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TWENTY-FOUR MASTER IDENTITIES 
V. E. HOGGATT, JR., JOHN W- PHILLIPS, and.H. T. LEONARD* JR. 

San Jose State College, San Jose, California 

1. INTRODUCTION 

The area of Fibonacci research is expanding and generalized9 and a 
large number of known identities have been listed in many articles in these 
pages and in the booklet [1]. Many new results and old will be summarized 
in the forthcoming Concordance; edited by George Ledin5 J r . , to appear in 
19718 Here, we generalize the results of John Halton [2]. Leonard in his 
thesis [3] also expanded upon this in several directions. David Zeitlin has 
promised an all-encompassing paper to follow upon this generalization theme. 

2. THE HILBERT TENTH PROBLEM 

In [4] Matijasevic proves Lemma 17: F2 | F iff F |r. At the end 
of the English translation, the translators suggest a sequence of lemmas 
leading to a simplified derivation. We now prove it in an even simpler way. 

Let 

1 + N/5 , fl 1 - N/5 a - _ ajid p = . — — 

then 

^ = aFm + Fm-1 «* t* = ^m + F m - 1 "m m-1 m 

Recall 

r n a - p 

then 
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_ _ « m r - ^ _ f , r ] F k F r - k (ak - pk) 
m r a - p £Q\ k / m m-1 a - p 

,*-i I k# m m-1 k k=0 

Next, F0 = 0, and F2 divides all terms for k > 2. Thus, 

F ^ S U 1F F ^ F - = rF FT~\ (mod F2 ) 
mr — \1 / m m-1 1 m m-1 v m 

Since (F w » F w n ) = 1, then the result follows easily. A similar result m m-1 J 

could have been derived from 

am = F ^ - pF and jS111 = F _,, - aF m+1 m ^ m+1 m 

3. THE DERIVATIONS 

Let ak = AFk+(. + BFk. Then, 

^ak = A ( c k + t - ^ + t ) + B ( a k - f) 

= critic? + P) - ^(AjS* + B) 

Therefore, 

is/5 = AoJ + B 

0 = AjS* + B , 

and 

A = ^/{a - &) = 1/Ft; B = - ^ A = - 0 * / ^ , 

and thus 

(1) F k + t = ^ F t + ^ k ' 
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Since k and t are arbitrary integers, we icnay interchange them: 

(2) F k + t = ^ F t + a \ . 

Equation (1) yields 

(3) JFl+t = J £ ( ^ " X ^ - V 1 = E(")(-wtlif'1i4
k
Q,t<n"f)"titJ' 

and, in a similar manner9 Eq. (2) gives us: 

(4) ^i+t = t [ " I Y - D ' X - 1 ^ ^ - ^ 

Substituting (4) for (3), and dividing by N/5 gives: 

<*> v^"?j°) , - i , F °" ' F ^(»- i ) - t i + J i=0 

while adding (3) and (4) results in 

(B) v»+t = t ^)(-^r<\^)-u+i 

We note that 

TT2 - 1 n 9( -n^n-D-ti+K 
Fk(n-i)-ti+j ~ 5 Uj2k(n-i)-2ti+2j ^ - i ; ' 

T 2 = T + ^ - • n k ( n " i ) " t i + j 

^kdi-D-ti+j ij2k(n-i)-2ti+2j AK x' 

and that 
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(5) 2 ( - l ) i [F 2 k ( - l ) t
 + F 2 t ^ . 

Substitute 2j, 2k, and 2t for j , k, and t in (B), and subtract (5) to 
get: 

We add the same equations to conclude that: 

L2JFS(k +t) + ^-^[^(-D* + F2t(-l)k]n = £ ( ^ ^ 4 ^ 0 1 - 1 ) -

These expressions may be simplified by observing that 

[F^-1)' + F2 t(- l)k]n = (-Dta[F2k + (-Dk-%tf , 

and that from the well-known identity 

L h F g = F
g + h + ( - 1 ) h F

g - h • 

it follows (by letting g = k + t and h = k - t) that 

F 2k + <-1 ) k _ t F2t = L k - t F k + t 

Thus 

( C ) L2jF2(k+t) _ 2 ( " 1 ) J + n F k + t L k - t _ 2 (1i)F2t l F l2kFk(n-i)-t i+j ' 
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and 

We rewrite (1) and (2) 9 using m in place of k: 

h = F ^ - j ^ F . and / F = F ^ - a m F, . . 
m m+t t ^ m m+t t 

Therefore, 

A ^ Z ^ - U - F " ^ 

and 

mh 
H m ^ \ h j v m+t t 

Multiplying the first equation by a and the second by p " , we 
get: 

m "°F» - & (i;)M>1,+,'-kv->t<j,"h-

and 

<" ^ - i i h i f - " " - * ^ ^ mh-n+kt 
h=0 
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We subtract (7) from (6) to get 

F Fk = T M(-D h+n-kt+lFk-h F h p 
,—Q i±±# m+t t mn-n+kt 

, = 0 |iif axx-.u u mh-n+kt 

or equivalently, 

Adding (6) and (7), we get: 

so vi - &(iV-»Mt<>>^t • 

or 

(-l)nL Fk = (-l)kt E (k)(-l)hFk-!lF?L n m A l | h Iv m+t t : , n , u , in• u «, mh-n+kt 
h=0 

Finally, we replace (-1) F with F_ ; (-1) L with L_ ; and -n with 
n to obtain: 

k 

(see [3]), and 
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As before, we observe that 

V2 = A (i 9( -i\mh+n+ktv 
mh+n+kt 5 v 2mn+2n+2kt 

that 

Lmh+n+kt L2mh+2n+2kt * 2(""1) 
mh+n+kt 

that 

k k 2w»°+kt[F2(m+tl * w i » \ ] - E (i) ^X£«A[*-»M>] 

and that 
,m+lT L u F = F _i_u + (-D F u => (with g = m + 2t; h = m):F 0 / ,. v + (-1) ' ~F0. = h g g+h N g-h & 2(m+t) v ' 2t 

L m+2t F m e 

We replace m,n and t in (F) with 2m, 2n and 2t and perform the obvious 
subtraction and addition to obtain: 

«• v L - «-«^4*< - »g(J) <-»"«,*,*> 2 
mh+n+kt J 

and 

® v L - 2<-»n*XUt4 - £ (h) <-»M£+,>^ 2 
i—n %"# «v"±.w «u mh+n+kt 
h=0 

m Starting with a = AF +. + BL . 
By a procedure identical with that used to obtain (1) and (2), we get: 

(8) a m L. = N/5F _,, + /^L , 
k v m+k r m ? 
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and 

(9) i ^ L , = - N / 5 F ^ + tfL , 
k m+k m 

which lead to 

do, «n"X-i|(°)^1"UC','ik,n"^ 

and 

01) ^ ' L " . £ (°)(-l.1^'Fii4kL-'<,«»-V 
1=0 * r 

Subtracting (11) from (10) and dividing by N/5 gives 

W * - ̂ g (^^1-14+^"'^,°"""J - M>'«k<"-iH] 

or 

v Tn - MJ+1 ^V^fM^F 2 1 Tn"2iF 
^mn+Tk _ ( _ 1 ) £ £ l 2 i / 5 F m+k L m Fk(n-2i)-j 

0) 

\—1 
j to \2i + l ) m+k m Lk(n-2i- l)- j 

and adding (10) and (11) yields: 
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o r 

• rn/21 a . . 0 . 
T n _ , 1 g L ^ J n \ 1 2i T n -2 i 

V j L k " l"1} i j \2i)5rm-*kljm Lk(n-2i)-j 
(J) 

+ (• j + l L y , J / n \ i 2i+l T n - 2 i - l 
1} £* U i + l p m+kLm *k(n-2i-l)-J 

and 

Equations (8) and (9) may be rewr i t t en : 

v m+k k m 

N / 5 F _,_, = -jS^L. + aL v m+k ^ k m 

which give 

(12) «> ^ + k = £ ( M ( - l / L ^ L J ^ ^ V 1 

i=0 V f 

and 

<» *• ̂ x , * - s (. )(-i»"-i
Lri^H'!m(,,-I)+) 

1=0 * f 

Adding (12) and (13), we get: 
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V5nYm+k = t (*)(~l)(k+1\-^^ , 

which, in turn, provides 

2n ^v J i „2n _ y . I2n l , ,(k+l)i 2n-i i 
^ 5 L j F m+k ~ £* [i p-1' L k LmLm(2n-i)-ki+j 

and 

n ) .n „2n+l _ 2 ^ 1 / 2 n + l \ , ,(k+l)i 2n+l-i i 
(L) 5 L . F m + k - 2 - \ i / ( - D L k

 LmFm(2n+l-i)-ki+j 

We subtract (13) from (12) to get: 

from which we get 2n 

and 

/lvn _n+l_ ^2n+l 2 £ i 1 /2n + l \ , n,(k+l)iT 2n+l-iT i T 
( N ) 5 F j F m + k = L [ i J (-« \ LmLm(2n+l-i)-ki+j 

Once again, we note that 
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<M) - 1 (f)(-»lL2ri4mt<-»m(2°-1,-kl+)] 
In (K), we let j , k9 and m be replaced by 2j9 2k, and 2m and 

tract (M): 
5V2U>-2 (-1>J[L«-- ,-1 , k~m L- 12n 

<15> 2„ 
2j 2(m+k) v ' L 2k l ' 2mJ 

= 6|(2°)<-1,lLS"i4A«2»-1,-, i = 0 \ * i — — xxxX^-A/-ki+j 

The cor responding addition provides 

(16) 
J2j 2(m+k) 

2n 

- s (?) 
i=0 l x # 

, 1 vi 2n-i i T 2 
l -U i , 2 k ^ 2 m m(m-i) -k i+j 

Since 

__ _, , k+m Ji+niw k - m i - m , 
5Fk+mFk=m = {a - r )</* - r ) 

= « 2 k - ( a ^ ) k - m ( a 2 n
 + ^ m ) + ^ k , 

o r 

<17> 5 F k + m F k - m = L 2k " ( - 1 ) k _ m L 2 m • 

we can r ewr i t e (15) and (16): 

n - 1 2n 2 ^ 2 n " 1 ( l)h2n F 2 n 

5 L 2 j F 2 (m+k) " 2 5 (~1 } F k + m F k - m 
2n (P) _ y - f 2 n \ , , i 2n- i i 2 

~ f^ V i lK'1} ^2k ^ m m(2n-i)-ki+j ' 

and 

5nT F 2 n + 2 - 5 2 n ( - l ) j F 2 a F 2 n 

5 L 2 j F 2 (m+k) + 2 5 { 1} * k+m1' k - m 
<Q> 2n „ _ f i / 2 n \ , i 2n-i i 2 

~ itS I i J*-1' L2k L2mLm(2k-i)-ki+j 
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We next observe that 

2(-l)^[L2k - (-Dk-mL2J2n+1 

= i f (2ni+ ^(-l)^4 1-^^-!)"1^1-"-^] 

and again we employ (17) and treat (N) as we did (K) to conclude 

(R) 
5a+1F9.Flf+1., + 2 . 5 2 n + 1 ( - l ) m + J F 2 f 1 F ^ n + 1 

2j 2 (m+k) ' k+m k-m 
2n+l £T /2n + l \ , -v i^n+l -L- i T 2 
j jg I i / l ' 2k ^2ni m(2n+l-i)-ki+j 

and 

(S) 

