 0 
a-+oo n Z—i J 

1 

by Weyl 's c r i t e r i o n , we also have 
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n 
Ibn i V e27ri^yj = 0 n ~*°° n ^-^ J 

and the sufficiency of Weyl's criterion proves the sequence {y.}°° to be uni-
formly distributed mod 1. 

Lemma 2. If a is a positive algebraic number not equal to one, then 
In a is irrational. 

Proof. Assume, to the contrary, In a = (p/q), where p and q are 
non-zero integers. Then e p / q = a9 so that e p = cfl. But or is algebraic, 
since the algebraic numbers are closed under multiplication ([1] , p. 84). 
Thus e p is algebraic, in turn implying e is algebraic. But e is known to 
be transcendental ([1] , p. 25) so that a contradiction is obtained. 

Theorem. Let \ V }°° be a sequence generated by the recursion relation, 

(2) V M = a. nV M - + • • - + a i v _LI + anV (n > 1) , 
n+k k-1 n+k-1 1 n+1 O n 

where a0, a l s • • • , â __̂  are non-negative rational coefficients with a0 ^ 0, 
k is a fixed integer, and 

(3) Vi = yi9 v2 = y2, • • • , v k = y k 

are given positive values for the initial terms. Further, we assume that the 
k k-1 

polynomial x - ab- i x - • • • - a^x - a0 has k distinct roots j3l9 /32, • • • , 
ft satisfying 0 < \pt\ < • • • < j ^ | and such that none of the roots has mag-
nitude equal to 1. Then (in V }°° is uniformly distributed mod 1. 

Proof. The general solution of the recurrence (2) is 

k 
(4) V n = 5 > j < ? ( n > l ) , 

j=l 

where the arbitrary constants al9 a2, • • • , a^ are determined by the specifi-
cation of the initial terms in (3). [it is easily checked that the determinant of 
the k x k matrix (/3.) does not vanish, so that determination of the a.f s is 
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unique. ] Since the initial terms were not all zero, at least one of the a.fs 
is non-zero. Let p be the largest value of j for which a. f 0, so that 
p > 1. Then 

and 

n Z-# j * ] 

V 
1 -

a B 
P P 

P"1 a.£ 

l p p p 

p - i 

1 

a. 

P 
1L 

But 

< 1 

for j = 19 2, • • • , p - l j and hence 9 

lim . n -*oo| 
p p 

1 , 

or equivalently, 

(5) lim f lnV - lnU j8 | n | = 
n -*oo|^ n I P P| J 

Since p is algebraic, it is easily verified that \p \ is also algebraic. 
Moreover, |jS | f 1 by hypothesis so that ln|/3 | is irrational by application 
of Lemma 2. But the sequence {n^} is uniformly distributed mod 1 when-
ever f is irrational; therefore 9 the sequence 
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{nln| /»p |}^{ln|ppH» 

is uniformly distributed mod 1 and the same is true for the sequence 

M«PiK,r>r-
From (5) and Lemma 1, it is then clear that ( in V }°° is uniformly distributed 

" i 
mod 1 as asserted, q. e. d. 

The specialization to sequences satisfying the Fibonacci recurrence, 
U 2 = U - + U (n > 1) tJ is immediate since the relevant polynomial in 
this case is x2 - x - 1, and there are two distinct roots of unequal magni-
tude, namely 

1 ± %/5 
2 

From the theorem, we conclude ( in U } is uniformly distributed mod 1 
independently of the (non-zero) values specified for Uj and U2. 

Lastly, we give an example to show that our assumption on the roots of 
the associated polynomial cannot be relaxed. Consider the recurrence V 2 

= V for n > 1 with V4 == 1, V2 = 1. Then clearly V = 1 for all n > 1 
so that ( in V }°° is a sequence of zeroes and hence not uniformly distributed 
mod 1. The associated polynomial in this case is x2 - 1 which has two dis-
tinct roots, ±1; however, the roots have magnitude unity, and therefore, the 
conditions of our theorem are not met. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 

to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 

Lock Haven, Pennsylvania 17745,, This department especially welcomes 

problems believed to be new or extending old results. Proposers should sub-

mit solutions or other information that will assist the editor. To facilitate 

their consideration, solutions should be submitted on separate signed sheets 

within two months after publication of the problems. 

H-l 75 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Put 

-n-1 
( l + z + i z2\ n = J ] a(n,k)zk 

k=0 

Show that 

/tv , v 2*5*8 . . . (3n - 1) 
(!) a(n,n) = , — — — 

« £ ( • ; • ) ( " • • • ) ( - ' ) ' 
S 2»5«8 . . . (3n - 1) 

nl 
s=0 

^ E (n r r)(2V ") ̂  = ^^ 2*5«8 - • - (3n - 1) 
n! 

r=0 

where 

co = | (-1 + N P 3 ) . 

487 
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H-l 76 Proposed by C. C. Yalavigi, Government College, Mercara, India. 

In the "Collected Papers of Srinivas Ramanujan," edited by G. H. 
Hardy, P. V. Sheshu Aiyer, and B. M. Wilson, Cambridge University P re s s , 
1927, on p. 326, Q. 427 reads as follows: 

Show that 

1
 +

 1 

Jm - 4ir 1 6TT 1 24 Sir 
e - 1 e - 1 e - 1 

Provide a proof. 

H~l 77 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Let R(N) denote the number of solutions of 

N = F k i + Fk2
 + • • ' + F k r

 ( r = l j 2 ' 3 ' * " ) ' 

where 

kj > k2 > • • • > k r > 1 . 

Show that 

( 1 ) R ( F 2n F 2m> = R 2 n + l F 2 m ) = ( n " m ) F 2 m + F 2m-1 ( n * m ) • 
( 2 ) R ( F 2 n F 2 m + l ) = ( n " m ) F 2 m + l (n > m) , 

( 3 ) R ( F 2 n + l F 2 m + l ) = ( n " m ) F 2 m + l <n > m ) ' 
(4) R ( F | n + 1 ) = R(F | n ) = F ^ ( n > l ) . 

SOLUTIONS 
SUM INVERSION 

H-151 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

a. Put 
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00 
, - 1 (1 - ax2 - bxy - cy 2 )" 1 = V A x m y11 

JLd m,n J 

m,n=0 

Show that 

00 _ j 

X An9nxR = t1 " 2bx + (fc>2 - 4 a c > x 2 > 
n=0 

B. Put 

(1 - ax - bxy - cy)""1 = J^ V n * 
m9n=0 

m n 
y 

Show that 

j B n n x n = {(1 - bx)2 - 4acx}~2 

n,n 
n=0 

Solution by M. L. J. Hautus and D. A. Khmer, Technological University, Eindhouen, the Netherlands. 

In a paper submitted to the Duke Mathematical Journal (the diagonal of 
a double power series) 9 we have proved the following result: 

Theorem. Suppose 

F(x,y) = J ] ^ f ( m , n ) x m y n 

m=0 n=0 

converges for all x and y such that |x | < A, |y | < B, then for all z such 
that |z| < AB, we have 
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00 

m /F(s,z/S)f = 2f(n>n)zn' 
° n=Q 

where C is the circle {s : | s | = (A + | z | /B) /2} . Furthermore, if F ( s , z / s ) / s 
has only isolated singularities inside C, then the integral can be evaluated 
by summing the residues of F(s ,z / s J / s at these singularities. Coincidental-
ly, we gave Carlitz1 Problem B as an example in our paper,, Problem A can 
be treated in just the same way. According to the theorem cited, 

2 An,nx11 " SrT / ; -s ds 
n = 0 C as4 - (1 - bx)s2 + ex2 

The singularities of the integrand are 

• ( • 

I 
1 ._ bx - (1 - 2bx + b2x2 - 4acx2)M 

71 _ | _ _ _ _ J 
and 

, u , - bx + (1 - 2bx + b ^ 2 - 4acx2)2 V 

• ( l 

and the singularities ±6^ tend to 0 with x while the singularities ±02 do 
not. Thus, the contour C must include ±8f and exclude ±6%; using the 
residue theorem, we easily calculate 

1 f -sds 
2iri J 2771 I a(s - e i ) (s .+ ,e i ) (s - 0-2)(s + e2) a ( 0 | _ 02} 

Substituting the values of ^ and 6 2 given above yields the desired result. 
A generalization of Problems A and B can be given as follows: 
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Let 

F(x,y) = ] P f ( m f n ) x m y n = (1 - axk - bxy - cyk) 
m,n 

and let 

F(x) = J^ f (n,n)xn 

Then according to the theorem cited above, we have 

k-1 , 
F(x) lift J 27ri J 2k M , , k ^ k p as - (1 - bx}$ + ex 

Set co = e ' , then the singularities of the integrand are ^0l9^62. for 
j = 1, . . . 9 k, where 

k i h 1 / k 

1 - bx - (1 - 2bx + b2x2 - 4acx ) 
71 " 1 — 25 "* ~ 

1 - bx + (1 - 2bx + b2x2 - 4acxk)2 
n _ f _ , _ _ 

Since 0j_ tends to 0 with x and 62 does not, C includes the singularities 
u^fij for j = 1, 8 e e , k, but excludes the singularities fcp02 for j = l9-# • , 
k. Now we have the residue theorem to find that 

i?( ) = -A- i ~s ds = 1 f ; 
277i I 7 k ^ T 7 ^ 7&7 2trik / ,, flk J (s - 04 )(s - 6 2 )a J (t - Gj k ) ( t - 0 k ) a a (0^-0 k ) 

(1 - 2bx + b2x2 - 4acx ) , 
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k where C? is a contour In the t-plane which encircles the singularity 0 j , k 

k times but excludes 02 • 

Also solved by D. V. Jaiswal and the Proposer. 

HIDDEN IDENTITY 

H-153 Proposed by J. Ramanna, Government College, Mercara, India. 

Show that 

G> ^ £ F3 k + 1F3 k + 2(2F2k + 1 + F6 k + 3)(2F3 k + 2 +. F ^ ) = F ^ 

<»> 1 6 E F 3k + l F 3k+2 F 6k + 3 ( 2 F 6k + 3 " F3kF3k+3> " F* 3n+3 

2r Hence, generalize (i) and (ii) for F„ +o -

Solution by the Proposer. 

We note that (i) and (ii) are easily verified for k = 0 and k = 1 and 
assume the results for k = r and prove them for k = r + 1. Thus we need 
show, on subtracting (i) and (ii) for n = r from (i) and (ii) for n = r + 1, 
respectively, that 

( i ) 4F3(r+l)+lF3(r+l)+2 ( 2 F 3 ( rH)+l + F6(r+l)+3) ( 2 F3(r+l)+2 + F6(r+l)+3) 

= F 6 - F 6 

(2) *3( r+l )+3 *3 r+3 
(ii) 1 6 F 3 ( r + 1 K 1 F 3 ( r + 1 ) + 2 F 6 ( r + 1 ) + 3 ( 2 F | ( r + 1 ) + 3 - F 2

3 ( r + 1 ) F 2
3 ( r + 1 ) + 3 ) 

- F 8 - F& 
~ *3(r+l )+3 *3 r+3 • 

Equations (1) are true since 
( i ) 4F3(r+l)+lF3(r+l)+2(2F3(r+l)+l + F6(r+l)+3)(2F3(r+l)+2 + F6(r+l)+3) 

( 3 ) = (F3(r+l)+2 + F3(r+1)+1)6 " (F3(r+l)+2 " F3(r+1)+1) 
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(ii) 16 F 3 ( r + 1 ) + 1 F 3 ( r + 1 ) + 2 F 6 ( r + 1 ) + 3 ( F 4
3 ( r + 1 ) + 2

 + 6 F 3 ( r + 1 ) + 2 F 3 ( r + l H l 
+ F3(r+1)+1) 

= F3(r+l)+3 " F3r+3 = 1 6 F3(r+l)+lF3(r+l)+2F6(r+l)+3( 2 F6(r+l)+3 
J j3(r+l)JJ3(r+l)+3; 

Hence, the desired results follow. 

Also solved by D. V. Jaiswal and C. C. Yalavigi. 

TRIPLE THREAT 

H-154 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that for m 5 n ,p integers >0, 

E / m + l \ / n + l \ / p + l \ 
\i + k + l / \ i + k + l / \ i + 3 + 1 / 

i , j ,k>0 

m n p 

= EEE(m-rb)(a"c + c ) ( p - a + a ) • 
a*t> b=0 c=0 

and generalize. 

Solution by the Proposer. 

Put 

S m E l m + 1 \ / n + l \ / p + 1 \ 
\ j + k + \)\i + k + l / \ i +3 + 1 / ' 

i , j ,k>0 

m n p 
\ T ^ V ^ \ ^ / n i - a + b \ f n - b + c V p - c + a\ 

Tm,n9p B L L H b A c A a / • 
a=0 b=0 c=0 

Then 
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00 

E S xmyn
ZP 

d—>i m , n , p J 

m , n , p = 0 

X ^ j+k i+k i+j x ^ / m + j + k + l \ m Y"* / n + i + k + 1 \ n 
= L x y z L h + k + 1 j x L, \ i + k 4-1 ft 

i , j , k=0 m=0 n=0 
00 

# y ^ / p + i + j + i \ 
Z^r l i + j + i I 
p=0 

00 

E i+k i+k i+j / n - j - k - 2 , - v - i -k -2 , - v- i - i -2 xJ y z J ( l - x) J (1 - y ) (1 - z) J 

z P 

i , j , k=0 

(i - x)-2d - x)-2d - Z)-2(i. T T _ j | _ ) y 1 ( 1 - T r r | ^ ) " 1 

• (x - TrrxXHi-x)) 
= (1 - y - z) V - x - z) X ( l - x - y) * . 

In the next p l ace , 

00 

Z m m n p 

T x y z r m , n , p 
m , n , p = 0 

a , b , c = 0 m=0 n=0 p=0 
z

p 

CO 

E a b c , - v -b -1 / - v - c - 1 / - v-x y z (1 - x) (1 - y) (1 - z) 
a , b , c = 0 

- a - x,-V- „-ia -_,,-( , - ̂  (x - ̂ " ' ( i - ^ 
= (1 - x - z ) "(1 - x - y ) x ( l - y - z ) 
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and the r e s u l t follows at once* 

GENERALIZED VERSION 

Le t k > 2 and n l 5 n2s
 e e s

s n k non-negat ive i n t e g e r s . Show that 

/ n 1 + l W n 2 + l \ / nk + l \ 

^\\+ a i + vW + a 2 + V \\-i+ \ + V 
(^ + a A / a 3 + a 4 \ / a ^ + a 2 ] \ 

" M al A a3 / \ a2k-l / 

where the f i r s t summation i s over a l l non-negative a l 9
 e ° ° , a k while in the 

second sum 

a 2 k + a l = n l ' a 2 + a3 = V a4 + a 5 = n 3 ' • " ' a 2 k - 2 + a 2 k - l = n k • 

Solution. Let S(nl9 • *• , 1%) denote the f i r s t sum and T(n l s • • • , % ) 

denote the second sum6 Consider the expansion of 

- 1 - 1 - 1 
</) = </)(xl5 • • • , x k ) = (1 - xj - x2) (1 - x2 - x3) • • • (1 - x k - x 1 ) . 

Since 

a 
x (1 _ x - y)"1 = ((1 - x)(l - y) - xy)"1 = £ - _ - ^ 

a=0 ( 1 - x ) ( 1 - y ) 

we have 

x>X!^. . .> 1 + ° k 

a +a +2 a +a +2 \ - l + a k + 2 

a ^ - . a ^ O (1 - X l ) k 1 ( 1 - x , ) 1 2 . . . ( l - x k ) k l 
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_ a i , + a
1
 a i + a 0 a. n+a. 

*= E xr V 
a l ' " " ' , a k = 0 

*2 • • ' x k 

V̂  (\ + \ + bl + 1\/al + a 2 + b 2 + X \ 
^ V a k + ai + 1 / V a i + a 9 + x / 

bl ' '"'bk=0 

/Vi + ak + bk + 1 \ b i 
"'A v i + ak + 1 / ! 

, b 2 
x 2 

n.. n E l 2 Tc 
Xl X2 • ' • Xk S ( n l ' V •*•' V ^ , • • • , ^ = 0 

On the o ther hand, s ince 

a,b=0 

r a 2=° V ' a 3 ' a 4=° V 3 ' 

V^ /a2k-l + a 2 k \ a 2 k - l 

a 2 k - l , a 2 k ~ ° 

n . n„ E l 2 k 

x x x 2 . . . x k T ( n i , n 2 , . . . , n k ) . 
n l , ' " ' n k = : ( ) 

The s ta ted r e su l t now follows at once. 



1970] ADVANCED PROBLEMS AND SOLUTIONS 497 

RECURRING THEME 

H-155 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

The Fibonacci polynomials are defined by 

W X ) = rfnW + £n-l ( x ) 

with fi(x) = 1 and f2(x) = x. Let z = f (x)f (y). If z satisfies the 
TjS r s r , s 

relation 

z . + az „ „ + bz n n + cz ^ - + dz = 0 
r+45s+4 r+33s+3 r+2,s+2 r+ l , s+ l r , s 

show that 

a = c = -xy, b = -(x2 + y2 + 2) and d = 1 

Solution by the Proposer. 

Let u r = fr(x) and v r = fr(y). Then, 

Zr+4,s+4 = V4V4 = ( x u r+3 + V 2 ) ( y vs+3 + Vs+2> 
= x y z r+3 , s+3 + Zr+2,s+2 + ( x u r+3 v s+2 + y V 2 V s + 3 ) 

Now, 

( x u r + 3 V
S + 2 + y U r + 2 v s + 3 ) 

= x (xu r + 2 + u r + 1 ) v s + 2 + y(yv s + 2 + v g + 1 ) u r + 2 

= (x2 + 3^2,8+2 + (xVlV2 + yVlV2» 
= (X2 + y 2 ) z r + 2 j S + 2 + x U r + 1 ( y v s + 1 + vg) + y v s + 1 u r + 2 

= (x2 + y 2 ) V 2 , s + 2 + ^Vl.s+l + x u r + l v s + V 2 ( v s + 2 " V s ) 

= (x2 + y 2 ) ^ r + 2 ) S + 2
 + ^Vl l S +l + ^ ^ V l " V2) + z r + 2 ) S + 2 

= (X2 + y2 + l ) Z r + 2 } S + 2 + x y z r + l i g + 1 + vg(-ur) = 
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= fr* + y* + D z r + 2 ) S + 2 + x y z r + l j S + 1 + z r > g . 

Hence, 

z , / i , / i = x V Z l 0 l 0 + (x2 + y2 + 2)z l 0 l 0 + x y z ,- ,n r+49s+4 J r+3 , s+3 J r+2 ,s+2 J r + l , s + l 

- z r , s 

Thus , 

a = -xy , b = -(x2 + y2 + 2), 

c = -xy , d = 1 . 

y4fco solved by W. Brady, D. Zeitlin, andD. V. Jaiswal. 

Late Acknowledgement: D. V. Ja iswal solved H-126, H-127, H-129, H-131. 

LETTER TO THE EDITOR 
DAVID G. BEVERAGE 

San Diego State College, San Diego, California 

In r e g a r d to the two a r t i c l e s , MA Shor te r P roof , " by Irving Adler (De-

c e m b e r , 1969, Fibonacci Quar t e r ly ) , and M1967as the Sum of T h r e e Squa re s , " 

by Bro the r Alfred Brousseau (April , 1967, Fibonacci Quar t e r ly ) , the genera l 

r e su l t i s as follows: 
x2 + y2 + z2 = n i s solvable if and only if n i s not of the form 4 (8k + 

7), for t = 0, 1, 2, • • • , k = 0, 1, 2 , • • • * 

Since 1967 = 8(245) + 7, 1967 f- x2 + y2 + z2„ A l e s s e r r e su l t known 

to F e r m a t and proven by D e s c a r t e s i s that no in teger 8k + 7 i s the sum of 

th ree ra t ional squares,,* * 

* Will iam H0 Leveque* Topics in Number Theory , Vol. 1, p . 133e 

* * L e o n a r d E . Dickson, His tory of the Theory of N u m b e r s , Vol. II, Chap, 
VII, p. 259. 



DETERMINATION OF HERONIAN TRIANGLES 
JOHN R.CARLSON 

San Diego State College, San Diego, California 

1. A Pythagorean t r iangle i s defined as any r igh t - t r i ang le having in te -

g ra l s ides . Using the well-known re la t ionship a2 + b2 = c2 where a, b , 

and c a r e the two s ides and the hypotenuse respec t ive ly , it i s obvious that 

one of the s ides m u s t be even. Hence , the a r e a of such a t r iangle i s also an 

integer,, In his book* , Ore in t roduces the general izat ion of this si tuation: a 

t r i angle i s cal led Heronian if it has in tegral s ides and a r e a . He fur ther c o m -

m e n t s that , "although we know a cons iderable number of Heronian t r i a n g l e s , 

we have no genera l formula giving them all . ? ? In th is pape r , we propose to 

find all such t r i ang les and prove a few bas ic p r o p e r t i e s concerning them. 

2. Since every Pythagorean t r i ang le i s Heronian, and since Py tha -

gorean t r i ang les a r e completely desc r ibed by the well-known formulas for 

the s ides u2 + v2, u2 - v2 , and 2uv, the r ea l p roblem is to c h a r a c t e r i z e all 

non- r igh t -angled Heronian t r i ang l e s . We f i r s t give an obvious p rope r ty . 

L e m m a 1. Let a, b , c , and n all be in t ege r s . Then the t r iangle 

with s ides of na , nb , and nc i s Heronian if and only if the " reduced" t r i -

angle with s ides a , b , c i s Heronian. 

Proof. We shall use Heron1 s formula for the a r e a of a t r iangle 

(1) A = -JsTs - a)(s - b)(s - c ) , 

where 

s = - (a + b + c) . 

Le t A be the a r e a of t r iangle a , b , c and le t Af be the a r e a of na , nb , nce 

Then Eq. (1) shows u s immedia te ly that 

*Oystein O r e , Invitation to Number Theory , pp. 59-60, Random House, New 
York, 1967. 
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(2) Af = n2A . 

Hence, if A is an integer, so is AT. For the converse, suppose that Af 

is integral. Then Eq. (2) insures that A is at least rationaL On the other 
hand, Eq. (1) implies that A is the square root of an integer, which is well 
known to be either integral, or irrational. Thus we conclude that A must be 
an integer and the lemma is proven. 

Before we proceed to our first theorem, we illustrate with two examples. 
Suppose we juxtapose (or "adjoin") the two Pythagorean triangles 5, 12, 13 
and 9, 12, 15 so that their common-length sides coincide. Clearly a (non-
right-angled) Heronian triangle results with sides of 13, 14, 15 and area 
equalling 84. 

As a second example, we adjoin the triangles 12, 16, 20 and 16, 63, 65 
(one of which is primative) to obtain the Heronian triangle 20, 65, 75 which 
may be reduced to 4, 13, 15, a primitive Heronian triangle with area equal-
ling 24. That these two examples illustrate all possible events is the content 
of our first theorem. 

Theorem 1. A triangle is Heronian if and only if it is the adjunction of 
two Pythagorean triangles along a common side, or a reduction of such an 
adjunction. 

Proof. One direction is clear: since every Pythagorean triangle is 
Heronian, so is every adjunction of two. The previous lemma guarantees 
that every reduction is also Heronian, 

Thus, let us suppose that the triangle a ,b ,c is Heronian and try to 
prove that it is either the adjunction or a reduction of an adjunction of two 
Pythagorean triangles. First we assume the obvious: that from some vertex 
we may draw a perpendicular to the opposite side, thus dividing the given t r i -
angle into two "adjoined" right triangles. That such is possible is easily 
shown. Let the length of the altitude so constructed be x and let the base c 
be thus divided into segments c1 and c2, so that c = cA + c2. Since the 
triangle is Heronian, it is clear that 

is rational. Let 
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m 
x = — n 

be reduced to lowest terms. 
By the law of cosines* b2 = a2'+ c2 - 2ac cos wi and thus 

a2 + c2 - b2 
C 0 S w i = Wc 

is rational. Hence both Cj = b cos wj and c2 = c - cA are also rational* 
If the numbers x, c1? and c2 are in fact all integers, we are done. Other-
wise we look at the triangle having sides na, nb, and nc. From elementary 
geometry, this triangle is similar to the original one and thus the new altitude 
is equal to nx = m, an integer,, But nc1? still rational, is given by 

v^ 
which is9 as before, either integral or irrational, and thus must be integraL 
Likewise nc2 is integrals and the new enlarged triangle is the adjunction of 
two Pythagorean triangles. Thus the original is a reduction of an adjunction 
and we are through. 

Since the sides of any Pythagorean triangle are given by u2 + v2, u2 -
v2, and 2uvs we now have a method for finding all Heronian triangles. 

Corollary 1. A triangle is Heronian if and only if its sides are given 
by either (3) u2 + v2, r2 + s2, and u2 - v2 + r2 - s2; where r s = uv; or 
(4) u2 + v2, r2 + s2, and 2(uv + rs); where r2 - s2 = u2 - v2; or (5) a r e -
duction by any constant factor in either case (3) or (4). 

3. Although the preceding theorem and its corollary give formulations 
for finding all Heronian triangles, there are many properties of Heronian t r i -
angles that are not obvious from examination of the special subset of right-
angled triangles. Some of these properties will be given here. 

Lemma 2. A primitive Heronian triangle is isosceles if and only if it 
has sides given by (3), (4), or (5) with r = u and s = v. 

Proof. Since a triangle is primitive only when one side is even, the 
equal sides of the isosceles triangle must be odd? say 2m + 1. Let the even 
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side be 2n. Then the s e m i p e r i m e t e r i s given by 2m + n + 1 and the a r e a , 

given by Eqe (1) becomes 

^f(2m"+ n + l ) ^ T T ^ T l J ( n j f o ) , 

so that 

A = n) / (2m + I) 2 - n2 . 

If th is i s to be an in teger , the re m u s t be an in teger Q such that 

(2m + I)2 - n2 = Q2 . 

Thus the number 2m + 1 i s the hypotenuse of a Pythagorean t r i ang l e , which 

m e a n s j of c o u r s e , that 2m + 1 i s a s given in Coro l l a ry 1. Converse ly , 

eve ry t r iangle desc r ibed by those formulae will be i s o s c e l e s if r = u and 

s = v. 

We note in p a r t i c u l a r that any number of the form 4n + 2 m a y be used 

a s the even side of a p r imi t ive i so sce l e s Heronian t r i ang le , by using s ides 

2n2 + 2n + 1, 2n2 + 2n + 1, and 4n + 2, We will show* in fact, that any in te -

ger g r e a t e r than two may be used as the side of a p r imi t ive non-r ight -angled 

Heronian t r iangle , Before we do, we shall es tab l i sh the following* 

L e m m a 39 No Heronian t r iangle has a side of e i ther 1 o r 20 

Proof, Since the s ides of the t r i angle m u s t be i n t e g e r s , the difference 

between two s ides i s e i the r 0 o r an in teger ^>1, This l a t t e r c a se would p r e -

clude the use of 1 a s a s ide . But an i sosce l e s t r iangle with side one i s also 

imposs ib le j s ince in that event , we m u s t have two s ides equal to 1, and hence 

the th i rd side e i the r 0 o r 2* Thus we have only to show that 2 cannot be used 

as the side of an Heronian t r i angle . Suppose, to the c o n t r a r y , that we do have 

a triangLe with s ides 2, a, and b, Then the a r e a as given by (1) i s 

A - \ s ( s - 2)(s - " a M s ^ T ) , 

where a + b + 2 = 2s , The only values of a and b which satisfy th is l a s t 

equation a r e a = b = s - 1. Thus the a r e a becomes 
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A = Vs(s - 2)(1)(1) 

and we m u s t have s(s - 2) = Q2 for some Q* But th is Is impossible* so we 

a r e donee 

Using the formulae for the s ides of a Pythagorean t r i ang le , It Is easy 

to show that eve ry in teger g r e a t e r than two can be used a s a side In a finite 

number of Pythagorean t r i ang le s . This observat ion has the following r e -

ma r k a b l e generalization,, 

Theorem 2a Le t a be an in teger g r e a t e r than twoe Then t h e r e ex i s t s 

an infinitude of p r imi t ive Heronian t r i ang les with one side of length ae 

Proof, If a i s odd* we m a y use s ides given by 

(6) a9 i ( a t - 1), and | ( a t + 1) 

where t i s a solution of the Pel l ian equation 

(7) t2 - (a2 - l)y2 = 1 . 