-1§1(Vl)t-«1i^1X.l i£* \ i / v " 7 2k 2m m(2n+l-i)-ki+j 

Starting with 

(18) am = AL . + BL 
m+k m 

we get 

m+k v k K m 

Interchanging variables does not produce a second useful equation. However, 

(19) tf00- = AfL ^ + B!L 
r m+k m 

yields 
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m+k k m 

Proceeding as usual, we get 

and 

^Lm+k = t ( " K I ^ W L ^ ^ - ^ 

Adding, 

L.Ln , = V (^)(-l)ml^1L1I-iFI
ir(-l)iJt ( ,1- i )-m1^ + ^(n-D-mi+jl j m+k ^ Q \ i / m k L J 

or equivalently, 

C ^ 2 ] / n \ - i T n -2L T T n L / J # n \ I n-2i.c,2iT 
L j L

m + k = £ U ) 5 L m FkL: 
(T) 

[—1 ,m L A J / n \ i+1 n-2i-l 2i+l 
t-1' -L \ 2 i + lJb m *k *k(n-2i-l)-m(2i+l)H 

and subtracting, 

^FjLm+k = t (^ ( - l^^^F^f - l ) 1 ^^-^-^ 1 1 - 1 ) -^ ] 
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or 

n _ in/%] i n \ i 11-21^21^ 
FjLm+k " . |g l i | 5 L m JjkJJk(n-2i)-m(2i)+j 

( U ) r i 

M v i n L f - ' / n \ i t-n-2i-l1?2i+lT 
j to \ 2 i + l J 5 m V l jk(n-2i-l)-m(2i+l)+j 

We rewrite (18) and (19) and proceed as before: 

L ak = L ^ + /s/5BmF. m m+k k 

and 

L p = L ^ - N/5ofmF. nr m+k k 

yield 

akn+JLn = f |n\ J ^ i n-i î mi-J 
m ^ \ I I m+k k̂  

and 

1=0 % * 

We add, to give 

Lkn+) )L» - '-1'1 § ("KC^t1"1-1 • <-«'«"""'] 
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or 

^ + J c = ^ j [ f ] ( 2
n i )^ tx% m H 

+ ( i)i+i T i n W + 1 T n " 2 i - V i + 1 F 
( ' h l2i + l j 5 Lm+k Fk Fm(2i+l)-j i=0 

and subtract, for 

• ^ W m " | (" l ' - 1 '^ '^^^'" 1 " <-»'«°"")] 

or 

Fkn+jLm " ( _ 1 ) 3 + §. (Sl^m+k^^mi-j i=0 
(W) 

.Tn \ 2 i + l / m+k k m(2i+l ) - j i=0 

3, EXTENSION TO FIBONACCI AND LUCAS POLYNOMIALS 

The Fibonacci polynomials ( f ( x )} are defined by: 

fife) = 1; f2(x) = x; fn+2(x) = xfn+1(x) + y x ) . 

The Lucas polynomials are similarly defined: 

it(x) = x; l2(x) = X2 + 2; ^ ( x ) = x*n+1<x) + ^(x) . 
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Let At and A2 be the roots of A2 = xA + 1; 

At(x) = ±{x + Wx2 + 4); A2(x) = ±(x - ^x2 + 4) . 

It is easily verified that: 

fn(x) = <A?(x) - \f(x))/(X1(x) -A2(x)) 

and 

£n(x) = An(x) + An(x) . 

In view of the striking similarities between the Binet forms of the Fib-
onacci and Lucas polynomials, and the corresponding forms for the Fibonacci 
and Lucas sequences, it is nardly surprising that there exists an identity in-
volving Ai(x), A2(x), f (x) and It (x) paralleling each identity involving 
a9 jS, F , and L . For example, corresponding to (A), we get: 

(19-) f.Wf^x) = ± («](-l)tifJ-V)((x)fkn+..M).(x) , 

and, corresponding to (E), we have: 

(E.) fn(x)f> = <-l)kt J ) (J) (-Dht^(x)fmn+n+kt(x) 

In fact, the identities (A) through (W) are special cases of the Fibonacci-Lucas 
polynomial identities, obtained by setting x = 1. 

One observes that f (2) obeys: C , 0 = 2C ,- + C ; C0 = 0, Ci = 1. 
n TL*£t n+x n 

This sequence is the Pell sequence. Since 

L (x) 
XT 

= f _,_- (X) + f - (X) , 
n+ l v n - l v 



1971] TWENTY-FOUR MASTER IDENTITIES 17 

one can define 

I (2) = C* = C ^ + C -nN n n+1 n - 1 

to make complete substitutions in identities (A)-(W). 

4. A FURTHER EXTENSION 

Let gn(x) obey gn+2(x) = xgn+1(x) ~ gR(x); g0(x) = 0; gl(x) = 1. 
Then 

gn(x) = l / ( ^x 2 + 4}{[(x + N/X2 + 4 ) /2 ] n - [(x - N/-X? + 4) /2] n } 

= (A? - X?)/(Ai ~ A2) , 

where A* and A2 are roots of A2 - xA + 1 = 0. Also, let 

\ ( x ) = A? + Af = gn+1(x) - g ^ W . 

These sequences of polynomials are simply related to the Chebychev poly-
nomials of the first and second kind. 

REFERENCES 

18 Verner E. Hoggatt, J r . , Fibonacci and Lucas Numbers, Houghton Mifflin, 
Boston, 1969. 

2. H. T„ Leonard, J r 9 , "Fibonacci and Lucas Number Identities and Generating 
Functions," San Jose State College Master 's Thesis, January, 1969. 

3. John H. Halton, "On a General Fibonacci Identity," Fibonacci Quarterly, 
February 1965, pp. 31-43. 

4. Yu V. Matijasevic', "Enumerable Sets are Diophantine," Proceedings of 
the Academy of Sciences of the USSR, Vol. 11 (1970), No. 2. 



FIBONACCI NUMBERS AND EULERIAN POLYNOMIALS 
W. A. AL-SALAM and A. VERMA 

University of Alberta, Edmonton, Canada 

Given a sequence of numbers {^0, xi9 • ••} one can define a linear 
operator on n , the set; of all polynomials, by means of the symbolic relation 

(1) Ax11 = {x + A)n n = 0, 1, 2, ••• , 

n k 
where it is understood that after expanding (x + A) , we replace A by A, • 
This operator can also be represented on n by a differential operator of in-
finite order. Indeed, one can show that if 

oo x 
(2) A = £ • -J l Dn D = d/dx , 

n=0 

then 

Af(x) = f(x + A) f € O 

A third representation of this operator can be obtained using a well-
known theorem of Boas [2 ] , Given any sequence of numbers AQ» At, A2, 
we can find a function of a(t) of bounded variation on (0,°°) such that 

\ = f tnda(t) , 

so that 

(3) Af(x) = f f(x + t)da(t) f e n . 

18 
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We shall refer to the sequence AQ, A*, A2l
 9 0 s as the sequence of 

moments corresponding to the operator A* 
Naturally5 all the representations (1), (2), and (3) are valid (and define 

the same operator) on IT. However, we can extend the definition formally to 
functions with power series expansion. 

In this note9 we are interested in a class of "mean operators" defined 
by 

(4) Mf(x) = jt*f(x + cj) + (1 - ju)f(x + c2) , 

where /n, cl 9 c2 are given numbers. Obviously, M takes polynomials into 
polynomials of the same degree. 

To determine the corresponding moments, we note that 

Mx° = |o(i;)x»-Vc^a-,)ch = | o (£)*"-k m k , 

so that 

n n 
m = JLICJ + (1 - JU)C2 n = 0, 1, 2, 

It is easy to verify that 

(5) m n + 1 = (ct + c2)mn - c ^ m ^ n = 1, 2, 

m 0 = 1 , mt = jLtCj + (1 - / i )c 2 

To find the inverse operator M , put 

m.7 , k ^k (6) M"1 = E -W D1 

k=0 Ks 

Then M Mx11 = x11 for all n imply that 
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(7) &GM- = 0 (if j > 0) and 1 (if j = 0) 

Thus, if we multiply (7) by t /nS and sum over all integers n > 0, we get 

[ °° m. . I f 0 0 m? 

k=0 R* J U=0 R ' 
1 , 

so that 

°o m? . -
E k , k _ _̂  1 
i A kl cit , ,_. x c?t k-0 jie l + (1 - jii)e L 

If we recall the Eulerian polynomials [1] defined by means of 

l ^ A . e * = E H (x|A)tn/m 
ev - A n=0 n 

then we see that 

m = (co - c n L 1 n \ C i - c2 I /i - 1 / 

Thus the operator inverse to the operator (1) is given by 

(8) M 
. °° (c? - c-j) / c-j 1 \ 
1 = £ H ( •- M-TJD1 1 

^ 0 n! n \ C l - c2 | \x - 1 / 

In particular, if we take /i = 1/2, ct = (1 + N / 5 ) / 2 , C 2 = (1 - \/5)/2 
in the above, we see that m = F -. Thus the Fibonacci numbers F - , 
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n = 0, 15 2S • • • a r e the momen t s cor responding to the mean ope ra to r 

6*0 -J f j ( x + | + ^ ) + f ( x . | . f ) j 
(9) 

oo Y 

E n+1 ^n e/ v 
n ST D f(x) 

n=0 

If we note that H (x|—l) = E (x), the Eu le r polynomials genera ted by 

2 e x t 

efc
 + 1 

we find that the operator inverse to 8 i s 

, n / 2 -1-= !„<-»" ̂ „ ( ^ K f(x) 
Ay/5 

The moment s cor responding to 5 a r e the number s 

( _ 1 ) n 5 n / 2 E / 1 _ W 5 \ n = 0 , 1 , 2 , . . . . 
n \ 2^5 / 

Another special case i s when p = 1 /2 , c t = 0, c2 = 1. We get that 

Ao = 1. A. = 1/2 (k > 0) are the moments of the operator 

(10) 8 f(x) = \ (f(x) + f(x + 1)} . 

The moments of 8 have, therefore, the generating relation 

1 + e n=0 
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and thus 

B 
A*0 = 1, A; = (1 - 2n) -± (n> 1) , 

where B are the Bernoulli numbers. 
Similarly, if we consider another mean operator, namely, 

n-1 
(11) Lf(x) = i £ f<x + k h > > 

n k=0 

we see that the moments corresponding to L are the numbers 

, m n-1 , m ( B ^ (n) - B ^) 
O - i o _ h v^ i m _ h I m+1 m+lf 
0 - 1 9 m " — ̂ 0

 k " "5" j " 5 m f ' 

where B (x) are the Bernoulli polynomials and B = B (0). m ^ J m m ' 
The moments corresponding to the inverse operator L are 

£* = hm g /m\ \ _ Qk = . 
m jf̂ Q I k I m - k + 1 
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COMPOSITION OF <t>3 (X) MODULO m 
SISTER CHR1STELLE THEUSCH 

Dominican College, Racine, Wisconsin 

1. INTRODUCTION 

In an earlier issue of this quarterly, Cohn* investigated the value of 
the residues modulo n of X when 0 < X < (n - 1). The object of this 
paper is to study the value set modulo m of another function — the cyclotomic 
polynomial <I>3(X) = X2 + X + 1, and further to consider some properties of 
the composition of this function with itself n times. We will denote this n-
fold composition by 

n:d>3(X) = <t>3^>3(—(<l>3(X))...)) . 

We define 

¥(m,n) = {nxfcCX) (mod m) | 0 < X < m} , 

and such that if a is in (m,n), then 0 < a < m. Further, we let r(m) 
be the minimum n for which ^(m,n) = ^(m,n + 1) and refer to ^(m,r(m)) 
simply as ^(m). The cardinality of ^(m,n) will be denoted by NWm,n)). 

2. PROPERTIES 

Definition. We say that f(X) is modulo m-symmetric if f(X) = 
f(-X-l) (mod m) and that f(X) is modulo m-doubly symmetric if f(X) = 

f (m/2 - X - 1) = f (m/2 + X) = f (-X - 1) (mod m) for 0 < X < m. 
Property 1. n:<t>3(X) is modulo m-symmetric. 
Proof. We have 

d>3(X) = X 2 + X + 1 = X2 + 2X + 1 - X - 1 + 1 = <D3(-X - 1) 

and hence also 

*JohnH. E. Cohn, "On m-tic Residues Modulo n ?
n Fibonacci Quarterly, 5 

(1967), pp. 305-318. 

23 
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n:4>3(X) = n:<I>3(-X - 1) . 

We note that X and -X - 1 cannot s imultaneously be e lements of ^(m) 

s ince r:<i>3(X) is modulo m - s y m m e t r i c . 

P r o p e r t y 2. n:<f>3(X) i s modulo 2p-doubly s y m m e t r i c . 

Proof. E l emen ta ry calculat ions yield 

<J>3(p - X - 1) = <D3(p - + X ) = p * + p + X 2 + X + l (mod 2p) . 

Now 

p2 + p = 2p[(p + l ) / 2 ] = 0 (mod 2p) 

and hence 

<1>3(X) = <S>3(p + X) (mod 2p) . 

These congruences together with P r o p e r t y 1 yield the resu l t . 

P r o p e r t y 3. N ( ^ ( p , l ) ) i s (p + l ) / 2 . 
Proof. Since <t>3(X) i s modulo p - s y m m e t r i c N ( ^ ( p , l ) ) i s a t mos t 

(p + l ) / 2 . Suppose 

<t>3(X) s <I>3(X + a) (modp) , 

with a £ 0 (modp) . Then, s imple calculat ions yield 

a(2X + a + 1)• = 0 (modp) . 

Since a £ 0 (mod p) , we mus t have X + a = -X - 1 (mod p). 

P r o p e r t y 4. N(^(m)) f 1 for m > 2. 
Proof. Clear ly a n e c e s s a r y condition that N W m ) ) = 1 i s that 4>3(X) = 

X (mod m) for exactly one X where 0 < X < m. In o r d e r for the above 
congruence to hold, we need X2 = - 1 (mod m). However , for m > 2, this 
congruence has e i ther two dis t inct solutions o r no solutions. 
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P r o p e r t y 5. N W 2 n ) ) = 2 n ~ 1 ; r ( 2 n ) = 1. 

Proof. F i r s t , we note that for any a in ^ (2 ,1) we have a = 1 (mod 

2). Thus since X and -X - 1 a r e of opposite par i ty modulo 2 and <f>3(X) 

is modulo 2 - s y m m e t r i c ^ ( 2 ,1) i s completely de te rmined by 4>3(2k 

k = 1, • • • , 2 " . Suppose that 

<f>3(2ki - 1) = <I>3(2k2 - 1) (mod 2 n ) 

with 1 S. k l 5 k2 — 2 ~ . It can readi ly be verif ied that this supposition yields 

4(k | - k\) - 2(ki - k2) = 0 (mod 2 n ) 

and hence 

(kj - k2)(2kA + 2k2 - 1) = 0 (mod 2 n ~ 1 ) , 

from which it follows immedia te ly that kt = k2. Hence, N(*(2 ,1)) = 2 

and since a = 1 (mod 2) we mus t have r(2 ) = 1. 

P r o p e r t y 6. If p = 1 1 , 13, 17, 19 modulo 20 then r(p) > 1. 

Proof. Let 

d>3((p - l ) /2) = p (mod p) . 

F i r s t we note that if 

<D3(X) £ (p - l ) / 2 (mod p) 

for al l X, then p rope r t i e s 1 and 3 imply that j8 i s an e lement of ^ ( p , l ) 

while it i s not in ^(p) and hence r(p) > 1. Now from 

X2 + X + 1 = (p - D / 2 (mod p) , i 

it follows that 

2X2 + 2X + 3 = 0 (mod p) . 
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The quadratic formula indicates that -5 must be a quadratic residue modulo 
p if this congruence has a solution. However -5 is a quadratic non-residue 
for the p in the hypothesis. 

Property 7. NWm)) is multiplicative. 
Proof. Let 

e l e t 
m = Pi ••• p t . 

For each 7 in ^(m) there exists an X such that 

r:<t>3(X) - y = 0 (mod m) . 

Thus 

e. 
r:<t>3(X) - y = 0 (mod p . 1 ) , 1 < i < t , 

and hence 

e. 
y = a. (mod p.1) 

e. 
for some a. in ty(p. ). The Chinese Remainder Theorem assures a unique 
y, 0 < y < m, as a solution to this system of congruences, and hence 

t e. 
NWm)) < n [NWp.1))] . 

1 1 

To see that equality actually holds, we suppose 

e. 
y = a. (mod p . 1 ) , 1 < i < t . 

Since 

e. 
r:<D3(X) - y = <D3(X) - or. = 0 (mod p . 1 ) 

has a solution for each i we are guaranteed a solution to the congruence 
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r:<j>3CX) - y = 0 (mod m) . 

Thus y is in ^(m). 
Property 8. r(m) = max r(p. 1 ) J 1 < i < t . 
Proof. We denote 

e. 
max r(p. ) 

by rf and consider 

rf:cp3(X) = y (mod m) . 

Since for 

e. 
r':<t>3(X) = y = a (mod p 1) , 

we have a. in 
I 

e. e 
¥ ( p , \ r ' ) = ^(p.1) , 

y must be in ^(m). On the other hand, for n < r!
 5 there exists at least 

one p such that for n:<t>3(X) = y (mod m), 

e. 
n:<f>3(X) = y = a{ (mod p.1) 

e. 
with a. not in ^(p. ) and hence y cannot be in ^(m). 

3. EXTENSION 

We note that Properties 7 and 8 can easily be extended to the composi-
tion of other cyclotomic polynomials n:ct> (X) modulo m. However, the other 
properties given are not generally valid for n:<p (X). In particular, for 4>5(X) 
we have r(2n) = n and N(t(2n)) = 1 with 

f(2n) = 2 + 2 2 + . - - + 2 - l for n = 1, • • • , 6 . 



SOME SUMMATION FORMULAS" 
L.CARLITZ 

Duke University, Durham, North Carolina 

1. Multiple summation formulas of a rather unusual kind can be ob-
tained in the following way. Let 

(1.1) f(x) = 1 - aAx - a2x2 - . . . 

denote a series that converges for small x. Put 

(1.2) ~ L = 1 + bAx + b2x2 + 

so that 

^ mhn = Z *xmya (b„ = i) 
v v J m,n=0 

Replacing y by x y, Eq. (1.3) becomes 

it A\ 1 V u ni-n n 
(1.4) - p . = 2 - b m x y 

f(x)(l - x y) m,n=0 

Let k denote a fixed non-negative integer. Then that part of the right-
hand side of (1.4) that contains terms in x is evidently 

d.5) E b m y m + k = yk/f(y) 
m=0 

* Supported in part by NSF grant GP-7855. 
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On the o ther hand, s ince 

(1 - 2Ltx - a2x2 - • • -)(1 - x_ 1y) = (1 + a4y) - x~*y - (a4 - a2y)x - (a2 -a3y)x2 - •• 

It follows that 

°^ [ x V + (a* -a 2 y)x + (a2 - a3y)x2 + . . . ] n+1 

f(x)(l - x - V ) n=0 (1 + a i y ) n + 1 

- i £ * • - - • • • > ' *«•.-•*>•*.-*>-
*-d £^, r j g f g T . . . ' r + g + g + . . . + l 
r=0 s.=0 1 L (l + ajy) * L 

J
 m -r+s1+2s2+3s3+. 

The pa r t of the mult iple summation on the r ight that contains t e r m s in x 

is obtained by taking 

r = k + st + 2s2 + 3s3 + • • • . 

Compar ison with (1.5) therefore yields the following identity: 

<*> (k + 2Si + 3s2 + 4s 3 + • • - )! 

s % 0 Si'. s2! • • • (k + st + 2s2 + 3s3 + • • • )! 
3 

-k 

y s 1 + 2 s 2 + 3 s 3 + . . . ( a i _ a 2 y ) s 1 ( a 2 _ a 3 y ) s 2 

(1.6) ( 1 + a i y ) 2S i+3s 2 + . 

(1 + a i y )
k + 1 

1 - a i y - a2y2 

If we take 

z. = a„yJ (j = 1, 2, 3 , . - • ) 
3 J 
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(1.6) becomes 

oo (__ + 2s 1 + 3 s 2 + 4 s 8 + - - - ) ! ( z 1 - z 2 ) S l ( z 2 - z 3 ) S 2 . . . , ,k+l 
(i 7) y . = ^ + z) 

s ^ 0 s1!s2!.--0_. + s 1 + 2s2 + —)! ( 1 + z )2s1+3s2+--- 1 - zj - z2 - — 

If we now put 

z. - z . , - = u. (i = 1, 2 , 3 , • • •) , 
3 3+1 3 

so that 

Z j = U j + Vl +V2 + ' " (j = 1J 2> 3 ' "m) ' 

we get 

°o (k + 2 s 1 + 3 s 2 + 4 s 3 + - - - ) f . u f 4 u f 2 - - -
( 1 ' 7 ) n St'.So!-- ( k + s 1 + 2s2 + -- - )T . " TT, ', ~, 7 x2si+3s2+-

s.=0 i - v i - (l + u 1 + u 2 + u 3 + - • •) * L 

(1 + ut + u2 + • • • ) k + 1 

1 - Ui - 2u9 - 3UQ - • • • ' 

where 

Ui + u2 + u3 + • • • 

i s absolutely convergent . 

2. The re a r e numerous special c a s e s of the above ident i t ies that may-

be noted. To begin with, we take 

u3 = u4 = • • • = 0 . 

Changing the notation sl ightly, Eq. (1.7) gives 
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(2.D E J (k + 2 r + 3s)! u r v S (1 •+ u + v) k+l 

r - = 0 r !B!fc + r + 2 i j ! ft + u + y ) 2 r + 3 s 1 - u - 2v 

In p a r t i c u l a r , for v = 0, Eq. (2.1) r educes to 

(2.2) (k + 2r)I u _ (1 + u) 

r=0 r ! ^ ' i / 8 (1 + u 

k+l 

r! (k + r)! 7, , „ v2r 1 - u 

This i s eas i ly verif ied for k = 0. Indeed, 

r=0 \ r / (1 + u! 2 r 
4u 

(1 + u)2 

1 + u 

in ag reement with the special case of (2.2). 

If we take al l u. = 0 except u - , we get 

(2.3) £ ( k + P s \ _ _ u 
s=0 * s / (1 + 

s k+ l 
= (1 + u)r 

( 1 + u ) P s 1 - (p - l)u 

Summations like (2.3) a r e usual ly obtained by means of the Lagrange-Burmann 

expansion formula. F o r example , it i s proved [ 1 , p. 126, No. 216] that 

(2.4) y» fa + ]8n\ w n = (1 +.zf 

n=0 \ n / 1 - /3w(l + z) /S+l ' 

where 

(2.5) w 
(1 + z) 
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Making use of (2.5), the right member of (2.4) is seen to be equal to 

(1 + zf+1 

1 - (0 - Dz ' 

so that (2.4) is in agreement with (2.3). 
It should be observed that (2.3) has been proved above only for integral 

k > 0, p > 1. However, since 

| ( k : p f c 7 £ s * - Uk •")•• I (-1 , r(k + r1 •' 
E un £ ( - i)n- s ( k + P s V k + n

n-_s
s
+ p") . 

it follows that (2.3) is equivalent to 

- s + P s \ = ( p _ 1}n (2.6) £ (-I)11"8 / k +
s PSVk + n

n"_S
s
+ PS\ 

Since (2.6) is a polynomial identity that holds for 

k = 0, 1, 2, • •• ; p = 1, 2, 3, ••• , 

it therefore holds for arbitrary k,p. 