Since a2 - 1 i s even and neve r a perfect s q u a r e , Eq* (7) ha s an infinitude of 

solutions for t , each of them odd9 so that (6) l i s t s only Integers,, Since 

| ( a t - 1) + 1 = | ( a t + 1), 

the t r iangle i s obviously primitive* We compute the a r e a of the t r iangle by 

(1) and find 

A2 = | ( t + l ) a | ( t - l ) a | ( a + l ) | ( a - 1) = (f)2a2(a2 - l)( t2 - 1) . 

But, by Eq* (7), we have t2 - 1 = (a2 - l)y2 so that 

A2 = ( | ) 2a2(a2 - l)2y2 

and thus 

A = -g-(a - D ^ ( a + Day , 
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an integer, and hence the triangle is Heronian. 
Next, suppose that a is even, say a = 2n, where n is odd. Then 

we may use 

(8) a, tn - 2, and tn + 2 , 

where t is any odd solution of 

(9) t2 - (n2 - 4)y2 = 1 . 

Since n is odd, n2 - 4 is also odd and thus an infinitude of odd values of t 
is available. That (8) forms a primitive triangle is clear; we prove it is 
Heronian by computing 

A2 = (t + l)n(t - l)n(n + 2)(n - 2) = n2(n2 - 4)(t2 - 1) = n2(n2 - 4)2(y)2 

so that A is an integer, 
Lastly, suppose that a = 2n, where n is even. Then we may use 

(10) a, tn - 1, and tn + 1, 

where t is any solution of 

(11) t2 - (n2 - l)y2 = 1 . 

The proof follows the same lines as that just given. Thus our theorem is 
proven for all cases. 

It should be obvious that the formulations given in the above proof are 
simply chosen from an infinitude of possibilities. Thus we could also have 
shown, for example, that the triangle having sides 

a, ^-a(x - 1) + 1, 

and 
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~ a ( x + 1) - 1, 

where x i s found from 

x2 - (a - l )y2 - 1 , 

which will have an infinitude of solutions a s long a s a - 1 i s not a pe r fec t 

squa re , 

4 . We conclude with a few observa t ions and a shor t l i s t of examples., 

It i s easy to show that eve ry p r imi t ive Heronian t r iangle has exactly one even 

s ide . A s imple check of all the poss ib i l i t i e s obtained from the adjunction of 

two Pythagorean t r i ang l e s (which a r e known to have e i the r one o r t h r e e even 

sides) will suffice to p rove th i s . F r o m t h i s , we conclude tha t the a r e a of any 

Heronian. t r i ang le i s divis ible by 2, s ince , if s i s even, a factor of 2 divides 

A2 (and thus also A) whi le , if s i s odd, then s - a will be even where a 

i s an odd side of the t r i ang l e , and so again 2 divides the a r ea , 

Since the a r e a of any Pythagorean t r iangle i s given by 

A = uv(u - v)(u + v) 

i t i s easy to show that such a t r i ang le ha s a r e a divisible by t h r e e , A s imple 

ana lys i s of adjunctions and poss ib le reduct ions will then show that every 

Heronian t r iangle ha s a r e a divisible by t h r e e , 

Following i s a l i s t of the " f i r s t " few pr imi t ive (non-right-angled) He ron -

ian t r i ang le s : 

a = 3 b = 25 c = 26 

4 13 15 

5 5 6 

5 5 8 

5 29 30 
6 25 29 

7. 15 20 

8 29 35 
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a = 9 b = _10 c = 17
9 65 70
10 13 13

10 17 21
11 13 20
12 17 25
13 13 24
13 14 15
13 20 21
13 37 40
14 25 25
15 28 41
15 37 44
15 41 52
16 17 17
17 17 30
17
17 25 28
18 41 41
19 20 37
20 37 51
21 85 104
22 61 61
23 212 225
24 37 37
25 25 48
25 29 36
25 39 40
25 51 74
26 85 85
27 676 701
28 85 111
29 29 40
29 29 42

[Continued on page 5510 ]



PINEAPPLES MB FIBONACCI NUMBERS 
PHILIP B.ONDERDONK 

Philadelphia, Pennsylvania 19118 

In the book? Fibonacci and Lucas Numbers, by V. E. Hoggatt9 J r . § 

there is a paragraph mentioning the spiral curves on pineapples which makes 
reference to Mathematical Diversions by Hunter and Madachy (Princeton.s 

No J. , published by D. Van Nostrand Co„5 Inc., in 1963). Thus* parastichies 
on pineapples were known9 then9 sometime prior to 19638 

The author first became aware of the spiral curves and the agreement 
with Fibonacci numbers about 1951 upon reading an article in a magazine put 
out by the American Association for the Advancement of Science which per-
tained to Fibonacci Numbers. At that time* the author was working for the 
Maiu Pineapple Company, Kahului? Maui? Hawaii, and after reading this 
articles started checking pineapples. The vast majority of pineapples checked 
had 8 - 1 3 - 2 1 rows of fruitlets (eyes)« A few runts were 5 - 8 - 1 3 . 

Since a pineapple with more fruitlets for a given size would likely have 
a finer texture and would be better for eatings the author was interested in 
finding a pineapple with 13 - 21 - 34 rows. No such pineapples were ever 
found5 however. 

Giving evidence to the fact that numbers of spiral rows on pineapples 
were studied even earl ier , the Experiment Station of the Association of 
Hawaiian Pineapple Canners published an article on such a study as early as 
1933e The article by M. B. Linford was published in the Pineapple Quarterly, 
Vol. HI, No. 49 December 1933, pp. 185-195. It was entitled "Fruit Quality 
Studies n , Eye Number and Eye Weighty and mentioned the number of rows. 
of fruitlets on pineapples as basically 8 - 1 3 spirals, ranging from 5 - 8 - 1 3 
- 21 for the several types of spirals. The article did nots however, draw any 
connection between these numbers and the Fibonacci Numbers. 

Following is a quotation from a section of this article which had the 
headings MA Method of Estimating Eye Numbers. " 

"A Cayenne pineapple fruit of usable size consists of from 100 to 
200 fruitlets. This makes counting eyes in any large numbers of fruits 
both tedious and expensive. Where great precision is required there is 
no short cut* and when counts are made of very young inflorescences 
long before flowering the use of a low-power microscope is essentiaL 
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"For use where such precision is not required, however, the 
regular arrangement of eyes (fruitlets) suggested a method of estimat-
ing which is much more rapid. As may be seen in Figure 1, the fruit-
lets are aligned in two series of spirals, one rising to the right, the 
other to the left. One series of spirals is steep and is found, in Cayenne 
and at least some other varieties, to be composed of 13 separate rows 
of eyes. The other ser ies , less steep, is composed of 8 longer spirals. 
Various irregularities occur, but in examining many individual fruits 
over a period of two years , no specimen has yet been found in which 
the basic pattern was other than 8 and 13 spirals. It follows from this 
uniformity that a count of eyes in one spiral, multiplied by the number 
of similar spirals should yield a figure close to the actual number of 
eyes. Er ro rs are introduced by two factors: Some spirals have more 
eyes than others of the same fruit. In Figure lb some spirals contain 
11 eyes, some contain 12. Chance will determine which spiral is 
counted. Then as shown in Figure 2, irregularities may result in there 
being more or less than the regular number of spirals through part of 
the length of the fruit. By actual test, it has been determined that 
smaller e r rors result from counting the longer spiral and multiplying 
by 8, than from counting the short spiral and multiplying by 13. For 
this reason, the standard procedure adopted is to count the long spiral/ 
On some fruits, this ascends to the right of the observer, on some to 
the left. After a little practice, it is recognized readily as the less 
steep of the two spirals which bound the four sides of an eye, consider-
ing the eye as a square standing on one corner. In case of doubt, it is 
safest to verify the number of spirals before counting eyes. 

"Confusion may arise with extraordinarily small or large fruits 
from the fact that two other series of spirals may sometimes be recog-
nized. These include steep, nearly vertical spirals, of which there are 
21, and very flat spirals of which there are only 5. Thus the numbers 
of spirals of the several types are 5, 8, 13 and 21. The number of eyes 
counted in any spiral must be multiplied by the number of similar 
spirals. 

"In other plant parts where spiral patterns occur, chance alone 
usually determines whether the spiral winds to the right or to the left. 
This was tested for pineapples by recording direction of spirals along 
with eye number for a large number of fruits during seasin 1932. Re-
sults are shown in Table 1. If chance determines we should expect to 
find equal numbers of right and left patterns. Actually among 9,008 
fruits, right spirals were found 49.4 percent of the time, left spirals 
50.6. Only one of the lots shown in this table deviated markedly from 
the expectation, and the 24 separate plots in that group showed no agree-
ment among themselves; some had more left spirals and some more 
right. Chance alone seems to determine the direction of these spirals 
in the pineapple," 



THE POWERS OF THREE 
J. M. WILLIAMS, JR. 

San Francisco, California 

Any number may be expressed in powers of three by addition or sub-
traction of the numbers those powers represent. 

13 = 32 + 31 + 3° 
14 = 33 - 32 - 31 - 3° . 

The powers used in such expressions are whole integers* no fractional powers 
being involved. 

The number of terms required to express a number approximates twice 
the number of digits in the number; the greater the number of digits required 
the more closely this limit is approached. 

Any such expression of a number need contain no repetition of any given 
power. 

Such expressions are easily handled in arithmetic processes by obser-
vation of algebraic rules regarding exponents. 

Discussion of this digital system follows. 
It will be noted from Table 1 that the powers of three follow a routine 

sequence in the expressions for the numbers, appearing first behind the 
positive sigh, then changing to the negative sign, and then disappearing from 
the statement. 

The appearance of powers in the statements follows a fixed sequence: 
1. The power appears for the first time at a number equal to one-half of the 

value of that power with 1 added. 
2. It appears behind the positive sign. 
3. It remains in the statement, and behind the positive sign, for a series of 

statements equal in number to the value of that power of three. 
4. It then becomes negative in the following statement. 
5. It remains in the statement, and behind the negative sign, for a series of 

statements equal in number to the value of that power of three. 
6„ It then disappears in the following statement. 
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Number 

1 

2 
3 

4 

5 
8 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

THE POWERS OF THREE 

Table 1 

exp res sed in 

+ 

+ 

+ 

+ 

+ 

P o w e r s of Three 

3 3 

3 3 

3 3 

3 3 

33 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 
-

-

_ 

.. 

_ 

+ 

+ 

+ 

32 -

32 -

32 -

32 

32 

32 

32 + 

32 + 

32 + 

32 -

32 -

32 -

32 

3 2 

+ 3° 

3 1 - 3° 
3* 

3 1 + 3° 

3 1 - 3° 
3 1 

3 1 + 3° 

- 30 

+ 3° 

3 1 - 3° 

3 1 

3 1 + 3° 

3 1 - 3° 

31 

3 1 + 3° 

- 30 

7e It remains out of the statement for a series of statements equal in number 
to the value of that power of three* 

8« It then reappears in the statement., and behind the positive signs and r e -
peats the sequence outlined above without limit. 

Determination of the proper statement for any given number is out-
lined below* 

Determination of Statement 

1. Subtract 1 from the given number* 
2, Divide the remainder by 39 setting the quotient below the dividend and 

the remainder from the division to the rights whether this remainder be 
2, or 1, or 0S 
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3e If the r e m a i n d e r after division is 1 o r 2 p roceed as d i rec ted below, 

but whenever the r e m a i n d e r after division i s 0 i t i s n e c e s s a r y to sub-

t r a c t 1 from the quotient before proceeding to t r e a t i t a s a dividend, as 

below,, 

4* Divide again by 3 as d i rec ted in s tep 2, and continue th i s p r o c e s s until 

the dividend i s 0 with 0 r e m a i n d e r , watching throughout the p r o c e s s 

outlined in Step 30 

5e The column of r e m a i n d e r s 2 , o r 1, or 0, which have been se t to the 

r igh t i s now numbered , beginning at the top with 0 and proceeding with 

1 ? 2, 3 f e tc o s and ending with the highest number in the sequence opposite 

the final 0 remainder, . The n u m b e r s in th is sequence a r e the powers of 

t h r e e . 

60 Fixat ion of s igns for the va r ious p o w e r s , o r exclusion from the s t a tement , 

i s de te rmined by the r e m a i n d e r s : 

When the r e m a i n d e r i s 0 the sign i s positive,, 

When the r e m a i n d e r i s 1 the sign i s negative* 

When the r e m a i n d e r i s 2 the power i s excluded from the statement,, 

Demonst ra t ion of th i s p r o c e s s follows: 

Given number 6056 
- 1 

Divide by 3 6055 Power 
2018 with r e m a i n d e r 1 0 

672 " " 2 1 

224 " " 0 2 
- 1 

223 

74 » " 1 3 

24 " » 2 4 

8 " ,? 0 5 
- 1 

7 
2 n tt 1 6 

0 " " 2 7 
0 " " 0 8 
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Consider the s.equence thus, bottom to top:

Remainders: 0 2 1 0 2 1 0 2 1

Signs:

Powers:
+
8

+

6 5

+
3 2 o

Statement for the given number:

Proof of statement:
Positive powers:
Negative powers:
Given number:

6561 + 243 + 9

- 729 - 27 1

6813

-757

6056

For simplicity, in further discussion, the digit 3 will not be used in power
statements except when the exponent 3 is. required.. Statements will use

only the digits designating the powers. Treated thus the statement for 6056
would be written thus: 6056 equivalent, +8 -6 +5 -3 +2 -0..

ADDITION OF STATEMENTS

In handling two or more such statements arithmetically, it is almost
inevitable that there will be duplication of one or more of the powers. Con-
sider the ad'dition of the statements for the numbers two and three:

2 equivalent, +1-0
3 equivalent, +1

Addition of +1 to the statement gives +1 +1 -0.. This is re-written thus:
+2 -1 -9- The next higher power is given the sign of the duplicated power,
following it by the duplicated power with reversed sign; obviously 3 + 3 =
9 - 3.