3. The proof that (2.3) holds for arbitrary k,p suggests that (1.7) also 
holds for arbitrary k. We divide both sides of (1.7) by 

(1 + u + u2 + • • • ) k + 1 

Then since 
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k - 2 s i - 3 s 9 - - • • - 1 (1 + U l + ua + • . . ) - K - ' S i - ' S 2 - • 

- V* ( i \ r f k + r + 2si + 3s2 + *e • \ / , , ,r 
~ JL i"1) I \ 2 1 (ut + u2 + • • •) 

r i So ^ U 2
2 y* / k + r + 2 s t + 3s2 + •• A r! r 

r =0 I r / r*! r2?8 " ' ° ^ 
j x 

where r = rt. + r2 + • • • , it follows that the left m e m b e r of (1.7) i s equal to 

°o oo (k + 2si + 3s9 + • • • )! / , rt \ 

•M) s T o s 1 ! s 2 ! - - - ( k + s 1 + 2s2 + - - - ) ! y r / r . 
3 3 

r t I r2! 

. Uri+Si u r 2 + s 2 + . 

Hence (1.7) i s equivalent to 

Y* ( - l ) r / k + 2 s l + 3 s 2 + ° 8 • \ f k + r + 2Si + 3s2 + • • • J 
^s=n. V s A r / r .+s.=n. 

J 3 J 

si 
s^ s2I • • • r^. r2! • • • 

(3.1) 
(nt + n? + • • • )! 

= • f \ - I n l 2
n 2 3 n 3 , 

n^no/. • •-

where 

r = Tf + r2 + • • • , s = Sj + s2 + • e • . 

Since (3.1) i s a polynomial identity in k, it i s valid for a r b i t r a r y k. T h e r e -

fore (1.7) is proved for a r b i t r a r y k. 
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4. Another special case of (1.7) that is of some interest is obtained by-
taking all u. = 0 except u - and u __-. We evidently get 

00 / \ / Y r s k+1 
(Ai\ V I k + p r + q s \ l r + s\ u v _ (1+u+v) , / , 
( } r%0\ r + S ){r ) ( 1 + u + v ) p r + q s " 1 - ( p - l ) u - ( q - l ) v <« * *>' 

As above, we can asser t that (4.1) holds for all k, p, q. This can evidently 
be extended in an obvious way, thus furnishing extensions of (2.3) involving 
an arbitrary number of parameters. 

We remark that (4.1) is equivalent to 

y^ (_!)!+] / k + pr + q s \ / k 4 - p r + q s + i + j \ / r + s \ / i + j \ 

s+j=n 
(4.2) 

( • » : » ) <P - A (q - 1) , 

which is itself a special case of (3.1). 

REFERENCE 
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LETTER TO THE EDITOR 
DAVID ZEITLIN 

Minneapolis, Minnesota 
In the note by W, R. Spickerman, MA Note on Fibonacci Functions," 

Fibonacci Quarterly, October, 1970, pp. 397-401, his Theorem 1, p. 397, 
states that if f(x) is a Fibonacci function, i. e. , 
(1) f(x + 2) = f(x + 1) + f(x), 
then ft(x)dx is also a Fibonacci function. Since /"f(x)dx = h(x) + C, where 
C is the arbitrary constant of integration, the above result assumes that 
C = 0. Thus, a formulation of this result in terms of a definite integral 
seems apropos. 
[Continued on page 40. ] 



ON ITERATIVE FIBONACCI SUBSCRIPTS 
JAMES E. DESMOND 

Florida State University, Tallahassee, Florida 

The Fibonacci sequence is defined by the recurrence relation F + 
Fn+1 = Fn+2 a n d tiie i n i t i a J - v a i u e s Fj = F2 = 1. 

The main result of this paper is 
Theorem 4, For positive integers a, k9 m and n such that k ^. m, 

divides 
a F 

mn KF k - m 

The proof of Theorem 4 will depend on all results preceding it in this 

paper. 
Let N be the set of natural numbers. 
Definition 1. For any a5b in N the symbol f (a9b) is defined for 

each n in N as follows: 
i) fi(a,b) = F ab 

i i ) fn+1(a,b) = f i (a , f (a ,b)) . n+1 
By induction, we observe that 

f (a,b) = F „ n ' \ a F 

Definition 2. For any a in N the symbol f (a) is defined for each n 
in N as follows: 

i) 
ii) 

fife) = F a 

W a ) = f i^f
n

(a ) ) ' 
35 
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By induction, we observe that f (a) = f (a , l ) . 
If a,b are in N, we write a|b if and only if there exists some c in 

N such that b = ac. 
In the sequel we shall let a,b and c denote arbitrary elements of N. 
Lemma 1. If b |c , then fj(a,b) fj[(a,c) for all a in N. 
Proof. If bjc, then ab|ac for all a in N, From Hardy and Wright 

[ 1 , p. 148] we have, if n > 0, then F F for every r > 0. So in the 
present notation fi(a,b) = F J F = fj(a,c) for all a in N. 

I aDj ac 
f.|(a,c), then bfi(a,c) f^ajbc). 

Proof. From Vinson [2] 'we have in the present notation, 

p i 1 3 / a c a0"1 F u = J! I 1FJ F u J
n F . acb ~ I J1 ac ac-1 3 

For j = 1, we have 

bF | ( * ) F Fb-\?i a c | \ l / ac ac-1 1 

For 3 > 1, we have, since b fi(a,c) = F , that 
1 ac 

bF F2 
ac ac T fbWj Fb"j F 

p2 \ J / a c a0""1 3 

Thus bfi(a,c) = b F a c | F , = f^a.bc). 
Corollary 1. If b|f 1(a), then bfn+1(a) [^(a^f^a)) . 
Corollary 2. If bjf^a), then bfj(a) |fi(a,b). 
Theorem 1. If b e , then f (a,b) f (a,c). 

— 1 9 n | n 
Proof. We use induction on n. The case n = 1 is true by Lemma 1, 

Suppose f (a,b) f (a,c)„ Then by Lemma 1 and Definition 1, 

fi(a,f (afb)) - f
q + l ( a ' b ) I V l ( a ' C ) = f i ( a ' f

q
( a ' c ) ) ' 
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Corollary 3. fn(a)|f (a,c). 
Theorem 2. f (a,f (a,b)) = f ^ (a9b). 

mN nN m+nN 

Proof. We use induction on m. The case m = 1 is true by Definition 
1. Suppose f (a,fn(a,b)) = f (a,b). Then by Definition 1, 

V l ( a ' f n ( a s b ) ) = f i ( a
5

f
qfe?fn(a9b))) = f i (M q + n (a ,b ) ) = fq + 1 + n(a,W . 

Corollary 4: ^ ( a . y a ) ) = fm + n(a)e 

Lemma 3. f (a)|f , (a) for m > 0e — nv I m+nv -
Proof. The case m = 0 is clear. Suppose m > 0o Then by corol-

laries 3 and 4, 

f (a) f (a,f (a)) = f , (a) . nN I nx 9 m w m+n 

Lemma 4a
 f

n(a)in(a)lf2n(a). 
Proof. We use induction on n. By corollary 2 and definition 2, 

fi(a)|fi(a) implies 

fitajfi^lfife.fita)) = f2(a) , 

so the case n = 1 is true. Suppose f (a)f (a) f0 (a). Then by Lemma 1, 
q q | zq 

f1(a,fq(a)fq(a))|f1(a,f2q(a)) = f2q+1<a) 

and by Lemma 1 again, 

(1) fi(a,fi(a,f (a)fq(a)))|f1(a,f2q+1(a)) = f2 ( q + 1 )(a) 

Since f +1(a) f +1(a) we have, by Corollary 1, 

(2) f q + 1Wfq + 1( f t ) | f 1a i , f q + 1Wfq(a)) . 

By Lemma 3, fq(a)|fq+1(a) so by Corollary 1, fq(a)fq+1(a)|f1(a,fq(a)fq(a)), 
Therefore, by Lemma 1, 
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£i(affq(a)fq+1(a) )|f1(a,f1(a,fq(a)fq(a))) . 

By Equations (1) and (2)9 the proof is complete. 
Theorem 3. f (a)f (a)|f _, (a). 

m n 'I m+n 
Proof. It is sufficient to prove the theorem for all n > m. Let n = 

m + r where r ^- 0. We use induction on r. The case r = 0 is true by 
Lemma 4. Suppose f (a)f ^^(a) f2 u-te) ^ o r Q — 0. Then, by Lemma 1, 

(3) fi(a,f (a)f _, (a))|fi(a,f0 _,. (a)) = fQ '-(a) . 
v ' 1V mx m+q ' | 1V ' 2m+q 2m+q+l 

By Lemma 3, f m ( a ) | f m l ( a ) , so by Corollary 1, 

f (a)f ^ ^ ( a ) | f i ( a , f (a)f • ( a ) ) . mv m+q+lv 7| 1V ' m m+q " 

By Equation (3), the proof is complete. 
Lemma 5. f , (a)|f (a,t (a)) for k > 0. 

m+nv | m n w , 
Proof. By Theorem 1, and Corollary 4, f (a) i (a) implies 

f (a,f (a)) = f _, (a)|f (a,fk(a)) . m ' n m+n | m ' nv 

Lemma 6. f (a)f (a,^(a)) |f (a,fk+1(a)) for k > 0. 
n w m nv \ m n 

Proof. The case k = 0 is true by Theorem 3 and Corollary 4. Sup-
pose k > 0. We now use induction on m. By Lemmas 3 and 5, 

f n ( a ) | f n + l ( a ) f l ( a j f ^ ( a ) ) 

for k > 0„ So by Lemma 2, 

f (ajf^a.fjtajjlfita.f (a)Aa)) = f i (a ,£+ 1(a)) . 

So the case m = 1 is true. Suppose 

f (a)f ( a . ^ a j j l f ( a . f ^ t a ) ) n q ' n I q n ' 

for k > 0. Then by Lemma 1, 
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(4) fi(a9fn(a)fq(a9^(a))) |f1(a9fq(a9^+ 1(a))) = f q + 1 (a ,£ + 1 (a ) ) 

by Definition 1. By Lemmas 3 and 59 

f (a) nv Wn(a) fq+1(a5fj5(a)) = fi(a?fq(a9^(a))) 

for k > 0, which implies by Lemma 2 that 

fn(a)fq + 1(a9f^(a))f1(a9fja)t(a9f^(a))) . 
n q ' n 

So by Eq. (4), the proof is complete. 
Lemma 7. A a ) f ( a , £ 1(a)) for k > 0. 

n ' n 
Proof, We use induction on k8 The case k = 1 is clear. Suppose 

«>> y a ^ l a ) ) 

for q > 0. Then 

fq+1(a) n f (a)f ( a . f ^ ^ a ) ) 
n n n 

f (a9fq(a)) n 9 n 

for q - 1 > 09 by Lemma 69 

Theorem 4. f^a) f (a9fk"m(a)) for k > m > 0, 
nv"'i mn ' n 

Proof. We use induction on m8 The case m = 1 is true by Lemma 7. 
Suppose 

f ^ J f (a9fk"q(a)) n I qn n 

for k > q > 0. Then by Theorems 1 and 2, 

(5) f n ( a , f > ) | f n ( a , f q n ( a , f ^ ( a ) ) ) = V ^ ^ ^ W ) . 

where k + l > q + l > 0 9 By Lemma 79 

£+1(s)\f (a9fk(a)) n N nN n v 
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for k + 1 > 0. Therefore, by Eq. (5), 

n ' (q+l)n ' n ' 

for k + 1 > q + 1 > 0, and the proof is complete. 
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[Continued from page 34« ] .*~o-#-o~*-

Theorem. Let f(x) be a Fibonacci function (see [ l ] ) . Then, 
2 

(2) / f(t)dt = A (A is a constant), 
i 

is a necessary and sufficient condition that 
x 

(3) g(x) = / f(t)dt + A, g(0) = A, 
o 

also be a Fibonacci function. 
Proof. Necessity,, If g(x) is a Fibonacci function, then g(x + 2) = 

g(x + 1) + g(x). For x = 0, g(2) = g(l) + g(0), which simplifies to (2). 
Sufficiency. By integration, we have 

x x x 
f f(t + 2)dt = / f(t + l)dt + f f(t)dt . 

0 0 0 
Let t + 2 = u and t + 1 = v to obtain 

x+2 x+1 x 
(4) / f(u)du = / f(v)dv + / f(t)dt . 

I i o 
Using (3), we obtain from (4), g(x + 2) = g(x + 1) + g(x), by using (2). 
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In past articles of the Fibonacci Quarterly; several methods have been t£ • — 
suggested for solutions to n -order difference equations. 

In a series of articles entitled "Linear Recursive Relations," J0 A. 
Jeske attacks and solves this problem by use of generating functions [1, p. 
69], [2, p. 35], [3, p. 197]. 

In another series of articles also entitled, "Linear Recursive Relations," 
Brother Alfred Brousseau, one of the founders of the Fibonacci Quarterly, 
outlines a method of finding Binet forms using matrices [4, p* 99], [5, p. 
194], [6, p. 295], [7, p. 533]. 

What I propose to do here is to find a general solution to the linear homo-
genous difference equation with distinct roots to the characteristic. The 
method of solution will be Laplace Transform, 

Unfortunately, the Laplace Transform does not deal with discrete func-
tions. So, to make the problem applicable, define the continuous function y(t) 
such that y(t) = a n < t < n + 1 n = Q, 1, 2, e B ' , where a , n € Z, 
is the sequence of the difference equation. This changes the discrete sequence 
to a continuous and integrable function. 

The following is the Laplace Transform pair: 

Y(s) = / e"sty(t) dt 
o 

1 / + i ° ° t s y(t) = 2 S / e Y(s) ds . 
Crioo 

The inversion formula is messy. It is a contour integral, and requires a 
knowledge of complex variables. In our case, we will "recognize" the result-
ant inverse. The following Lemma illustrates the integration of our step 
function y(t), and will be used in a subsequent theorem. 

41 
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Lemma 1. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • • • , then 

L{y(t + j)} = esJY<s) - ^ L £ ^ g v
B < M . 

Proof. By definitions, 

oo 

L{y(t + j)} = / y(/3 + j ) e ~ s ^ 3 

Let /S + j —»• t. Then 

L{y(t + j)} .= / y( t )e- s ( t - J ,d t 
00 

s(H). 
] 

oo 

e s j f y(t)e"s t dt. 
o 

= e s j f y(t)e"s tdt - e s j f y(t)e~stdt 
o <r 

• i-1 n+1 
= e°JY(s) - e*J 2S an J e °Mt , 

n=0 n 

since y(t) = a n < t < n + 1, 

si 
= e

 J 

The next Lemma will provide the inverse that we will later "recognize.TT 
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n Lemma 2e If y(t) = a , n < t < n + l , n = 0 , l , 2 , " « , where 
a is a constant5 then 

«• M W 
Proof. By definition, 

Y(s) = J y(t)e Stdt -s t 

o 

oo n + i 
= £ f «Vstdt 

n=0 if 

The third and last Lemma is a very slight modification to the Partial F rac-
tions Theorem to fit our particular needs. Here Q(x) has distinct roots or.. 

Lemma 3. Let Q(x) be a polynomial, degree N. Let P(x) be a 
polynomial, degree <N . Then if 

Proof. 

P(x) 

Le t 

N 

• S(7 

P(x) 
Qlxl 

y. P(<2.) 

- 1 \ ' > i ™ , ^ 

N y . = V li 
i= l (1 - ^ . x " 1 ) 
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N y.Q(x) 
P(x) = £ X 

i=l (l - a.x X) 

N xv.Q(x) 
P(X) = T —1 

r-i. x - a. i=l l 

£% 
l im P(x) = V 

3 1=1 
l im x . 

x —• a. I 
J 

l im 
x'—»a. 

Q(x) 1 
3 (x «i>j 

The l imi t on the r ight i s Q!(#-) when i = j and 0 o therwise . T h e r e f o r e , 

P ( a . ) = a.y.Q'{a.) 
3 V]r } 

P(a.) 
=^>y\ a.Q}{a.) 

J J* V 
We now have sufficient information to solve the p rob lem. F i r s t , we 

find the t r ans fo rm of the difference equation producing {a In = Z j . 
T h e o r e m 1. If y(t) = a , n < t < n + 1, n = 0, 1, 2 , • • • , and 

N 
£ A.y(t + J) = 0: 
j=0 3 

A. a r e coefficients: N i s the d e g r e e , then the t r ans fo rm 

Y(s) -M 
N j - 1 
S Aj E \' 
i= l 3 n=0 

N 

3=0 J 

s(j-n) 

>S] 
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Proof. 
( N ) N 

(j=0 J ) j=o J 
)} = o 

N 
A0Y(s) + £ A L{y(t + j)} = 0 

45 

From Lemma 1, 

N 
A0Y(s) + E A. 

N 
1 

J 

e^Y(s) - £ a e s ( J - n ) 

n=0 n 
, S J , M = o 

N • N j - 1 ,. * / , - s \ 
AoTfa) + E A / ' Y W = E Ai £ a n e s ^ n ) ( ± - ^ - 1 

j=l ]
 j = i J n=o n \ s / 

Y(s) 
Y(s) M 

N j - 1 

- s \ A i i -̂jv n 
s(j-n) 

j = l 3 n=Q 
N 

^ A 3 
i=0 3 

>SJ 

The transform is actually a quotient of polynomials in e . The following is 
a corollary based on the previous theorem and Lemma 3. We get 

Corollary. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • " , and 

N 
E A.y(t + j) = 0 
1=0 J 

and the roots of 

N 
£A. 
j=0 J 

distinct (a.), then 
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Y(s) • M s (1 - a.e S ) 
1 

where 

N j - 1 

= J = l J n=0 
r* N 

J = l J 

g 
Proof. Let x = e . Then 

" ] - ^ 
j=l J n=0 n 

N 
Q(x) = 2 A. x3 

j=0 J 

N . 1 

Q'(x) = Y. 3&ix 

j = l 3 

Then if the roots of Q(x), a., are distinct 

where 

p(x) _ £ n 
^ " i - l 1 - a.e~s 

1 

= i = j=l J n=0 n * 

a. L J A a{ 
.1=1 J 
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Therefore, 

Y(s) • h 4 i (1 - a.e~s) 
I 

where 

J j - i 
£ A £ an aj"n 

j=l J n=0 

]=1 J 

The Corollary gives a very nice little package to unravel. Finding the 
inverse is a direct result of Lemma 2. 

Theorem 2. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • • • , and 
n ' 

N 
E A . y ( t + j) = 0 , 
j=0 J 

then 

N 
y.(t) = E r r f n = o, if 2, ••• , 

i=l 

where 

N j - 1 

j=l 3n=0 n 1 

Ti F 
£ JA.oJ 

The proof is implicit from the Corollary and Lemma 2. Consider the follow-
ing problem of Pell: 
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P 0 = 0 

P i = 1 

P ± Q = 2P ± 1 + P P 0 = 0 
n+2 n+1 n u 

T rans la t ing this into our te rminology y ie lds : 

y(t + 2) - 2y(t + 1) - y(t) = 0 n < t < n + 1 n = 0, 1, 2 , 

. A0 = - 1 ao = 0 
At = -2 aA = 1 

A2 = 1 

Since a1 - 2a - 1 = 0, a = 1 ± N/2. Let 

at = 1 + N/2" 

a2 = 1 - N/2" 

Now from T h e o r e m 2: 

ri 

/i.\ n , n 
y(t) = ytat + y2

a2 
A1aQai + A2(a0a? + a ^ . ) 

A i ^ . + 2A2#? 

After reducing with a0 = 0, 

A 2 a j _ x 

h ~ 2A2<*. + Ai ° r r i " 2or - 2 
l 

Since <yt = 1 + N/2" , 

72 
2(1 + N/2) - 2 2 N/2 

Since a2 = 1 - N/2 , 
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1 1 
yi « — ——— = -

2(1 - \l%) - 2 2N/2 

Therefore, 

n n 
ai - a2 

y(t) = a = — 
n 2^2 

which of course we recognize is the Binet form for the Pell sequence,, In 
fact, similarly we can find Binet forms for Fibonacci, Lucas, or any other 
Homogenous Linear Difference Equations where roots to S.A.x , the char-
acteristic, are distinct. 

One more logical extension of Fibonacci sequence is the Tribonacci. 
This problem is the Fibonacci equation extended to the next degree,, 

n+2 n+2 n+1 n 

In this instance, the most difficult part lies in solving the characteristic 
equation, 

m 3 - m 2 - m - l = 0 , 

for its roots using Cardan formulae. This involves a little algebra and a 
little time. The procedure yields the roots, 

x . . . . . _ 1 / 2 V / 3 / 1 0 i A , \ l / 2 \ 1 / 3 

1 l/l9 + 1 /ll\ 1 / 2 \ 1 / 3 l/l9 l/llY^t 
~ "3 " 2l 27 3 ^ I 2 I 27 3 \ 3 / J 

/19 +1 /iiv/2V/3 u i^v/2V 
127 3 V3/ I \27 " 3 \3j J 

+ ls /I 

a3 = a2 
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Now for those of us more furtunate fellows, we can simplify some of 
this by means of a computer, which yields: 

at = 1.84 
OL1 = -0.42 + 0.61 i 
az = -0.42 + 0.61 i 

From Theorem 2, 

A3 = 1 
A2 = Aj. = A0 = - 1 

ao = 1 
at = 0 

a2 = 0 

A ^ a . + A2(a0tf2 + a.a.) + A3(a0a? + ajLa? + a2a.) 
y . = : — — M 

1 A ^ + 2A2tf? + 3A3a? 

Reduced, (a3 = a1 + a + 1) 

1 a? + 2a. + 3 
l l 

Therefore, 

y(t) = a = 
\ a i + toi + 3 / \ ^2 + 2<*2 + 3 / \ <*3 + 2az + 3J 

Now, you, too, can find your own Binet forms. 