When a power is triplicated, the next higher power is given the sign of
the triplicated power, which is then dropped from the statement., Consider
addition of the following statements:
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2 equivalent, +1 -0 
3 !? +1 
4 ?f +1 +0 
9 +2 

Note that the unlike signs calcelled and removed 0 power from the state-
ment for the sum8 

When the number of repetitions exceeds three, they can be eliminated 
step-wise by application of the processes outlined above,, 

SUBTRACTION OF STATEMENTS 

Subtraction is performed by changing the signs on all of the powers in 
the statement being subtracted and then performing addition as aboveL 

MULTIPLICATION OF STATEMENTS 

In performing multiplications the digits representing the powers are 
added irrespective of sign, and the signs follow algebraic rule: 

Multiplication of like signs yields the positive sign. 
Multiplication of unlike signs yields the negative sign,, 
Consider multiplication of statements for 13 and 14: 

14: +3 -2 -1 -0 
13 +2 +1 +0 

+3 -2 -1 -0 
+4 -3 -2 -1 

+5 -4 -3 -2 
+5 -4 +3 -2 +1 -0 

Consider the totalling of those products step-wise: 
1. The -0 comes down unchanged. 
2. The duplicated -1 becomes -2 +1 
3* The triplicated -2 becomes - 3 , with the -2 carried forward from 

Step 2 brought down unchanged. 
4, The duplicated -3 has been triplicated by the -3 carried forward from 

Step 3 so it becomes -4 and the +3 is brought down unchanged., 
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5. The unlike signs for 4 cancel so the -4 carried forward from Step 4 is 
brought down unchanged. 

6* The +5 is brought down unchanged. 
Proof of statements 

Positive powers? 243 + 27 + 3 = 273 
Negative powers? -81 -9 -1 = -91 

13 x 14 = 182 

DIVISION OF STATEMENTS 

This process brings another rule into play. Before stating the rule, 
consider these two te rms, + 4 - 3 and +3, the statements for 54 and 27. 
If these terms are added, the cancellation of unlike signs will leave +4, the 
statement for 81. If they are subtracted* the sign representing 27 would be 
changed. It would then be duplicated. After treatment for duplication, it 
would cancel the +4 and leave +3, the statement for 27. 

The rule in dividing power statements once more involves like and un-
like signs, but with an extra specification added? like or unlike signs of 
adjacent powers as in the case of the statement for 54. The rule: when 
adjacent powers in the dividend have unlike signs, the two powers must be 
considered as a duplication of the lower power, both with the sign of the higher 
power. This is a reversal of the rule for the additive process and is not un-
reasonable since division is a subtractive process. 

Demonstration of division will be the reverse of the example given for 
multiplication. The statement for 182 .is divided by the statement for 
below. The notes referenced are found on the following page. 

See Note 1 +2 +1 +0 
Rewritten 

Rewritten 

J +5 
+4 
-4 

+2 
- 4 
44 

+4 
+3 
- 3 

+1 
+3 
+3 
- 3 
- 3 
+3 

_ 

- 3 

+1 
- 2 
- 2 
- 2 
+2 
+2 
- 2 

- 2 

-0 
+1 
+1 

+1 
+1 
- 1 

- 1 

- 0 
- 0 

-0 
-0 

-0 

See Note 2 
See Note 3 
See Note 4 
See Note 5 
See Note 6 
See Note 7 
See Note 8 

2 -1 -0 See Note 9 
+2 +1 +0 See Note 10 
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Notes: 

1. In this case, ail the powers are both adjacent and unlike. The rule will 
be applied only to the leading pair, 

2. Rewritten giving the duplicated lower power the sign of the higher power. 
3. The +2 in the divisor, when subtracted from the +4 in the dividend, 

yields +2 for the quotient When the sign is changed for subtraction, 
cancellation will result. 

4. The duplicated -2 became -3 +2 and the +2 came down. Unlike signs 
for 3 cancelled and the -3 brought forward came down. The unaffect-
ed +4 came down, making this another case of unlike signs for adja-
cent powers. 

5. Rewritten as in Note 2. 
6. The +2 in the divisor, when subtracted from the +3 in the remainder, 

yields +1 for the quotient. When the sign is changed for subtraction, 
cancellation will result. 

7. Unlike signs cancel and +3 comes down with -0 . 
8. The +2 in the divisor, when subtracted from the +3 in the remainder, 

yields +1 for the quotient. When the sign is changed for subtraction, 
cancellation will result. The duplication of +1 in the quotient can be 
cared for after completion of the division. 

9. Unlike signs cancel, and unaffected terms come down. 
10. The +2 in the divisor now encounters -2 in the remainder. Disre-

garding signs, the 2 from 2 yields 0 for the quotient. Adding -0 to 
+2 will yield -2; when the sign is changed for subtraction, cancellation 
will result. 

The quotient reads +2 +1 +1 =0. There is duplication of +1. This is 
changed to +2 - 1 . This change duplicates +2. This is changed to +3 -2 . 
Now the corrected statement reads +3 -2 -1 - 0 , the power statement for 14. 

This is as far as I have investigated this curiosity with any success. 
Perhaps someone else can find a way to extract roots and raise to higher 
powers without simple multiplication. Decimal fractions can, of course, be 
handled by appropriate multiplication by powers of 10, as can uneven divi-
sions that result in significant remainders. 

I apologize for using the expression "negative powers" when values in-
volved are not reciprocals. This misuse was a short-cut through verbose 
explanation. 



SOME REMARKS ON THE ORDERING 
OF GENERAL FIBONACCI SEQUENCES 

JOE R. CRENSHAW 
Midwestern University, Wichita Falls, Texas 

In The Fibonacci Quarterly, Vol. 1, No. 4, December, 1963, Brother 
U. Alfred suggested a method whereby the general Fibonacci sequences 
could be ordered. The remarks of this paper are intended to supplement, 
rather than supplant, those of Brother Alfred. Another system of ordering 
is proposed herein. 

We shall obtain aganeral Fibonacci sequence by taking any two integers, 
a and b, and employing the relationship a + b « c. Utilizing the set of 
integers for indexing, with a = T and b = T - , and requiring that T < 
T + - , we may define the general sequence by using the recursive form: 

T + T » T 
n n+1 n+2 

To eliminate possible confusion, we adjust the indexing such that T0 is the 
smallest non-negative term of the sequence. 

It has been shown [1], and is easily verified, that when T0 is the 
smallest non-negative term of any general Fibonacci sequence, 

2T0 < T i ; 2 T n + 1 > T n + 2 , (n = 0, 1, 2, 3, •••) . 

Thus, while any two successive terms of a general Fibonacci sequence are 
sufficient to define the entire sequence, we should like to employ T0 and Tj. 
Hence, we have a unique representation of each general Fibonacci sequence, 
i. e. , 

(T 0 ,T i ) = T0 , T l f T2 , T 3 , T4, ••• . 

Attention is called to the fact that we do not require any two successive terms 
to be relatively prime and employ the single restriction that T0 be the s m a l -
lest non-negative term of the sequence. 

Since we now have a unique representation of each general Fibonacci 
sequence, one of the next logical steps would be to devise a method of ordering 
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the sequences. Such a method should be easy to apply, virtually by visual 
inspection. Given any representation of a general Fibonacci sequence, we 
immediately have the first two terms, the third term is a simple summation., 
and we can easily calculate the characteristic number, D, from the well-
known relation [2] 

T2j - T j T o - T2
0 = D . 

From these few properties we should like to accomplish the desired ordering 
of all general Fibonacci Sequences. 

Utilizing the property that each sequence has a unique characteristic 
number, D, Brother U. Alfred has suggested a method of arranging the 
general Fibonacci sequences with respect to the value of D. Where several 
sequences have the same D, the size of T0 becomes the second criterion. 
With the restriction that successive terms of the sequence be relatively prime, 
no doubt to eliminate multiples of a sequence, he suggests the following 
convention: 

D 

1 
5 

11 
19 
29 
31 
41 
55 

(To.Tj) 

(0,1) 
(1,3) 
(1,4), (2,5) 
(1,5), (3,7) 
(1,6), (4,9) 
(2,7), (3,8) 
(1,7), (5,11) 
(1,8), (6,13) 

Let S' , (n = 1, 2, 3, 4, • • • ) , denote the n sequence of the ordering, 
and we have 

S[ = (0 ,1 ) , SJ = (1 ,3) , SJ = (1 ,4) , SJ = (2 ,5 ) , SJ = (1 ,5 ) , 

Ŝ  = (3,7), S\ = (1,6), SJ = (4,9), SJ = (2,7), S'u = (3,8), ••• . 
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By dropping the restriction that any two successive terms be relatively 
prime, but retaining the same principle, we must then modify the above 
method as follows: 

D 

1 
4 
5 
9 
11 
16 
19 
20 
25 
29 
31 
36 
41 
44 
45 

(To 

(0,1) 
(0,2). 
(1,3) 
(0,3) 
(1,4), 
(0,4) 
(1,5), 
(2,6) 
(0,5) 
(1,6), 
(2,7), 
(0,6) 
(1,7), 
(2,8), 
(3,9) 

. Tj) 

(2,5) 

(3,7) 

(4,9) 
(3,8) 

(5,11) 
(4,10) 

Hence, we now have, with SM (n 
quence of the modified ordering 

Si' = (0,1), Sjf = (0,2), Ŝ ! = (1,3), S'i = (0,3), ST5 = (1,4), 

S'6f = (2,5), Si1 = (0,4), Si1' = (1,5), Sg = (3,7), Si?0 = (2,6), ••• . 

Let us examine three of the sequences, observing the above systems of 
ordering. 

S\ = Si3 = (4,9) = 4, 9, 13, 22, 35, 57, 92, • • • D = 29 

Sii = Sfi7 = (1,7) = 1, 7, 8, 15, 23, 38, 61, • • • D = 41 

Sf
12 = siT8 = (5,11) = 5, 11, 16, 27, 43, 69, 112, ••• D = 41 . 

Here note that there is no simple relationship between the k term of Sj 
and s! (or Sf.T and S") as compared to the relationship of i and j , thus 

1, 2, 3, 4, • • •) denoting the n se-
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eliminating one of the most desirable results we should like to have from a 
system of ordering* For example? Given S23 and S ^ is the k term of 
S23 smaller than the k term of sj5? 

Furthermore9 additional investigation has not revealed any simple r e -
th lation for comparing k terms of individual sequences using the readily 

available information we should like to use for an orderinga Thus it appears, 
at least for the present, we shall have to be content with a method of arrang-
ing the general Fibonacci sequences so that they maybe designated, or count-
ed , for example? 

Siofo = ( ? . ? ) or (237,475) = Sf
f . 

Utilizing a table of D!s up to a value of 1000, one finds, for D greater 
than 5, at least two sequences associated with each D* Occasionally, but 
without a recognizable pattern? four sequences are found to be associated 
with a particular D« Therefore, without extensive calculation or the aid of 
a lengthy table, we would not know how many sequences precede a sequence 
having a D in, for example, the lg000t000 region,, Hence, an ordering, 
using D as an index, becomes unwieldy with larger values of D, the char-
acteristic number of the sequence* 

With the above limitation in mind, an alternate proposal for ordering is 
presented herein* There is no noteworthy advantage claimed, other than the 
convenience of obtaining S or (T0,Ti) where large indices and/or initial 

n th 
terms are involved* Again, there is no simple relationship between the k th term of S. as compared to the k term of S.. 

Let us arrange the unique representation of each general Fibonacci se-
quence, (T0,Ti) , in an infinite matrix array in the following manner-

(0,1) 
(1,3) 
(2,5) 

(0,2) 
(1,4) 
(2,6) 

(0,3) 
(1,5) 
.(2,7) 

(0,4) 
(1,6) 
(2,8) 

(0,5) 
(1,7) 
(2,9) 

(3,23 + 1) (3,23+2) (j,2].+ 3) (3,23+4) (3,23 + 5) 
9, 

(3 = 0, 1, 2, 3, 4, ••• ) 
*See [5] and [6]. 
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Given the above display of general Fibonacci sequence representations, the 
remaining problem is that of choosing the system of ordering to be employed. 
Note that the representation is in the T0 + 1 row and the TA - 2T0 column. 
Two methods that might be considered are shown below, together with certain 
comments. Observe that the numbers in the following displays are those of 
the indexing set and only reflect the position of, or number assigned to, each 
general Fibonacci sequence. 

I. Diagonal Method 

1 
3 
6 
10 
15 
21 
28 

2 
5 
9 
14 
20 
27 

4 
8 
13 
19 
26 

7 
12 
18 
25 

11 
17 
24 

16 
23 

22 

There are several methods of associating the proper row and column of any 
given integer in the above display of positive integers, thus each reader is 
free to choose his own favorite scheme. Using the diagonal method of order-
ing, with S denoting the n sequence, we obtain 

si070 = (?> ?) = (34,80) 1070 appears in the 35th row and the 12th 
column. T0 + 1 = 35 and Tt - 2T0 = 12. 

(237,475) = S0 
~" 2̂8411 28411 is found in the 237 + 1 row and the 

475 - 2 x 237 column. 
Only a short calculation is required to obtain the desired information, n or 
S , or (T0,Ti) , when given the corresponding data. To retain consistency, 
the indexing set is the set of positive integers, (n = l , 2 , 3 , 4 , » » - ) « 

II. Modified Sides of Squares Method 
1 
3 
7 
13 
21 
31 
43 

2 
4 
8 
14 
22 
32 
44 

5 
6 
9 
15 
23 
33 
45 

10 
11 
12 
16 
24 
34 
46 

17 
18 
19 
20 
25 
35 
47 

26 
27 
28 
29 
30 
36 
48 

37 
38 
39 
40 
41 
42 
49 
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Again, the reader is free to use any one of several well-known methods of 
obtaining the row and column of a given integer, and we observe, with S 

th n 

denoting the n sequence of the ordering (n = 1, 2, 3, 4, • • • ) 

Si070 = (?»?) = (32,78) 1070 is in the 33 I U row and 
the 14th column,, 

(237,475) = S ? = S5640T The 238 m row and the 1 s t 

column is the position of 
56407. 

With regard to the two demonstrated methods of ordering, the diagonal 
is possibly a more elegant attack for it parallels that used to count other 
infinite matrix arrays. 

In conclusion, we have proposed another method of arranging or order-
ing the general Fibonacci sequences — the first being that as suggested by 
Brother U. Alfredo Undoubtedly, there are still others. As implied earl ier , 
this property of a unique representation of each general Fibonacci sequence 
demands the ultimate adoption of some system of ordering to assist the grow-
ing number of Fibonacci devotees. References 3 , 4 , 5 , and 6were added by 
the Editor. 
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THE EDUCATIONAL VALUE IN MATHEMATICS 
JOHN B. LEWIS 

Pasadena, California 

The educational value in mathematics is higher to the perceptive indi-
vidual than the manufacture of things and the mere solving of problems* 

I would like to offer a different approach to the significance of the 
Golden Ratio, It is for the purpose of making clear to the layman that beyond 
the useful pursuit of mathematics for its own sake (which is not an end in it-
self) lies the deep philosophic content, and a content that constitutes a very 
important ingredient of philosophy,, 

Plato1 s Divided Line and Euclid1 s Golden Section bear identical ratios. 
From Plato1 s exposition, we derive much of the philosophic content,, 

Let me begin by noting that the Creative Right Triangle of Pythagoras 
(3, 4, 5) is itself created by the encompassing environment of three Right 
Triangles whose perpendiculars bear the relation of 2 to 1. This type of right 
triangle will be termed, f!the Celestial Right Tr iangle / ' occupying three-
tenths of a Square* See Figure 1. 

From this locating a cosmic position for the creative triangle, it be-
comes immediately inviting to search for properties of the celestial triangle 
which may lead to many analogies,, 

We will have more to say about this illustration, which is replete with 
Fibonacci and Lucas numbers, as we unfold the picture. 

The location of the right angular point of the triangle illustrated in Fig-
1 lies exactly in the following distances from the boundaries of the square; 
South9 1; East9 2; West, 3; and North, 4 (which is 5 x 5). 

When the area of this square is "one," the area of the creative triangle 
is three-tenths j and as the cardinal numbers increase, the area of the crea-
tive triangle increases in the arithmetical progression of 0.3, 0.6, 0.9, etc. 

Therefore, the area of the creative triangle reaches identity with car-
dinal numbers at its intervals in the arithmetical progression of 10 when its 
area becomes 3, 6, 9, 12, etc. 

When the area of the square is expressed by cardinal numbers squared, 
the areas of the creative triangles increase by an increasing progression of 
4, 9, 16, 25, etc* The right triangle has sides 3, 4, 5 multiplied by \/E/2B 
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Fig. 1 The Celestial Right Triangle 

When the areas of the creative triangles reach our squared numbers, 
the encompassing square is ten-thirds of them; that i s , if the area of the c re -
ative triangle is 36, that square is 120. This indicates a series of Cosmic 
squares in the progression of 

10 , 20 , 30 53-1/3, 83-1/3, 
120 , 163-1/3, 213-1/3, 270 , 333-1/3, 
403-1/3, 480 , 563-1/3, 653-1/3, 750, etc. 

From Figure 1, this means that we have another Cosmic series of 
squares, formed with progressive side lengths of y/E9 2VB", 3V5, 4V5f 

etc. , when the square area becomes 
5 , 20 , 45 , 80 , 125, 180 , 245, 320 , 405 , 500, 605, 720, etc, 
The areas of the creative triangle are three-tenths of them, or, in the series 
of 6, 24, 54, 96* 150, 216, etc., and therefore in the increasing progression 
of 4, 9, 16, 25, etc. 
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In Figure 2, the point of Golden Section is determined at once by taking 
the difference between the length of the hypotenuse and the length of the great-
e r perpendicular, and adding this difference to the length of one-half of this 
perpendicular. 

Dr. Verner E. Hoggatt, J r . , in his book, Fibonacci and Lucas Num-
bers , ably explains the same situation by a different method of construction. 
The square thus divided into these ratio segments, yields in three dimen-
sions, 27 prisms to form the cube. Among them, only four have variant 
volumes. 

E 

D 

I ._ - _ _ I 
g- _ __,—_ — _ 

1 X] 

1 _ _ __j . 

r ~ - ^ * s ^ - - - -

Y ! 

1 1 

9<*° 

B 

DX = YC =•• 
V ^ + 3 

• = a DY = XC -1 
V5 + 1 

XY 

Line Lengths 

DC 

DA 
AC 

*AE 

AE 

**DE 

1 

= 1 

= 0.5 

= \ / 5 / 2 

= ^ 1 . 1 
2 X 

- V 5 - 2 
2 
1 

2 \ /5 + 4 
1 

2 \ / 5 + 4 

XY 
2 

- * • 
1 

2v^* + 4 

2 

1 + V 5 
- 1 = a 

_ - „-3 

V ^ + 2 

* Because the Hypotenuse AC minus the greater perpendicular DC equals XC. 
**:DE then becomes the length of the Golden Section, equal to DY and XC. 
Fig. 2 The point of Golden Section located by Simple Subtraction and Addition 
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In F igure 39 Pla to had a t e r m for the l ines EH and G F , which he 

ca l led , "the In te l l ig ib le ," 

G 

H 

fi 1? 

EG 
(EG) | X 

GH 

G 

EG X GH 

(EG) 

(GH) 

EG 
X 

GH 

(EG) 

H 
EG X GH 

(EG) 

Gf E ' 

Line Lengths 

AC = 

GH 

2 \ /5 + 4 

1 

\ / 5 + 2 

AB = 1 EC = 0.5 

CF = 

EG 

EH = 

V5 

\fE + 3 

2 The Golden 

\ / 5 + 1 Ratio 

A r e a s of Right T r i ang le s CEF and CDF a r e each 0.25, 

A r e a s of Golden Rectangles 

(EG)2 = 
3 ^ + 7 

2 

(EH)2 

GEGfG = 
3V5 + 7 

Cube of Intel l igence; 

GHH!Gf = 

\ / 5 + 3 

1 

ABFE 

\ / 5 + 2 
EEGG1 

V 5 + 1 

2 

GHHG 

^ 5 + 3 
EEHH1 = 

5V5 + 11 

2 

%/5+ 1 

\EH)3 = 
V 5 + 1 

Cube of Mathemat ics 

(GH)3 

17V5 + 38 
(GH)2 

4V5+9 
(EG)3 = 

4 \ / 5 + 9 

Fig . 3 I l lus t ra t ing the Segmented A r e a s and Volumes 
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It may be observed in Fig. 3 that the cube of the "intelligible" is com-
posed of eight pr isms, four only with variant volumes. Their volumes are: 

(EG)3 = - One 
4 V5 + 9 

(EG)2 X GH = - Three 

1 
4 V5 + 9 

2 
12V5 + 

2 
21V5 + 

1 

29 

47 
(GH)2 X EG = Three 

(GH)3 = = One 
17V5 + 38 

Plato termed the line GH, "Mathematics.ff 

This cube of the "intelligible" has eight positions upon the cube, with 
one important feature — that they all share in their construction the center 
cube, the cube of "mathematics. " 

These denominators each share numbers appearing in both the Fibonacci 
and Lucas series. 

The sum of these eight pr isms, that i s , the volume of the cube of the 
"intelligible," is 

-3 2 1 
a = = , 2V5 + 4 V5 + 2 

the differenceJ^etween £atios. 
Editorial Note: If 

1 + V5 
a = n

 v 

then 

L + F V5 n n n 
a = s : — 

thus, 
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8V5 + 18 13V5 + 29 2lV5 + 47 

(GH)3 = ~ A _ = a-* 
_____ ___ _ „ . _ ? _ ^ + 7 6 V. E. H. 

Glancing again at Fig„ 1, an illustration of the "birth" of the creative 
triangle, youmayhave noted that the number 1234 is not divisible by "eleven." 
See Fig* 4 and accompanying text. 

But? suppose we observe these distances in order of rotation We find 
they run as follows: 1243, . 1342, 2134, 2431, 4213, and 4312, 3124, 
3421, 

These quaternaries are divisible by 11, and the same holds good for 
the remaining possible forty* Figure 4 illustrates the potential of 48 out of 
144 combinations* 

The relative proportional areas in Fig* 5 are: - 1 , 4, 4, 6, 5, or 1, 
4, 4, 11. By rotating the triangle into its eight possible positions within the 
square, we obtain 24 points which coincide exactly with the points of inter-
section of perpendicular and horizontal lines within the square of 60 x 60. 

By plotting these points, we are provided with the center of the in-
scribed circle, at x = 0, y = 0; and by bisecting the triangle, we have the 
point, x = 0, y = 15 shown in Fig. 5. 

Upon making a plotted graph for each of the other triangular positions, 
the plotted values of the triangle are merely a matter of sign and number 
interchange. The inscribed circle will roll around the circumference of the 
circumscribed circle 5 x 0.5 times. The area of the circumscribed circle 
contains the area of the smaller circle 2.5 x 2.5 times,, Area of triangle BDP 
is 90. The area of triangle EOF is 20 and 5 / l l ths . Multiplying all areas by 
11 to clear denominator, we have a total area of xx c 1080 = 11,880. There-
fore, the 3,600 square units each enjoy an area of eleven. 

Such circumferences increase in the arithmetical progression of 
3.6X/5 x IT. 

Coefficients of\/5 Times Increased 
11.30976 
22.61952 
33.92928 
45.23904 
56.5488 
67.85856 

0.5 
1.0 
1.5 
2.0 
2*5 
3,0 
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This illustration gives the numerical evidence at a glance. Any four num-
bers taken in their rotary position of sequence within the same circle are 
divisible by eleven. These 48 numbers, out of a total of 144 possible com-
binations are unique in their divisibility by eleven. The remaining 96 are 
not exactly divisible by eleven. 

This chart is not intended to bear any idea of magic, but it does reveal an-
alogies to known Law. The causation of this law is shown in the previous 
pages. Philosophic research is just as rewarding as scientific research. 
"Ominia numeris sita sunt. " (All things lie veiled in numbers.) 

Fig. 4 The Number "Eleven" Chart 
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x = 0 
y : 

A \ x = 30 
= 30 

O 

^X 

' B 
~x = 6 
y = -18 

AREAS 
Quadr i l a t e ra l s 
A P E F 4725 
BDCE 765 

Tr iang les 
PCO 2475 POE 225 
COD 2475 FEE 1215 

Total of the six a r e a s i 11,800 

Fig. 5 The Number "Eleven" Char t 

Coefficients of V5 
37.6992 

56.5488 

94.248 

Inscribed Circumference 
12 X \/5~ X TT 

Increase 
18 X yjt) X TT 

Circumscribed Circumference 
30 X y/5 X IT 

F a c t o r s j 4 x 6 x 11 x 17 x 21 x 0.001 
= 94.248 
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The s u m s and produc ts of these quant i t ies yield two quant i t ies in both 

n u m e r a t o r s and denominators* 

Both Fibonacci and Lucas number s a r e r ep resen ted in these n u m e r a -

t o r s and denominators* 

This indicates the home of s p i r a l s making the dynamic symmet ry 

within the Golden Rectangles , 

The Dual Quanti t ies 

3 and 7 

4 and 9 

5 and 11 

13 and 29 

17 and 38 

21 and 47 

34 and 76 

55 and 123 

89 and 199 

89 and 398 

233 and 521 

1597 and 3571 

In the Process of Addition 
And Multiplication 

987 = (17 x 29) + (13 x 38) 
493 + 494 

1220 = (21 x 29) + (13 x 47) 
609 + 611 

2207 = (17V5 x 13VS) + (38 x 29) 
1105 + 1102 

2728 = (21 Vlf x 13\/5) + (29 x 47), 
1365 + 1363 

ERRATA 
P lea se make the following co r rec t ions in "Sums Involving Fibonacci 

N u m b e r s , " Vol. 7, No. 1, pp. 92-98: 

The f i rs t half of Eq. (3), l ine 3 , page 95, should read a s follows: 

X vJv,q) = 2 + 
pT - 2qT n - 1 

r=0 1 - p + q 
P l ea se make the following co r rec t ions in "Ident i t ies Involving Gene r -

al ized Fibonacci N u m b e r s / 1 Vol. 7, No. 1, pp. 66-72: 

Page 67 — P l e a s e c o r r e c t l ine 5 to read: ,, 
It i s a lso easy to see that H = pF + qF 1 where F is the n Fibonacci 

n n n—x n 
Page 69 — P lea se change the l a s t p a r t of the l a s t sentence of page to read: . . 
for the Fibonacci number s we get in the genera l ized Fibonacci n u m b e r s the 
identity: . . . 
Page 71 — P lea se c o r r e c t Eq. (26) to read a s follows: 

n 

x; HL-i 
r=l 

[<H!n - q3) + 3e(H 2n q>] 



CERTAIN ARITHMETICAL PROPERTIES OF y2k(ak± 1) 
JOSEPH ARKIN 

Spring Valley, New York 

Define 

A = 4 u ( a u - 1) and B„ = 4 u < a u + D » 
u ^ u & 

where a f 0 is a positive rational integer. 
In this paper, we discuss 

A + A = A, , B + B = B, , A A = A, and B B = B. , u v k u v k ' u v k u v k 

where the suffixes (u, v, k) are positive rational integers. In particular, 
we shall, for the first time, finally settle the question, and prove that if one 
solution of 

^u(au ± l ) |v(v ± 1) = - |Mk ± 1) 

exists for integral u, v, k, then an infinite number of other such solutions 
also exist. 

Theorem 1. If a. is an odd integer, then the suffixes are integers in 

(2 ) A-f (a2q2+(2a-l)q+2) = Aaq+1 + A-l(a2q2+2aq-q) ' 

and 

B-±(a2q2+(2a+l)q+2) B-f (a2q2+2aq+q) + aq+1 ' 

where q = 0 , 1 , 2 , • • • . 
Proofc The proof is immediate, using elementary algebra to show 

identities. 
Theorem 2. If 

(3) n = 4(a4q2 + (2a - l)aq + 2), m = a2q + 1, 

531 
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and 

w = (a(n2 + 1) - (n - 1) )/2a , 

then 

A = A - + A = A - A .., (with q = 0, 1, 2, •••) , n n-1 m w w-1 H 

where the suffixes are integers when a is an odd integer. 
Proof. In (2), we replace q with aq and then solve for w in 

A = ±a(n - 1) = |-(2aw - a - 1) = A - A - . n 2 2 w w-1 

We complete the proof by observing that w and n are integers when a. is 
odd. 