FOOD FOR THOUGHT 

Brother Alfred Brousseau says, for N = 2, 

ao<*2 " a i y
 ao<*i " aA 

1 ~ <*2 - a i 2 ~ <*i - a 2 

[Continued on page 112. ] 
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Let 

(» ) 

and 

( * ) 
x(x - l)(x - 2) ••• (x - r + 1) 

1 « 2 « 3 . . . r 

for all complex numbers x and all positive integers re It is well known 
that 

and that for every non-negative integer d there exist integers s , n , s , - , ••• , 
s -,, such that 

<2> X " = Sd0 ( j ) + sdl (l) + Sd2 ( 2 ) + • " + S d d ( d ) 

holds for all x. (The s-,. are related to the Stirling numbers of the second 
kind.) Using (1) and (2), one obtains the summation formulas 

( 1 ) + S d l { 2 ) + 8 ° ' + s d d \ d + l / ' (3) 0d + l d + 2 d + — + n d = sd Q 

This paper presents alternates for (2) and (3) in which the s , . are r e -
placed by coefficients having symmetry properties and other advantages. Part 
of the work generalizes with the help of Dov Jarden1 s results from the f J 
to generalized binomial coefficients. * ' 

51 
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Using the well known 

[rj + (r + l) \r + If 

one easily proves 

«t-.)-®M-(jh-i),-,H>,§§ 
by mathematical induction. Then (2) and (4) imply that for every non-negative 
integer d there exist integers a,, such that 

( 5 ) x ~ sd0 Id/ ' a d l (d) + a d l ( X d X) + ' " + a d d ( X d d ) 

From (1) and (5), one now obtains 

(6) 0
d + l d + . . . + n d = adQ 

For example, 

/x + l \ _,_ /x + 2\ ^ ^ /x + d + l \ 
d̂ + lj + a d l ( d + lJ + ' " + add ( d + 1 J 

x*= Q + n ( ^ 4 - ) + n ( % - ) + ( - 3 ) , 

»2 = ( n r H n 3 2 ) . 02 + I2 + 22 + - • • + 

and 

t.-e:1)-^2)^:3) 



1971] A SYMMETRIC SUBSTITUTE FOR STIRLING NUMBERS 

The l i s ted c a s e s of (5) suggest that the following may be t rue : 

53 

(7) 

(8) 

(9) 

(10) 

a , , = 0 
dd 

a d 0 "" * ~ a d 9 d - l 

a d j a d , d - l - j 

a , A + a , - + • • • + a , , i = l e2°3 . . . d = d! dO d l d , d - l 

Success ively let t ing x be 0S - 1 , 1, - 2 , 25 •• e in (5) e s t ab l i shes (7), (8), 

and (with the help of mathemat ica l induction) the s y m m e t r y formula (9). These 

subst i tut ions also prove that the a , , a r e unique8 One obtains (10) from 

^ - / A - - ^ ([©'•©' ©ty) 
,. r / - d , 0 d , , d w d+ln = l im Ml + 2 + - . . -i- n ) /n J n — ¥ oo L ' i i 

= [ ado + a d i + ' - - +ad,d-J/(d + 1 ) ! • 

A r ecu r s ion formula for the a , , is der ived a s follows: 

j=0 
d+1 .J \ d + 1/ 

d+1 

= *%*4* *>) 
d-1 
E a

d i [(x - d + j) + (d 
j=0 J v{sV) 
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d-1 
£ adi 
j=0 flJ 

(d + 1) ( S ; i ) + « - i > ( x d J ) ] 

= a dO (d
X

+1) + £ W + Wadj + td-J + D a ^ , ] ^ : ^ 

/x + d\ 
+ a d , d - i \d + iy • 

This and uniqueness of the a-,, imply that for j = 1, 2, • ° * , d - 1 one has 

(ID a , , - . = (j + l ) a , . + (d - j + l )a , . -d+1,3 ^ ' dj J d , j - l 

Using a , 0 = 1 and (11) gives us a, - - = 2a^- + d. Let E be the operator 
on functions of d such that Ey, = y , -. Then (E - 2)a.- = d and 

(E2 - 2E + 1)(E - 2)a d l = (d + 2) - 2(d + 1) + d = 0 . 

It follows from the theory of linear homogeneous difference equations with 
constant coefficients that there are constants e0, e l s and e2 such that 

a d l = e0 + e l ^ + e 2 " 2 ^ o r d = 1, 2, 3, 
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Using the known values of al l9 a2l9 and a31 one solves for e0, el9 and e2 

and thus shows that a,- = 2r - d - 1. Similarly, one sees that 

(E - 1)3(E - 2)2(E - 3)ad2 = 0 

and hence that there are constants f. such that 

ad 2 = (f0 + fjd + f2d2) + (f3 + f4d)2d + f5 . 3 d 

Determining the f., one finds that 

^ - ^ - ( " i 1 ) * 4 * ^ 1 ) -
Now (or after additional cases) one conjectures that 

dj = i^+ i -k ) d(d
k

+ i ) (12) a... 
k=0 

Because of the symmetry formula (9), we know that (12) is equivalent to 

(13) adj = d | ~ \ - l ) N d - j - k)d (d + *) 

Substituting (13) into (5) gives us 

(14 xd Sre^-'-^M} 
Since the a . . that satisfy (5) are unique, one can prove (13) and (12) by show-
ing that (14) is an identity in x. Since both sides of (14) are polynomials in 
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x of degree d, it suffices to verify (14) for the d + 1 values x = 0, 1, 
• • • , d» For such an xs (14) becomes 

Since I J = 0 for h = 0, 1, ' ' " , d - 1, one has 

St 

The right side sum in (16) is zero since it is a (d + 1) difference of a poly-
nomial of degree d". Hence (15) becomes the tautology x = x . This estab-
lishes (13) and (12). 

We next apply some of the above material to convolution formulas. It 
is well known (and easily shown by Maclaurin* s expansion or NewtonTs binom-
ial expansion) that 

x2 + ••• for -1 < x < 1 U7> a - ^ - ^ f r j - b ) 
Using (5) and (17), we obtain 

(18> ( a d ,d- l + ad,d-2X + - + a d , 0 x d ~ 1 ) ( 1 - X r d _ 1 = l d + 2 d x + 3dx2
 + - . - , 

| x | < 1 . 

Now let 

(19) p(dpc) = ad j 0 + a d j l x + - • a ^ . / " 1 = a d ( d _ 1 + a d f d _ 2 + - H-a^x*"1 . 

Then (18) can be rewritten as 
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oo 

(20) p(d,x)(l - x ) - ^ 1 = £ ' ( j + l )dx j , |x| < 1 . 

Also let 

(21) p(d,x)p(e)x) = q(d,e,x) = c ^ + c ^ ^ x + • • • + c d j e ) d + e _ 2 x d + e - 2 

Then 

(22) f ] kd(n - k)€ 
k=0 

is the coefficient of x in the Maclaurin expansion of 

q(d,e,x)(l - x) 

i. e. j (22) is equal to 

d+e 
(23) T 2 c t + x + A 

j ^ Cd5e5j [d + e + 1/ ' 

For example, since p(3,x) = l + 4x + x2, and p(2,x) = 1 + x , we have 

q(3,2,x) = (1 + 4x + x2)(l + x) = 1 + 5x + 5x2 + x3
 5 

and it follows from the equality of (22) and (23) that 

± #» - « • - ( » i l ) • < ( • ; 2 ) • . (• ; • ) + (" + » 4 ) • 
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We note that the recursion formula (11) for the a,, can also be derived from 
(20) using 

(24) d[xp(d,x)(l - x r ^ / d x = p(d'+ l ,x)( l - x ) " d " 2 . 

Next we turn to generalizations of (5) and (12) in which the sequence 
0, 1, 2, 3, ••• is replaced by any sequence U0, Uj, U2, U3, ••• satisfying 

(25) U0 = 0, Ui = 1, Un + 2 = gU n + 1 - hUn for n •=• 0 , 1 , 2 , - , 

and h2 = 1 . 

The following table indicates some of the well-known sequences that are in-
cluded for special values of g and h: 

g 

1 2 
1 

2 
L k 

h 

1 
-1 
-1 

(-Dk 

Sequence 

Natural Numbers: U = n n 
Fibonacci Numbers: U = F n n 
Pell Numbers: U = P n n 
U = F, / F . 

n kn ' k 

A key formula for the generalized sequence U is the addition formula 

U0U _,_ ^Q = U ^ U ^0 - U U , 2 m+n+2 m+2 n+2 m n 

which is established by double induction using (25) and verification for the four 
eases in which (m,n) is (0,0), (0,1), (1,0), and (1,1). 

We now assume that (g,h) is not (1,1) in (25); then (25) is ordinary 
in the sense of Torretto-Fuchs (see [1]) and so U f 0 for n > 0o Then 
we use the Torretto-Fuchs notation 

[s] -1- H u u 
m n-

U n-r+1 
U1U2 U for r = 1, 2, 
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for Dov J a r d e n ? s genera l ized b inomials . J a r den showed 2 that 

(26) E (-i)jh^1)/2 Td + 1 z . = 0 , 

th if Z n i s the t e r m - b y - t e r m product of the n t e r m s of d sequences each 
of which sa t i s f ies the r ecu r s ion formula (25). The sequence Z = PTJ i s 
such a product , hence 

(27) g ci*""-"* [d ; |] f 51] -
We a r e now in a posit ion to give the following genera l iza t ions of (5) and (12): 

(28) U = B , n 7 n dO 
In + d - l] 

[ d J 
+ B d l 

h + d - 21 
d + B d , d - l | d l ' 

where 

(29) B dj u d [d + x l uj+i-k L k J 

F o r m u l a (29) i s es tabl ished in the s ame fashion as for formula (12), with the 

vanishing of the sums of (16) rep laced by (27). 

We do not genera l ize the summat ion formula (6) since we a r e not able 

to give a general izat ion of formula (1). However , we do p r e s e n t the following 

summat ion formulas involving the genera l ized sequence U„ : 

(30) U 2 + U 4 + ' " + U 2 n = ( U L l + U n - U ? ) / U 2 

(31) U-UQ + U 0 U , + • • • + U U ' = U U ,-Uo ( 1 / U 0 1 3 2 6 n 3n n n+1 2 n + l ' 2 
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(32) U?UQ + U^U. + . . . + U 2 U 0 = l A j ^ / U o . 
1 2 2 4 n 2n n n+1' 2 

These formulas are easily probed by mathematical induction using the follow-
ing special cases of the above addition formula: 

( 3 3 ) Un+2 - Un = U2U2n+2 

<34) Un+2U2n+3 " U n U 2n + l = U2U3n+3 

The special case of (31) in which U = F isReckeTs problem [3]which 
brought to mind the well-known formula 

(35) I2 + 22 + S2 + • • • + n2 = n(n + l)(2n + l) /6 . 

These two special cases inspired the generalization (31). Then (32) was ob-
tained as a generalization of the well-known 

(36) I3 + 23 + 33 + . . . + n3 = n2(n + l)2/2 . 

The proofs of (31) and (32) produced (33) as a byproduct; then (30) follows 
readily using the telescoping sum 

E [U2U2k] = t K+1 - U|_i] = *n+1 + l£ - Ul 
S=l k=0 

Some special cases of (28) and a special case of (33) above were proposed by 
one of the authors [4], 

Formulas (5), (11), and (13) go back to J, Worpitzky and G. Frobenius 
(see [5] and [6]). These have been generalized in a different manner from 
our formulas (28) and (29) by L. Carlitz [7]. 
[Continued on page 73. ] 
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H-178 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Pu t 

a 
m 

_ / m + n \ 2 

,n "" I m i 

Show that a satisfies no recurrence of the type 
m,n JS^ 

r s 
E E c. . a . , = 0 (m > r5 n > s) , 

• A i A J 9 k m - j 5 n - k j=0 k=0 J9 JS 

where the c. , and r ? s are all independent of m,n. 
Show also that a satisfies no recurrence of the type 

£ E c i k a m - i n-k = ° (m > r5 n > 0) 
j=0 k=0 J ? K m h 

where the c. , and r are independent of m,n. 
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H-179 Proposed by D. Singmaster, Bedford College, University of London, London, England. 