In the same way we got (3), we get the following: 
Corollary. If 

n = -f (a4q2 + (2a + l)aq + 2), m = a2q + 1, and w = (a(n2 + 1) + n - l) /2a , 

then 

B = B 1 + B = B - B - , (with q = 0, 1, 2, • • •) , n n-1 m w w-1 

where the suffixes are integers when a is an odd integer. 
Remark. It should be noted that R. T. Hansen, in a recent paper [ 1 ] , 

found solutions for the special case when a = 3 in (2), for the A sum, and 
in (3). 

We now discuss the paired products in the following: 

A A = A. and B B = B, , 
u v k u v k 

for integer suffixes (u, v, k). 

Theorem 3. If a is an odd integer, the Pell equation, 
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(4) K2 = 8ap2 + 8a + 1 

i s solvable in ra t ional in tege r s 9 and K + 1 and 2p2 + 1 = 0 (mod a ) , then 

in A A = A. , the suffixes (u, v$ k) a r e the following in tegers 

k = (2p2 + l)(2p3 + 2p2 + 2p + l ) / a , 

u = (2p2 + l)(2p2 + 2p + l ) / a , 
(4.1) 

and 

i 
v = (K + l ) / 2 a = (1 + (8ap2 + 8a + l ) T ) / 2 a . 

Proof. It i s evident (by e lementa ry means) that the ident i t ies in (4.1) 

balance the equation A A = A. . We complete the proof by noting that the 

congruences a r e self-evident in (4.1). 

Theorem 4. If a is an odd in teger , the Pe l l equation 

(5) K = 8ap2 + 8a + 1 

i s solvable in rat ional i n t e g e r s , and K - 1 and 4p2 + 3 = 0 (mod a) , then 

in B B = B. , the suffixes (u, v9 k) a r e the following in tegers 

k = (4p2 + 3)(4p5 + 4p4 + 5p3 + 3p2 + p ) / a , 

u = (4p2 + 3)(4p4 + 4p3 + 3p2 + p ) / a , 

(5.1) 

and 

v = (K - l ) / 2 a = (1 + (8ap2 + 8a + I)2 ) /2a . 

Proof. It i s evident (by e lementa ry means) that the ident i t ies in (5.1) 

balance the equation B B = B, . The congruences in (5.1) of a a r e self-
U V J£ 

evident. 

E u l e r [2 ] proved that if 
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(6) y2 - Ax2 = B 

i s solvable in i n t e g e r s , i t s solution r educes to the integrat ion of the equation 

y t + 2 - 2 m y t + 1 = 0 

in finite d i f ferences , the in tegral being 

y = (r + s ) / 2 , x = (r - s ) / (2(AF) , 

where 

r = (Y + X(A)^)(m + ntA)^)2 5"1, s = (Y - X(A)T)(m - n l A ) ^ ) 2 " 1 , 

Y ,X being the l eas t integral solutions of Y2 - AX2 = B , and m , n being 

the l ea s t integral solutions of m 2 - An2 = 1. This i s E u l e r f s theorem in 

changed notation. 

Theorem 5. If a i s an odd p r i m e , 

(7) K t , P t (t = 1, 2 , 3 , - . . ) 

a r e in teger solutions (where Kl 9 PA a r e the l e a s t in teger solutions) of 

</)(t) = K2 = 8 a P 2 + 8a + 1, 

and if the re ex i s t s a K. and a P . which a r e the l e a s t in teger solutions of 
3 j 9 

</)(t) such that K. + 1 = 0 (mod a) and 2P2 = - 1 (mod a ) , then the number 
of solutions of A A = A, a r e infinite for the following in teger suffixes u v k & & 
(u, v , k): 

k = (2P2 + 1)(2P? + 2P2 + 2P . + l ) / a , l i i l ' 

(7.1) 

u = (2P? + 1)(2P2 + 2P . + l ) / a , 

and 

v = OK. + l ) / 2 a = (1 + (8aP2 + 8a + l ) 2 ) / 2 a , 
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where i = j + w(a - l ) a (w = 0S l g 2 , •- e ) . 

ProoL Since K. , P . a r e i n t e g e r s , K. + 1 = 0 (mod a) and 2P? + 1 = 
— J J J J 

0 (mod a ) , then combining (7.1) with (4.1), it i s evident that the u, v, k in 
(7.1) a r e in t ege r s . 

Now j combining (6) with the equation 0(j) in (7), we wr i t e 

(K. + P.(8a)^)(m + n(8a)^)w a ( a™1 ) = K , -v^. + P . ^ . ( S a ) 2 " , 3 J wa(a- l )+] wa(a- l )+ j x 

(K. - P . (8aF) (m - n(SsF) R[ } = K , 1 U . - P , - .^-(Sa)2 , j J wa(a~l)+j wa(a- l )+ j x 

where a is an odd p r i m e and w = 0 s l 5 2 , a 8 O o 

In (6)3 it i s evident that (m,a) = 1, and s ince a i s an odd p r i m e 9 we 

have , by Fe rma t 1 s fami l ia r theorem (m, a a r e in tege r s with a an odd p r i m e , 
a -1 

(m, n) = 1, then m = 1 (mod a) ) 

(m ± n ( 8 a F ) w a ( a " 1 ) = 1 (mod a) , 

which leads to (in (8)), 

K. = K , ^Xx. (mod a) and P . = P , 1 U . , j wa(a- l )+] j wa(a~l)+j 

and we complete the proof by noting that these congruences satisfy the con-

dit ions of Theorem 5. 
Coro l l a ry 1. In (7), it i s a lmost immedia te that 

(9) 1 < j < a(a - 1) 

Since9 if j = sa(a - 1) + d (where 1 = d = a (a - 1) and a = 05 1, 2 , • • • ) , 

it i s evident that 

K / - v ,. = K / 1 W , \ , , = K , (mod a ) , wa(a- l )+j a(a-l)(w+s)+d d 

and 

P , -v , . = P / 1 W , \ , J = P J (mod a) wa(a- l )+j a(a-l)(w+s)+d d N 



536 CERTAIN ARITHMETICAL PROPERTIES OF |k (ak ± 1) [Dec. 

Corollary 2. If a is an odd prime, and 

K . - I s 0 (mod a) and 4P2 + 3 = 0 (mod a) , 

then the number of solutions of B B = B, are infinite for the following 
integer suffixes (u, v, k): 

k = (4P2 + 3)(4PJ| + 4Pi + 5Pj + 3 P | + P i ) / a , 

u = (4P* + 3)(4Pj + 4Pi + 3Pi + P ^ / a , 

and 

where 

and 

i 
v = (K. - l)/2a = (1 + (8aPi + 8a + l)T)/2a , 

i = j + wa(a - 1) (w = 0, 1, 2, • ••) , 

1 < j < a(a - 1) . 

We shall give one application in pentagonal numbers for infinite paired 
products in (7-7.1). 

In (7-7.1), let a - 3, then 

K2 = 24P2 + 25 and m2 = 24n2 + 1, 

where the first solutions are 

Kj = 7, Pj = 1, and m = 5, n = 1 . 

We then find that j = 4 and 6, so that i = 6w + 4 and 6w + 6, and we write 

(7 + (24)*)<5 + (24)^)6w+3 = (K4 + P4(24)^)(5 + (24)*)6w = K g w + 4 + P6 w + 4(24)*= r , 
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and 

( 7 - (24)*)(5- ( 2 4 ) * ) 6 w + 3 = (K4 - P4(24)*)(5- (24)*)6 w = K g w + 4 - P 6 w + 4 ( 2 4 ) * = s , 

so that (r + s ) /2 = Kfi + 4 and (r - s ) /2 = P g + 4 , In the same way, we 

find (r + s ) /2 = Kfi fi and (r - s ) /2 = P g . Then combining these r e -

sul ts with (6) and (7.1) 5 we conclude our application. 

REFERENCES 

lo R. T. Hansen, "Ar i thmet ic of Pentagonal N u m b e r s , " Fibonacci Q u a r -

t e r l y , Vol. 8, No. 2 (1970), pp. 83-87. 

2. L. E u l e r , Comm, Ar i th . Coll . , I , pp. 316-336. 

[Continued from page 475. ] 

4). Hence, if odd p r i m e p divides F 2 - 1 ? then p i s not of the form 4s + 

3 , thus proving Conjecture 2 of Dmi t r i Thoro .* The proof by Leonard Wein-

stein** came to my attention a t a l a t e r t ime and i s d is t inct f rom the above 

proof. 

* Dmi t r i T h o r o , "Two Fibonacci C o n j e c t u r e s , " Fibonacci Qua r t e r ly , Oct. 
1965, pp. 184-186. 

** Leonard Weinstein, " L e t t e r to the E d i t o r , " Fibonacci Quar t e r ly , Feb . 
1966, p . 88. ^ o - ^ o ^ 

ERRATA 

P l e a s e make the following co r rec t ions in ?Some Resul t s on Fibonacci 
Q u a t e r n i o n s , " Vol. 7, No. 2, pp. 201-210. 

Page 201 — The f i rs t displayed equation on the page should read: 
j2 = j2 = k2 = _ 1 ? y = _ji = k ; j k = _kj = i ; k i = _ i k = ^ 

Page 205 — Change the bracke ted p a r t of Eq. (27) to read : 

[ F r T 0 + F 2 r ( Q 0 " 3 k ) l • 
Page 208 — Change the f i rs t t e r m s of Eq. (74) to read: 

T F n+t n+r 



FIBONACCI NUMBERS 
AS PATHS OF A ROOK ON A CHESSBOARD 

EDWARD T. FRANKEL 
Schenectady, New York 

The purpose of this article is to show that Fibonacci numbers can be 
derived by enumerating the number of different routes of a rook from one 
corner of a chessboard to the opposite corner when the moves of the rook are 
limited by restrictive fences. 

Consider the chessboard array of binomial coefficients orfigurate num-
bers in Figo 1. It is well known that the number in any square or cell repre-
sents the number of different routes of a rook from the upper left corner to 
that cell, provided that the rook moves are either horizontal to the right or 
vertically downward.,* 

1 

1 

i 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

8 

1 

3 

6 

10 

15 

21 

28 

36 

1 

4 

10 

20 

35 

56 

84 

120 

1 

5 

15 

35 

70 

126 

210 

330 

1 

6 

21 

56 

126 

252 

462 

792 

1 

7 

28 

84 

210 

462 

924 

1716 

1 

8 

36 

120 

330 

792 

1716 

3432 

Fig* lo Number of Rook Paths from Corner of Chessboard 

Figure 2 shows the same chessboard array in standard combinatorial 
notation: 

( k ) = W k M h - k ) ! = ( h
h _ k ) • 

*EdouardLucas, Theorie des Nombres, Par i s , 1891, page 83. 
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(?) 

m 
(?) 

CO CO
 

(1) 
(?) 
(?) 
(?) 

(?) 
(?) 
II) 
(?) 
(?) 
(?) 
(?) 
(?) 

(?) 
(?) 
(1) 
(?) 
0 
(I) 
(?) 
(?) 

(?) 
( ! ) 

(5) 
(?) 
(I) 
(?) 
(?) 

(?) 

(J) 
(?) 
(?) 
(?) 
(?) 
(?) 

(?) 
(?) 

(?) 
(?) 
(?) 
(?) 
(?) 
(?) 
(?) 
(?) 

(?) 
(?) 
(?) 
(?) 

(?) 
(?) 
(?) 
(?) 

(?) 
(?) 
G) | 

(?) 
(?) 
(?) 
(?) 
(?) 

Fig. 2. Rook Pa ths in Combinator ial Notation 

F igure 3 shows a chessboard a r r a y where the moves of a rook a r e 

l imi ted by the indicated pa t t e rn of horizontal and ver t i ca l r e s t r i c t i v e fences. 

1 

1 

1 

2 

2 

1 

3 

5 

5 

3 

8 

13 

13 

8 

21 

34 

34 

21 

55 

89 

89 

55 

144 

233 

233 

144 

377 

610 

Fig . 3 Rook Pa ths Limi ted by Res t r ic t ive Fences 

The a r r a y begins with number one in the top left corner* Inasmuch a s the 

number in any cell i s the sum of the numbers immedia te ly above it and to the 

left of it5 the pa t te rn of r e s t r i c t i v e fences r e su l t s in the en t i re a r r a y being 

composed of Fibonacci n u m b e r s . 
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Figure 4 shows the chessboard with the same pattern of fences as in 
Fig. 3, but with the numbers in the Fibonacci notation where F0 = Ft = 1; 
F2 = 2; F3 = 3; and, in general, F. 

"n+2 
F _L1 + F . n+1 n 

1 F„ 
F0 

Fi 

F2 

F2 

Fi 

F3 

F4 

F4 

F3 

F5 

F6 

F6 

F5 

F7 

F8 

F8 

F7 

F9 
F10 

F10 

F9 

Fn 
F12 

Fi2 

F« 

F 1 3 J 

FU 

Fig. 4. Limited Rook Paths in Fibonacci Notation 
Comparing Fig. 4 with Fig. 2, it is noted that F0 corresponds to ( n J 

Il4t\ 
and Fj4 corresponds to 1 7 J. Comparing Fig. 3 with Fig. 1, we see that 
the number of Fibonacci rook paths from corner to corner is 610, whereas 
the number of unrestricted paths is 3432. The difference of 2822 must be the 
number of routes which are eliminated because of the restrictive fences. This 
can be verified by tabulating the effect of each restrictive fence as in the an-
alysis on the following page. 

To generalize, in a chessboard of (n + I)2 cells, the number of unre-
stricted rook paths from corner to corner is ( J , the number of Fibonacci 
rook paths is F 2 , and the number of paths that are eliminated by the pat-
tern of horizontal and vertical fences is 

(?) 2n * . ( 2 \ - 2 ) • ' . ( " % - 3 ) 

+ F 2n-6 

+ F 

(4s) 

Jt) 

+ 
+ F 2n-5 (S) 
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ANALYSIS OF ELIMINATED ROOK PATHS 
B 

Number of Fibonacci paths 
from origin to cells with 
fences 

Cells with horizontal 
fences 

Fo 

F2 

F4 

F e 

F8 

F10 

= 

= 

= 

= 

= 

= 

1 

2 

5 

13 

34 

89 

Cells with vertical 
fences 

Fi 

F3 

F 5 

F 7 

F9 

= 

= 

= 

= 

= 

1 

3 

8 

21 

55 

A x B 
Number of unrestricted 
rook paths from fence 
to lower right corner 

ra 
ra G) 
(t) 
it) 

to
 

to
 

= 792 

= 210 

= 56 

= 15 

4 

1 

Number of paths 
eliminated by 
fences 

792 

420 

280 

195 

136 

89 

Subtotal 

Total number of unrestricted paths •ft 

1912 

(?) - ™» 
( ! ) • " 

(I) • » 
( a • • 
( ! ) - * 

l iminated paths 

Ibonacc i p a t h s , 

Subtotal 

F ^ 

330 

262 

168 

105 

55 

910 

2822 
610 

3432 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P.HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

B-196 Proposed by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Let a0, a l 9 a2, • •• , and b 0 , b*, b 2 , s 8 8 be two sequences such that 

bn = ( S ) a n + (l)an-l + ©V2 + - + ( n ) a 0 n = 0, 1, 2, ••• 

Give the formula for a in terms of b , • •8 , bA . 
n n5 ' 0 

B-197 Proposed by Phil Maria, University of New Mexico, Albuquerque, New Mexico. 

Let the Pell Sequence be defined by P0 = 0, P4 = 1, and P 9 = 
2P - + P . Show that there is a sequence Q such that 

Pn+2k = QkPn+k " ("1} P n ' 

and give initial conditions and the recursion formula for Q . 

542 
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B-198 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let c be the coefficient of xtx2 •e e x in the expansion of 

(-Xj + X 2 + X3 + . - + X n ) ( x 1 - X2 + X3 + — + X n ) ( x 1 + X 2 -X8 + — +X n ) oe. 

(x1 + x2+x3 + — + x n « i - x n ) . 

For examples ct = - 1 , c2 = 2, c3 = -2 , c4 = 8, and c5 = 8B Show that 

c l 0 = nc ,- + 2(n + l)c , c = nc . + (-2) , n+2 n+1 n n n-1 s 

and 

-2 lim (c /nl) = e n —*- oo n / 

B-199 Proposed hy M. J. DeLeon, Florida Atlantic University, Boca Raton, Florida. 

Define the Fibonacci and Pell numbers by 

Fi = 1, F2 = 1, F ^ = F _,, + F n > 1 ; 
1 ' A $ n+2 n+1 n — 

Pi = 1, P2 = '2, P _,0 = 2P . + P n > 1 . 
1 s L $ n+2 n+1 n — 

Prove or disprove that Pg, < F- - , for k > 1. 

B-200 Proposed by M. J, DeLeon, Florida Atlantic University, Boca Raton, Florida. 

With the notation of B-199, prove or disprove that 

F l lk < P6k+1 f 0 r k * 1 • 

B-201 Proposed by Mel Most, Ridgefield Park, New Jersey. 

Given that a very large positive integer k is a term F in the Fib-
onacci Sequence, describe an operation on k that will indicate whether n 
is even or odd* 
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SOLUTIONS 
DOUBLING NEED NOT BE TROUBLING 

B-l 78 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

For all positive integers n show that 

F2n+2 - E ^ " V i + z" • 
i=l 

[Dec. 

and 

n 

2n+3 
F — = E 2 n " F 2 i + 2n+1 

i=l 

Generalize. 

Solution by Herta T. Freitag, Hollins, Virginia. 

Our generalization states that for all positive integers n and for all 
positive integers a 

<« E 2 " l F 2 i + (a-3) + 2X = F2n+a 
i=l 

The proof is by mathematical induction on n. 
Relationship (1), for n = 1, claims that 

F - + 2F = F ^ , a-1 a a+2 

which i s , indeed, the case 
Assuming that (1) holds for some positive integer, say k, we have: 
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k 

<2 ) Z ^S^a-S) + 2 \ = *2k+a • 
1=1 

To see if 
k+1 

i=l 

we recognize—on the basis of our assumption (2)—that the left side of (3) 
equals 

2 F2k+a + F2k+a-l 

whichj howeverj is seen to be the number F , + F~, - and, hence, 
F2k+a+2° 

This completes our proof by the principle of mathematical induetione 

The relationships stated in the problem now become special ases of 
our generalization (1), whereby a = 2 establishes the first, and a = 3 the 
second, of the two given formulas. 

Also solved by C. B. A. Peck, A. G. Shannon (T.P.N.G.), and the Proposer. 

A SURJECTION (NOT MONOTONIC) 

B-l 79 Based on Douglas Lind's Problem B-165. 

4. 
Let Z consist of the positive integers and let the function b from 

Z+ to Z+ be defined by b(l) = b(2) = 1, b(2k) = b(k), and b(2k + 1) = 
b(k + 1) +b(k) for k = 1, 2, e s o . Show that every positive integer m is 
a value of b(n) and that b(n + 1) > b(n) for all positive integers n. 

Solution 

Put 
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B(x) = J^ b(k)x] 

k=l 

k-1 

Then 

00 
2k-2 B(x) = J^ b(2k)x2k"1 + ] T b(2k - l)x: 

k-1 k=l 

00 00 

= £b(k) x2k_1 +1 + £ [b(k) * b(k + 1 ) ] x 2 k 

k=l k=l 

= xB(x2) + x2B(x2) + ] T b(k + l )x 2 k , 
k=0 

so that 

B(x) = (1 + x + x2)B(x2) 

It follows that 

B(x) = J ! (1 + x 2 n + *2 ) • 
n=0 

It is evident from this generating function that every positive integer m is a 
value of b(n). However, the statement b(n + 1) > b(n) is false: 

b(2k + 2) = b(k + 1) < b(k + 1) + b(k) = b(2k + 1) . 

For additional properties of b(k), see; ?fA Problem in Partitions Re-
lated to the Stirling Numbers / ' Bull. Amer. Math. Soc. , Vol. 70 (1964), pp. 
275-278; also: D. A. Lind, ffAn Extension of Stern1 s Diatomic Se r i e s / ' Duke 
Math. Journal, Vol. 36 (1969), pp. 53-60. 
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Outline 

Every positive integer m is a value of b(n) since 

m = b ( 2 m _ 1 + 1) . 

This is easily established by mathematical induction using the definition of 
b(n) and the fact that b(2n) = 1. 

BUNNY PATHS? 

B-180 Proposed by Reuben C. Drake, North Carolina A & T University, Greensboro, North Carolina. 

Enumerate the paths in the Cartesian plane from (0,0) to (n,0) that 
consist of directed line segments of the four following types: 

Type | 

Initial Point 

Te rmina l Point | 

j I 
(k,0) 

1 (k.l) 

II 

(k,0) 

(k + 1,0) 

III 

(k , l ) 
(k + 1,1) 

IV 

(k , l ) 
(k + 1,0) 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 

Let f(n) denote the total number of paths from (0,0) to (ns0)e Let 
f0(n) denote the number of paths ending with segment of Type II, and fj(n) 
the number ending with a segment of Type IV. Then we have 

f0(n + 1) = f0(n) + fi(n) = f(n) 

fi(n + 1) = f (0) + f(1) + • • • + f(n) . 

It follows that 

n 
f(n + 1) = f(n) + ^2 f(k) . 

k=0 

Put 
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00 

F(x) = J2 f(n)xn . 
n=0 

Then 

oo I n 
F(x) = 1 + J ] ]f(n) + J2 f(k)[xn 

n=0 I k=0 

= 1 + xF(x) + jX—Fix) , 

so that 

F(x) = * ~ X 

1 - 3x + x2 

Since 

CO 

n 
= I>2n X 

1 - 3x + x2 

n=0 

in the usual notation for Fibonacci numbers, it follows that 

f(n) = F„ 

Moreover, 

2n+l 

fo(n) = F ^ 

and 

f!(n) = F 1 + F8 + • • • + F 2 n _ 1 = F 2 n 

Also solved by G. J. Giaccai and the Proposer. 
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AN INFINITE MATRIX 
549 

B-181 Proposed by J. B. Roberts, Reed College, Portland, Oregon. 

Let m be a fixed in teger and l e t G - = 0, Gi = 1, G = G - + G ^ 
& - 1 * n n _ i n _2 

for n > 1. Show that GQS G , G2 , G . , • • • i s the sequence of upper 

left pr incipal m i n o r s of the infinite m a t r i x 

1 

G m - 2 

0 

0 

0 

1 

G 0 + G m - 2 m 

(-Dm 

0 

0 

0 

1 

G m - 2 + G m 

(-Dm 

0 

G m-

0 

0 

1 

• > + G -2 m 

(-Dm 

Solution by the Proposer. 

Expansion of the typical m i n o r M, , k > 2S by m e a n s of the e lements 

of i ts l a s t row j yields the r e c u r r e n c e re la t ion 

M. = (G o + G )M. - - ( - D M , Q k m»2 m k - 1 k-2 

Induction9 making use of the identity 

G = (G, 0 + G, )G , - (-1) G of n k-2 k n-k n-2k 

(itself eas i ly proved by induction), yields the conclusion, 

CONGRUENCES 

B-l 82 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

Show that for any p r i m e p and any in teger n9 

F = F F (mod p) and L = L L s L (mod p) np n p N F np n p n N ^ 
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Solution by the Proposer. 

We have , from Hardy and Wright , Theory of N u m b e r s , Oxford Univer -

si ty P r e s s , London, 1954, p0 150, that F - = 0 (mod p) and F = 1 (mod 

p) if p = ±1 (mod 5) and that F - = 0 (mod p) and F s - 1 (mod p) if 

p = ±2 (mod 5). The re fo re , L == 1 (mod p) for all p r i m e s p , the case 

p = 5 being c l ea r . 

F r o m I. D. Ruggles , MSome Fibonacci Resu l t s Using Fibonacci-Type 

Sequences,1 ' Fibonacci Quar t e r ly , Vol. 1, No. 2 (1963), p . 77, we have 

F _,_ = L F + (-1) F r+s s r r - s 

for all in tegers r and s. Let s = p , a p r i m e , and let r = np for an 

a r b i t r a r y in teger n„ Then 

F , ^-v = L F + ( - 1 ) P + 1 F / -v (n+l)p p np x (n-l)p 

so that 

F> ^-n = F + F / t\ (modp) (n+l)p np (n- l )p N ^ 

for any in teger n and any p r i m e p , the case p = 2 being c l ea r . S imi la r -

ly , we obtain 

L , , - v E L + L / - v (mod p) (n+l)p np (n-l)p v ^ 

for any in teger n and any p r i m e p , since L = F - + F ., for all i n t e -

g e r s m . Now, using induction on n , the proposi t ion i s t rue for n = 0, 1. 

Suppose F = F F (modp) for n = 0, 1, . . . , k with k > 0. Then 

F / i ^ i \ v , = F i + F / i i \ = F . F + F. - F (modp) . (k+l)p kp (k- l )p k p k - 1 p ^ 

Suppose F = F F (modp) for n = 1, 0, • • • , k with k > 1. Then 

F/, t\ = F/ f , - , - F. s F ,_ , -F - F. F = F. - F ( m o d p ) . (k- l )p (k+l)p kp k+1 p k p k - 1 p N F 
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Therefore5 the Fibonacci congruence relation is true for any prime p and 
any integer n8 The Lucas congruence relation can be proved by an argu-
ment similar to that given above. 

PALINDROME CUBES 

B-183 Proposed by GustavusJ. Simmons, Sandia Corporation, Albuquerque, New Mexico. 

A positive integer is a palindrome if its digits read the same forward 
or backward, The least positive integer n9 such that n2 is a palindrome 
but n is not? is 26e Let S be the set of n such that n3 is a palindrome 
but n is note Is S empty, finite, or infinite? 

Comment by the Proposer. 

Since 22013 is the palindrome 10662526601, S is not empty. This is 
all that is known about the set S* 

[Continued from page 506. ] 

a = 29 
30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

b = 35 

113 

97 

65 

34 

145 

73 

61 

37 

181 

41 

101 

c = 48 
113 

120 

65 

65 

145 

102 

65 

70 

181 

50 

101 
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KUNG, S. H. L. P rob l em Proposed: B-168 , Vol. 8, No. 3 , p. 328. P r o b -
lem Solved: B-168 , Vol. 8, No. 3 , p. 329. 

LEDIN, GEORGE, JR. P r o b l e m s Proposed: H-173 , Vol. 8, No. 4 , p. 383; 
H-147, Vol. 8, No. 4 , p . 387. P rob l em Solved: H-147, Vol. 8, No. 
4 , p. 389. 

LEONARD, H. T. , JR. P r o b l e m Proposed: H-141 , Vol. 8, No. 3 , p. 272 
(co-proposed by V. E. Hoggatt , J r . ) . 

LEWIS, JOHN B. "The Educational Value in M a t h e m a t i c s / 1 Vol. 8, No. 5, 
pp. 522-530. 

LIND, DOUGLAS. "A Fibonacci C i r c u l a n t , " Vol. 8, No. 5, pp. 449-455. 
P r o b l e m s Proposed: H-140, Vol. 8, No. 1, p . 81; B-179 (based on 
B-165) , Vol. 8, No. 1, p. 105; B-165 , Vol. 8, No. 1, p. I l l ; H-171 , 
Vol. 8, No. 3 , p. 268; H-145, Vol. 8, No. 4 , p. 386. P r o b l e m s 
Solved: H-140, Vol. 8, No. 1, p. 81; B-160 , Vol. 8, No. 1, p. 107; 
B - 1 6 1 , Vol. 8, No. 1, p. 107; B - 1 6 3 , Vol. 8, No. 1, p. 110; B-165 , 
Vol. 8, No. 1, p. 112; H-145, Vol. 8, No. 4 , p . 386; H-149, Vol. 8, 
No. 4 , p . 391. 

LINDSTROM, P E T E R A. P r o b l e m s Solved: B-163 , Vol. 8, No. 1, p. 110; 
B-167 , Vol. 8, No. 3 , p. 328; B-168 , Vol. 8, No. 3 , p. 329; B-172 , 
Vol. 8, No. 4 , p. 445; B - 1 7 3 , Vol. 8, No. 4 , p . 445; B-176 , Vol. 8, 
No. 4 , p. 448. 