Let k numbers p1? p2, ••• , p, be given. Set a = 0 for n < 0; 
aQ = 1 and define a by the recursion 

n a = 52 V>a • for n > 0. n r-i i n-i i= l 

1. Find simple necessary and sufficient conditions on the p. for 

lim a n —* °° n 

to exist and be: (a) finite and nonzero; (b) zero; (c) infinite. 
2. Are the conditions: p. > 0 for i = 1, 2, • • • , p. > 0 and 

n 

i=l 

sufficient for lim a to exist, be finite, and be nonzero? n —* oo n 

H-180 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 

n V M3
 = (n + k)t 

kt() W k 2ifen (kl)3(n - 2k)! < " > 

y* / n \ 3
 = y^ (n + k)I 

kt() W k " 2 lgn (k')3(n - 2k)! <2 n-3 k ) 

where F, and L, denote the k Fibonacciand Lucas numbers, respectively. 
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SOLUTIONS 

SUMMA RILY PROD UC TIVE 

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

*> n 2 n °o oo 9 oo k(k+l) . 
E q z 0 n k . ^ n^ n v " Q - k 

"75]— n (1 - q ) = 2 ^ q z 2 ^ ^ 5 z 
n=0 i q ; n k=l n=-oo k=0 i q ; 2k 

00 / ,-,\ °° (k+1)2 
V^ n(n+l) n v^- q 
L q z L 7^5— z 

ti=-oo k=0 i q ; 2 k + l 

where 

(q)n = (1 - q)( l " q2) • • • (1 - q ) 

Solution by the Proposer. 

We shall make use of the E u l e r identity 

S ( l -q\) = t (-Wn(n-X) z7(q) 
n=0 n=0 

and the Jacobi identi ty 

OO OO „ 

n ,- 2 n W l 2 n - l , W l 2 n - l - 1 , v 8 n n 

(1 - q )(1 - q z ) ( l - q z ) = 2 - Q z 

n= l n=-<» 

Now we have 
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OO „ OO 
1 ^ 

— — I!' (1 - q ) - 2 , q z II. (1 - q ) 
n=0 q k=l n=0 k=l 

oo o oo 

E n 2 n ~~ M n+k,k q z II (1 - q ) 
n=-oo k=l 

= Z A " E (-Dkq^(k+1)+nk/(q)1< 
n=-oo k=0 * 

E , -vk iMk+l) , , v v* n2, k vii 
(-1) q

z /(q)^ 2-r q (q z) 
k=0 K n=-oo 

OO 1 / v °° 

E t -vkfk(k+l) / / v 0 ,- 2nW i _, 2n+k-l Wn , 2n-k-l - L 
(-1) q̂  / (q ) t ' II (1 - q )(1 + q z)(l + q z ) 

n=0 K
 n = l 

00 °° k(2k+l) °o 
n ,- 2nv V q FT /i ^ 2n+2k-l W 1 _,_ 2 n - 2 k - l , 
11 (1 - q ) - 2L» (n\ •— II (1 + q z ) ( l + q z) 

n=l k=0 i q ; 2 k n=l 

n ,-, 2n. ^ fe+D(2k+l).« 2n+2k W l _, 2n-2k-2 - 1 , 
1 1 (i - q ) • 2-r —-T̂ i n (i + q )(i + q z ) 

n=l k=0 w 2 k + l n=l 

2 °° k 2 k + l ) ,- ^ -2k+l - 1 , ,- _, - 1 - l v v - n2 n Y» q (1 + q z )- - • (1 + q z ) 
Z-» q z z^ (n\ 2k-i " 

n=-oo k=0 W 2 k (1 + qz)- • • (1 + q^K z) 

00 , |1X °° (k+l)(2k+l) /n , -2k - lv ,.. _, -2 - 1 
E n(n+1) n v^ q (1 + q z ) • • • (1 + q z 

q z 2-r ""777* — ~ 9k 
n=-oo k=0 W 2 k + 1 (1 + q2z) . . . (1 + q z) 

f n2 n f q k ( k + 1 ) -k f n(n+l) n f q ( k + 1 ) 2 -k 
= L q z L ^T-T—z - 2^ q z- 2^ £r-—z 

n=_oo k = 0
 v q ;2k n=-oo k=0 v q ; 2k+ l 
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STAY TUNED TO THIS NETWORK 

H-157 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada (corrected) 

by 

A set of polynomials c (x), which appea r s in network theory is defined 

c n + 1 (x ) = (x + 2)cn(x) - cn_1(x) (n > 1) 

with 

c0(x) = 1 and cx(x) = (x + 2)/2 

(a) Find a polynomial express ion for c (x). 

(b) Show that 

2c (x) = b (x) + b Ax) = B (x) - B 0(x) nv n n - l x nv n-2 

where B (x) and b (x) a r e the Morgan-Voyce polynomials a s de-

fined in the Fibonacci Qua r t e r ly , Vol. 5 , No. 2 , p . 167. 

Sh< 

(d) If 

(c) Show that 2c2 (x) - cQ (x) = 1. n AW 

Q 
I"(x + 2) - l l [ 1 0j« 

show that 

c - c -
n n - 1 
n - 1 n-2 

= ^ ( Q n - Q n " 2 ) for (n > 2) 

Hence deduce that c x 1 c n - c2 = x(x + 4) /4 . n+i n—l n 

Solution by A. G. Law, University of Saskatchewan, Regina, Saskatchewan, Canada. 

Let {c (x)} be the family of polynomials p r e s c r i b e d by the r e c u r r e n c e 
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(*) Yn + 1 = (x + 2)yn - y n _ r n > 1 , 

with y0 = 1 and yA = 1 + x/2. It can be derived, with the aid of [1] , that 

Cn<x> = W P i " " ' 4 ) ( 1 + x / 2 ) ' " - 1 ' 

where P ' " is the n -degree Jacobi polynomial. Consequently 
[ 3 ] , c (x) = cos n#, where cos 0 = 1 + x /2 , for n > 1. 

A half-angle formula gives immediately that 2c2 - c = 1 , n > 1. 
Similarly, each relation 

c , - (x)c - (x) - c2 (x) = x(x + 4)/4 n+1 n - l v n v / v " 

is also just a trigonometric identity. 
The coupled recurrence 

b = xB 1 + b - ; B = (x + 1)B -, + b - (n > 1) , 
n n-1 n-1 n n-1 n-1 v 

where b0 = B0 = 1 shows that 

b j n = (x + 2)b - b . n+1 ' n n-1 

for n > 1. Hence, 

b ^ = (x +'l)(b + b -) - b „ ; n+1 x v n n-1 n-2 

that i s , y = (b + b - )/2 satisfies recurrence (*) and, so, J n n n-1 ' v 

(b + b - )/2 = c 
n n-1 ' n 

for n > 1. Similarly, 2c = B - B ., for n > 1. 
"• J n n n-1 

Finally, since each b (x) is a known sum (see [2]), 2c = b + b -
yields the explicit formula: 
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2 (x) = xn/2 + S 1 _ i L - / n + k - A x k 
kK) n " k \ n " k " V 

for n J> 1. 

1. D. V. Ho, J. W. Jayne and M. B. Sledd, "Recursively Generated Strum -
Liouville Polynomial Systems,M Duke Mathematical Journal, Vol. 33 
(1966), pp. 131-140. 

2. J. C. Sjoherg, Problem H-69, Fibonacci Quarterly, Vol. 5 (1967), No. 2, 
pp. 164-165. 

3. G. Szego, "Orthogonal Polynomials," American Mathematical Society 
Colloquium Publications, Vol. XXIII (1939). 

Also solved by D. Zeitlin, D. ¥. Jaiswal, M. Voder, and the Proposer. 

JN THEIR PRIME 

H-158 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

If f (x) be the Fibonacci polynomial as defined in H-127, show that 

(a) For integral values of x, f (x) and f Ax) are prime to each 
other. 

(b) J 1 + t a/Wl^n+l^l1 - X2 £ (1/f2nf2nH-2>) = ^ 

Solution by the Proposer. 

(a) It may easily be established by induction that 

W X ) W X ) - *w = (-1)n • 
Hence, for integral values of x, f (x) and f +1(x) are prime to 
each other. 

(b) It may also be established by induction that 



68 
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f -(x)f 0(x) - f (x)f Ax) + (-1) x = 0 n+1 n - 2 ' n n - 1 

[Feb. 

Hence , 

f 2 n + l f 2 n - l 
2n+2 

f2n+l 

2n 
f 2 n - l 

Thus , 

n 

1 f 2 n + l f 2 n - l 

2n+2 
f2n+l 

2n+2 
I 2n+l 

O r , 

(2) 1 + 
1 ^ n + l ^ n - l 

1 f2n+2 
f, 2n 

Also , from (1), we have 

f, 
f f 2n 2n+2 

2n+l 
f2n+2 

2n+l 
I 2n 

Hence , 

n 
f f 

1 V 2 n + 2 

2n+l 
f2n+2 

v f 4. f 
2n+2 2n+l 

f2n+2 5 
2n+l 

f2n+2 

x2 + 1 
+ x = 

2n+l 
f2n+2 

1 
x 
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Thus , 

(3) 1 - x* £ r-f— = x ^ 
1 2n 2n+2 2n+2 

Hence from (2) and (3), we have 

|1+ 2 r-T— H1-x2tF-I
3—j= i 

( 1 ^ n + l l n - l ) ( 1 I2nI2n+2J 

Also solved by A. Shannon, M. Yoder, and D. V. Jaiswal. 

HARMONY 

H-159 Proposed by Clyde Bridger, Springfield College, Springfield, Illinois. 

L e t 

D, - C " d 

"k c - d 

and 

E k = c + d , 

where c and d a r e the roo ts of z2 = az + b. Consider the four number s e , 
k k 

f, x , y , where e = c and f = d a r e the roots of 

z2 - z E k + (-b)k = 0 , 

and y is the harmonic conjugate of x with r e spec t to e and f. Find y 

when 
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nk+k ,. t m 
x = - ^ (k f 0) . 

nk 

Solution by the Proposer. 

The condition to be m e t i s 

x - e y - f = ± 
x - f y - e 

(See page 69, R. M. Winger , Pro jec t ive Geomet ry , Heath, 1923.) This 

l eads d i rec t ly to 

2xy - E k (x + y) + 2 ( -b ) k = 0 . 

F o r the given value of x , 

E, D , x l - 2 ( -b ) k D . k nk+k N nk 
y 2 D , , - E. D . 

nk+k k nk 

It i s easy to verify from the definitions of D, and E, that the numera to r 

r educes to E . ^ D , and that the denominator reduces to E , D, . Hence, 

E nk+k 
nk 

Note that when a = b = 1, and k = 1, 

F n + 1 A
 L n + 1 

-— and IT-
n n 

a r e harmonic conjugates with r e spec t to the roo t s of z2 = z + 1. 

Also solved by M. Yoder. 
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DISCRIMINATING 

H-160 Proposed by D. and £ Lehmer, University of California, Berkeley, California. 

Find the roots and the discriminant of 

x3 - (-l)k3x - L 3 k = 0 . 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Somewhat more gene rally, we may consider the equation 

(*) x3 - 3(a(3)kx - (a3k + £ 3 k ) = 0 , 

where a,/3 are arbitrary. This equation evidently reduces to 

x3 - 3(-l)kx - L 3 k = 0 , 

where a, (3 are the roots of 

z2 _ z _ i = o . 

Let a), co2 denote the complex cube roots of 1 and put 

Xi = a + ft , x2 = o)0! + & fi , x 3 = (x) a + <tifs . 