LONDON, HYMIE. "Application of Recurs ive Sequences toDiophantine Equa-
t i o n s , " Vol. 8, No. 5, pp. 463-469 (co-au thors , Raphael Finkels te in 
and Edgar Ka r s t ) . 

LONG, C. T. "A Limited Ar i thmet ic on Simple Continued F r a c t i o n s , " Vol. 
8, No. 2, pp. 135-157 (co-author , J . H. Jordan) . 

LU, K. U. "The Smal les t Number with Div i sors a P roduc t of Dist inct 
P r i m e s , " Vol. 8, No. 4 , pp. 380-382. 

LYNCH, W. C. "The t -F ibonacc i Number s and Polyphase Sor t ing ," Vol. 8, 
No. 1, pp. 6-22. 

LYNN, BRUCE. P rob l em Solved: B-172 , Vol. 8, No. 4 , p . 445. 

MADACHY, JOSEPH. Ed i to r , "Recrea t iona l M a t h e m a t i c s , " Vol. 8, No. 4 , 
pp. 393-396. 

MAIER, EUGENE A. "One-One Cor respondences Between the set N of 

Pos i t ive In tegers and the Sets N n and U N n , " Vol. 8, No. 4 , pp. 
365-371. 
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MANA, PHIL. P r o b l e m s Proposed: B-163 , Vol. 8, No. 1, p. 110; B-189, 
Vol. 8, No. 3 , p . 326; B-170 , Vol. 8, No. 3 , p . 331; B - 1 7 1 , Vol. 
8, No. 3 , p. 333; B-194, Vol. 8, No. 4 , p. 444; B-176 , Vol. 8, No. 
4 , p . 44?; B-177, Vol. 8, No. 4 , p. 448; B-197 , Vol. 8, No. 55 p. 
542; B-198 , Vol. 8, No. 5, p. 543. P r o b l e m s Solved: B - 1 6 3 , Vol. 
8, No. 1, p. 110; B-167 , Vol. 8, No. 3 , p. 328; B-170 , Vol. 8, No. 
3 , p. 332; B - 1 7 1 , Vol. 8, No. 3 , p. 337; B-176 , Vol. 8, No. 4 , p . 
448; B-177 , Vol. 8, No. 4 , p . 448. 

MILSOM, JOHN W. P r o b l e m s Solved: B-160 , Vol. 8, No. 1, p . 107; B-168 , 
Vol. 8, No. 3 , p. 329; B-172 , Vol. 8, No. 4 , p . 445; B-173 , Vol. 8, 
No. 4 , p. 445; B-176 , Vol. 8, No. 4 , p. 448. 

MOORE, RICHARD E. M. "Mosaic Units: P a t t e r n S i z e s in Ancient M o s a i c s / ' 
Vol. 8, No. 3 , pp. 281-310. 

MOST, MEL. P r o b l e m s Proposed : B-174, Vol. 8, No. 4 , p. 445; B - 2 0 1 , 
Vol. 8, No. 5, p. 543. P r o b l e m Solved: B-174, Vol. 8, No. 4 , p. 446. 

ONDERDONK, Phil ip B. "P ineapples and Fibonacci N u m b e r s , " Vol. 8, No. 
5, pp. 507-508. 

PADILLA, GLORIA C. P r o b l e m s Proposed: B-172 , Vol. 8, No. 4 , p. 444, 
B - 1 7 3 , Vol. 8, No. 4 , p . 445. P r o b l e m s Solved: B-172 , Vol. 8, No. 
4 , p . 445; B-173 , Vol. 8, No. 4 , p . 445. 

PARBERRY, EDWARD A. "On P r i m e s and P s e u d o - P r i m e s Related to the 
Fibonacci Sequence ," Vol. 8, No. 1, pp. 49-60. 

PARKER, F . D. P rob lem Solved: B-170 , Vol. 8, No. 3 , p. 331. 

PECK, C. B. A. P r o b l e m s Solved: B-166 , Vol. 8, No. 3 , p. 327; B-167 , 
Vol. 8, No. 3 , p. 328; B-168 , Vol. 8, No. 3 , p . 329; B-170, Vol. 8, 
No. 3 , p. 332; B - 1 7 1 , Vol. 8, No. 3 , p. 334; H-150, Vol. 8, No. 4 , 
p . 392; B-172 , Vol. 8, No. 4 , p. 445; B - 1 7 3 , Vol. 8, No. 4 , p. 445; 
B-174 , Vol. 8, No. 4 , p . 446; B-175 , Vol. 8, No. 4 , p. 447; B-176 , 
Vol. 8, No. 4 , p. 448; B-177 , Vol. 8, No. 4 , p . 448. 

PHILLIPS, JOHN W. "Some Universal Coun te r example s , " :Vol. 8, No. 3 , 
pp. 242-248 (co-au thors , Nanette Cox and V. E . Hoggatt , J r . ) . 

POLLACK, RICHARD. "Recu r r ence F o r m u l a s , " Vol. 8, No. 1, pp. 4 -5 
(co-author , Joseph Arkin). 

RAMANNA, J. P r o b l e m Proposed: H-153 , Vol. 8, No. 5, p. 492. P r o b l e m 
Solved: H-153 , Vol. 8, No. 5, p . 492. 

READ, B. A. "Fibonacci Ser ies in the Solar S y s t e m , " Vol. 8, No. 4 , pp. 
428-438. 

RECKE, KLAUS-GUNTHER. P r o b l e m s Solved: B-172 , Vol. 8, No. 4 , p. 
445; B -173 , Vol. 8, No. 4 , p. 445; B-174 , Vol. 8, No. 4 , p. 446; 
B-175 , Vol. 8, No. 4 , p . 447; B-176 , Vol. 8, No. 4 , p. 448; B-177 , 
Vol. 8, No. 4 , p . 448. 

RENNIE, MICHAEL. P r o b l e m Solved: B-172 , Vol. 8, No. 4 , p . 445. 
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ROBERTS, J B. P r o b l e m s Proposed: B - 1 8 1 , Vol. 8, No. 1, p. 106; B - 1 8 1 , 
Vol. 8, No. 5, p. 549. P rob lem Solved: B - 1 8 1 , Vol. 8, No. 5, p. 549. 

SATLOW, GERALD. P r o b l e m s Solved: B-167, Vol. 8, No. 3, p. 328; 
B-172, Vol. 8, No. 4 , p. 445. 

SHANNON, A. G. P r o b l e m s Proposed: B-188 , Vol. 8, No. 3 , p . 326; B-167, 
Vol. 8, No. 3 , p. 328. P r o b l e m s Solved: B-160, Vol. 8, No. 1, p. 
107; B-163 , Vol. 8, No. 1, p. 110; H-141 , Vol. 8, No. 3, p. 275; 
H-143 , Vol. 8, No. 3 , p. 379; B-167, Vol. 8, No. 3 , p. 328; H-150, 
Vol. 8, No. 4 , p. 392; B-172, Vol. 8, No. 4 , p . 445; B-173 , Vol. 8, 
No. 4 , p. 445; B-174, Vol. 8, No. 4 , p. 446; B-175 , Vol. 8, No. 4 , 
p. 447; B-176, Vol. 8, No. 45 p . 448. 

SIELAFF, RICHARD W. P r o b l e m Solved: B-172, Vol. 8, No. 4S p . 445. 
SIMMONS, GUSTAVUS J . P r o b l e m s Proposed: B-183 , Vol. 8, No. 1, p . 106; 

B-183 , Vol. 8, No, 5, p. 551. Comment: B -183 , Vol. 8, No. 5, p. 
551. 

SINGMASTER, DAVE). "Some Counterexamples and P r o b l e m s on L inea r 
Recu r r ence R e l a t i o n s / 1 Vol. 8, No. 3 , pp. 264-267. 

SITGREAVES, ROSEDITH. "Some P r o p e r t i e s of Stirl ing Numbers of the 
Second K i n d , " Vol. 8, No. 2, pp. 172-181. 

SPICKERMAN, W. R. "A Note on Fibonacci Func t ions , " Vol. 8, No. 4 , pp. 
397-401. 

STOLARSKY, KENNETH B. "Infinitely Many Genera l iza t ions of Abe l ' s P a r -
tial Summation Ident i ty , " Vol. 8, No. 4 , pp. 375-379. 

SURYANARAYANA, D. "A T h e o r e m Concerning Odd Pe r fec t N u m b e r s , " 
Vol. 8, No. 4 , pp. 337-346 (co-author , P e t e r Hagis , J r . ) . 

SWAMY, M. N. S. P r o b l e m s Proposed : H-150, Vol. 8, No. 4 , p. 391; 
H-155 , Vol. 8, No. 5 , p. 497. P r o b l e m s Solved: H-150, Vol. 8, No. 
4 , p. 391; H-155 , Vol. 8, No. 5, p . 497. 

TRIGG, CHARLES W. P r o b l e m s Solved: B-172 , Vol. 8, No. 4 , p. 445; 
B-173 , Vol. 8, No. 4 , p. 445; B-174, Vol. 8, No. 4 , p . 446; B-176, 
Vol. 8, No. 4 , p. 448; B-177, Vol. 8, No. 4 , p. 448. 

UMANSKY, HARLAN L. " L e t t e r s to the E d i t o r , " Vol. 8, No. 1, pp. 88-89 
(co-author , David E. Ferguson) . 

WALL, CHARLES R. P r o b l e m s Proposed: H-143 , Vol. 8, No. 3 , p . 277; 
H-149, Vol. 8, No. 4 , p0 390. P r o b l e m s Solved: H-143 , Vol. 8, No. 
3 , p. 279; H-149, Vol. 8, No. 3 , p. 390. 

m WEINSHENK, R. J . "On Solving C _ ) _ = C , 1 + C + n byExpans ions and 
O p e r a t o r s , " Vol. 8, No. 1, pp. 39-48 (co-author , V. E. Hoggatt, J r . ) . 

WESSNER, JOHN. P r o b l e m s Solved: B-167, Vol. 8, No. 3 , p . 328; B-170, 
Vol. 8, No. 39 p. 332; B - 1 7 1 , Vol. 8, No. 3 , p . 334; B-172, Vol. 8, 
No. 4 , p. 445; B-174, Vol. 8, No. 4 , p9 446. 
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WHITNEY, RAYMOND E. Ed i to r of "Advanced P r o b l e m s and Solutions," 
Vol. 8, No. 1, pp . ' 74 -82 ; Vol. 8, No. 3 , pp. 268-279; Vol. 8, No. 
4 , pp. 383-392; Vol. 8, No. 5, pp. 487-498. "On a C las s of Difference 
E q u a t i o n s , " Vol. 8, No. 5, pp. 470-475. 

WILLIAMS, J . M. , JR. "The Power s of T h r e e , " Vol. 8, No. 5, pp. 509-
515. 

WULCYZN, GREGORY. P r o b l e m s Solved: B-160 , Vol. 8, No. 1, p . 107; 
B - 1 6 1 , Vol. 8, No. 1, p . 108; B-164 , Vol. 8, No. 1, p . I l l ; B-172, 
Vol. 8, No. 4 , p . 445; B-173 , Vol. 8, No. 4 , p . 445; B-175 , VoL 8, 
No. 4 , p . 447; B-176, Vol. 8, No. 4 , p . 448; B-177 , Vol. 8, No. 4 , 
p . 448. 

YALAVIGI, C. C. P r o b l e m s Proposed : B-169, Vol. 8, No. 3 , p. 329; 
H-176, Vol. 8, No,, 5, p. 448. P r o b l e m s Solved: B-169, Vol. 8, No. 
3 , p . 331. 

YAP, H. P . "A Simple Recu r r ence Relation on Fini te Abelian G r o u p s , " 
VoL 8, No. 3 , pp. 255-263. 

YODER, MICHAEL. P r o b l e m s Solved: H-137, Vol. 8, No. 1, p. 76; H-140, 
Vol. 8, No. 1, p. 82; B-160, Vol. 8, No. 1, p . 107; B - 1 6 1 , Vol. 8, 
No. 1, p . 108; B-162 , VoL 8, No. 1, p. 109; B-163 , VoL 8, No. 1, 
p . 110; B-164, Vol. 8, No. 1, p . I l l ; B-165 , VoL 8, No. 1, p . 112; 
H-143 , VoL 8, No, 3 , p . 279; H-144, VoL 8, No. 4 , p . 386; H-145 , 
VoL 8, No. 4 , p. 387; H-147, VoL 8, No. 3 , p . 389; H-149, Vol. 8, 
No. 3 , p . 391; H-150, Vol. 8, No. 3 , p . 392; B-172 , Vol. 8, No. 4 , 
p. 445; B-173 , Vol. 8, No. 4 , p . 445; B-174, Vol. 8, No. 1, p . 446; 
B-175 , VoL 8, No. 4 , p . 446; B-176 , VoL 8, No. 4 , p . 448; B-177 , 
VoL 8, No. 4 , p . 448. 

ZAREMBA, S. K. "A Remarkab le Lat t ice Generated by Fibonacci N u m b e r s , " 
VoL 8, No. 2, pp. 185-198. 

ZEITLIN, DAVID. "On Determinants Whose E lemen t s a r e P roduc t s of R e -
curs ive Sequences , " Vol. 8, No. 4 , pp. 350-359. P r o b l e m s Proposed : 
B-166. (suggested by solutions to B-148 , B-149 , and B-150), VoL 8, 
No. 3 , p. 326; B-195 , Vol. 8, No. 4 , p . 444; B-175 (composed from 
solution to B-155) , Vol. 8, No. 4 , p. 446. P r o b l e m s Solved: B-163 , 
Vol. 8, No. 1, p . 110; H - 1 4 1 , VoL 8, No. 3 , p . 273; H-143 , VoL 8, 
No. 3 , p. 277; B-166, VoL 8, No. 3, p. 327; B-170, Vol. 8, No. 3 , 
p. 332; B - 1 7 1 , Vol. 8, No. 3 , p . 334; H-147, Vol. 8, No. 4 , p . 388; 
B-173 , Vol. 8, No. 4 , p . 445; B-174, VoL 8, No. 4 , p . ' 446 ; B-175 , 
Vol. 8, No. 4 , p. 447; B-176, VoL 8, No. 4 , p . 447; B-177, VoL 8, 
No. 4 , p . 448; H-155 , VoL 8, No. 5, p. 498. 
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