Then it is easily verified that xl9 x2s x3 are the roots of (*). 
By the familiar formula for the discriminant of a cubic, or directly by 

computing (xj,- x2 )2(x2 - x3 )2
? we find that the discriminant is given by 

D = -27( . 3 k - £ 3 k ) 2 . 

For the special case 

x3 - 3(-l)kx - L 3 k = 0 , 

the roots are xt = L, and x2? x3? where 
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X2 + X3 = ~Lk' X2X3 = L2k - ( " 1 ) k ' 

[Feb. 

The discriminant reduces to 

- 1 3 5 F 3 k • 

Also solved by M. Yoder, D. Zeitlin, B. King, A. Shannon, and the Proposers. 

BE NEGATIVE 

H-162 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, Canada. 

Suppose a.. > 1 for i , j = 1, 2, 
such that 

Show there exists an x > 1 

(-D1 

a l l " X a12 

"21 

n l 

a22 " X 

n2 

*ln 

*2n 

a - x nn 

< 0 

for all n. 

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania. 

Let D(n) be the determinant. 

D(l) = ( - l ) 1 ^ ! - x | = x - a i l < 0 

if x < a1:l. Since x, aljL > 1, any x satisfying a41 > x > 1 will do. Sup-
pose aA1 = 1; then x = 1 is the only answer for n = 1. The statement r e -
quires an x for all n. Can we reach a contradiction in the case an = 1? 
While 

D(2) = -a12a21 < -1 < 0 , 
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D(3) = -

ADVANCED PROBLEMS AND SOLUTIONS 

~ a 2 i a 33 — a 2 i " a23a3i ~ a13a21a32 

+ a13a22a31 - a13a31 . 

73 

0 

a21 

a31 

a12 

a22 -

a32 

- 1 

a i 3 

a23 

a33 

Each term here has the sign preceding it, as all factors are positive. Given 
a... with i f j , we can take a22 and/or a33 so large that the positive terms 
dominate, since these factors occur only in positive terms. Thus we reach 
a contradiction of the inequality for n = 3, a t l = 1. 

[Continued from page 60. ] 
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A PRIMER FOR THE FIBONACCI NUMBERS: PART VIII 
MARJOR8EBICKNELL 

A. C. Wi!eox High School, Santa Clara, California 

SEQUENCES OF SUMS FROM PASCAL'S TRIANGLE 

There are many ways to generalize Fibonacci numbers, one way being 
to consider them as a sequence of sums found from diagonals in Pascal 's 
triangle [1] , [2]. Since Pascal 's triangle and computations with generating 
functions are so interrelated with the Fibonacci sequence, we introduce a way 
to find such sums in this section of the Primer, 

1. INTRODUCTION 

Some elementary but elegant mathematics solves the problem of find-
ing the sums of integers appearing on diagonals of Pascal 's triangle. Writ-
ing Pascal 's triangle in a left-justified manner, the problem is to find the 
infinite sequence of sums p/q of binomial coefficients appearing on diagon-
als p/q for integers p and q, p = q > 1, q > 0, where we find entries 
on a diagonal p/q by counting up p and right q, starting in the left-most 
column. (Notice that, while the intuitive idea of "slope" is useful in locating 
the diagonals, the diagonal 1/2, for example, is not the same as 2/4 or 
3/6.) As an example, the sums 2/1 on diagonals formed by going up 2 and 
right 1 are 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, • • • , as illustrated below: 

1) 6 15 20 15 6 1 

74 
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Some sequences of sums are simple to find. For example, the sums 
0/1 formed by going up 0 and right 1 are the sums of integers appearing 
in each row, the powers of 2. The sums 0/2 are formed by alternate inte-
gers in a row9 also powers of 2. The sums l / l give the famous Fibonacci 
sequence 1, 1, 2, 3, 5, 85 13, 21, • • • , defined by Fj * F2 = 1, F = 
F - + F Q. The sums -1 /2 , found by counting down 1 and right 2, give n—J. n—u 
the Fibonacci numbers with odd subscripts, 1, 2, 5, 13, 34, 89, •••, F ? - , 
• • • . While the problem is not defined for negative "slope" less than or equal 
to -1 nor for summing columns, the diagonals -1 /1 are the same as the 

th columns of the array, and the sum of the first j integers in the n column 
is the same as the j t n array in the (n + 1) column. 

To solve the problem in general, we develop some generating functions. 

2. GENERATING GUNCTIONSFOR THECOLUMNSOF PASCALfSTRIANGLE 

Here, a generating function is an algebraic expression which lists terms 
in a sequence as coefficients in an infinite series0 For example, by the for-
mula for summing an infinite geometric progression, 

(1) Y"Z— = a + ar + ar2 + ar3 + 8 * • , |r | < 1 , 

we can write a generating function for the powers of 2 as 

(2) _ 1
2 x = 1 + 2x + 4x2 + 8x3 + ... + 2nxn + ... , | x | < 1/2 . 

Long division gives a second verification that 1/(1 - 2x) generates 
powers of 2, and long division can be used to compute successive coefficients 
of powers of x for any generating function which follows. 

We need some other generating functions to proceed. By summing the 
geometric progression, 

0 0 i % 

(3) r J _ = i+x+X2+x3 + ... = £ m x
k , | x | < i . 
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By multiplying series or by taking successive derivatives of (3), one finds 

oo 

(4) — - = l + 2 x + 3x2 + — + k x k _ 1 + — = X m x k > Ixl < 1 , 
( 1 - x ) 2 fc=011' 

oo - . 

(5) — - — = 1 + 3x + 6x2 + 10x3 + 15x4 + •« =•£ I « )x k , |x | < 1. 
( 1 - x ) 8 k=0 l 2 # 

Computation of the n derivative of (3) shows that 

(1 - x) £ IS)* 
k=0 ^ n / 

n = 0, 1, 2, 3, 

th is a generating function for the integers appearing in the n column of 
Pascal* s triangle, or equivalently, the column generator for the n column, 
where we call the left-most column the zero column. A s a restatement, 
the columns of Pascal1 s triangle give the coefficients of the binomial expan-
sion of (1 - x)" " , n = 0, 1, 2, ••• , | x | < 1 , or of (1 + x)~ ~ if taken 
with alternating signs. 

3. SOME PARTICULAR SUMS DERIVED USING COLUMN GENERATORS 

It is easy to prove that the rows in Pascal1 s triangle have powers of 2 
as their sums: merely let x = 1 in (x + 1) , n = 0, 1, 2, • • • . But, to 
demonstrate the method, we work out the sums 0/1 of successive rows 
using column generators. 

First write Pascal1 s triangle to show the terms in the expansions of 
(x + 1) . Because we want the exponents of x to be identical in each row so 
that we will add the coefficients in each row by adding the column generators, 
multiply the columns successively by 1, x, x2, x3, • • • , making 



1971] i PRIMER FOR FIBONACCI NUMBERS 

1 

l x Ix 

Ix2 2x2 

lx 3 3x3 

lx 4 4x4 

lx2 

3x3 

6x4 

lx 3 

4x4 

77 

lx4 

generators: 1 - x (1 - x)2 (1 - x)3 (1 - x)4 (1 - x)5 

Then the sum S of column generators will have the sums 0/1 of the rows 
appearing as coefficients of successive powers of x. But, S is a geometric 
progression with ratio x / ( l - x), so by (1)9 

S = 1 - x 
1 - 1 - 2x 

1 - x 

for 

1 - x < 1 < 1/2 , 

the generating function for powers of 2 given earlier in (2). 
If we want the sums 0/2, we sum every other generating function, 

& 1 - x (1 - x)3 (1 - x)5 

and again sum the geometric progression to find 
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1 - x = 1 x _ 
1 - 2x 1 - 2x 1 - 2x 

= (1 + 2x + 4x2 + 8x3 + • . • + 2 x + . . . ) 

(x + 2x2 + 4x3 + • • • + 2n V 1 + . . . ) 

1 + (x + 2x2 + 4x3 + • • • + 2 n 1x11 + • • •) , 

which again gene ra t e s powers of 2 as verif ied above. 

We have a l ready noted that the sums l / l give the Fibonacci n u m b e r s . 

To use column g e n e r a t o r s , we m u s t mult iply the columns success ive ly by 

1, x2 , x4 , x 6 , • • • , so that the exponents of x will be the same along each 

diagonal l / l . The sum S^ of column g e n e r a t o r s becomes 

S*¥ = 1 + 2L— + _ 2 L — + — 2 L 
1 " x ' - - \ 2 n _ Y \3 (1 - x)2 (1 - x)d (1 - x)4 

again a geomet r ic p r o g r e s s i o n , so that 

1 - x 
1 X2 1 - X - X2 

1 - x 

for 

1 - x 
< 1 or ^ ) _ -

This m e a n s tha t , for x l e s s than the posi t ive root of x2 + x - 1 = 0, 

(6) — = 1 + l x + 2x2 + 3x3 + Sx4 + 8x5 + • • • •+ F ^ 1 1 - 1 + . . . 
1 - X - X2 
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For generating functions ? we are concerned primarily with the coef-
ficients of x rather than values of x, but a particular example is interest-
ing at this point. Both series (4) and (6) converge when x = 1/2; let x = 
1/2 in those series to form 

4 = 1 + 2°— + 3 * i + 4 e i + 5 * — + 6 e — + *«« + n ° — — + • • • « 

4 = 1 + i . | + 2 . J + 3 . 1 + 5 . ^ + 8 . ^ + . " + F n - * + . . . , 

the same result whether we use the natural numbers or the Fibonacci num-
bers as coefficients of the powers of 1/2! 

Alsos x = 0.1 in (6) gives, upon division by 100, 

4 r = 0o0112358 
8 9 13 

21 
34 

55 

the reciprocal of a Fibonacci number with successive Fibonacci numbers 
making up its decimal expansion,, 

We are now in a position to solve the general problem of finding the 
sums p/q. 

4, SEQUENCES OF SUMS p/q APPEARING ALONG ANY DIAGONAL 
To find the sequence of sums appearing along the diagonals p / l , mul-

tiply the columns of Pascal* s triangle successively by 1, X P + 1 , x 2 ( P + 1 ) , 
x ^ , • *• , so that the exponents of x appearing on each diagonal p / l 
will be the same, giving 

lx 

lx2 

lx3 

lx4 

1XP+1 

2x?+2 

3xP+3 

4xP+4 

lx2P+2 

3x2P+3 

6x2P+4 

lx3P+3 

^ 3 P + 4 l x4P+4 
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1 x P + 1 x 2 p + 2 - 3 p + 3 - 4 p + 4 
generators: —^— -A A x x 

1 X (1 - x)2 (1 - x)3 (1 - x)4 (1 - x)5 

The sum S of column generators is a geometric progression, so that 

1 

xL (7> '"rTTTTT'' "-1 ' irrr < 1 

with S convergent for |x | less than the positive root of xp + x - 1 = 0. 
Then, the generating function (7) gives the sums p / l as coefficients of suc-
cessive powers of x. [Reader: Show x < 1/2 is sufficient. Editor. ] 

In conclusion, the sequence of sums p/q are found by multiplying suc-
cessive q columns by 1, xp"^9 x ^P"^, x ^P"^', • • - , making the sum of 
column generators be 

1 xp4<l
 X

2P+2(1 x3p+3q 

* = ~ + ̂ 7 ^ + ^ T ^ * (1 - x)^+1+ '" ' 

Summing that geometric progression yields the generating function 

(1 - x ) q _ 1 

(1 - X K - x^ ^ 

which converges for |x | less than the absolute value of the root of smallest 
absolute value of x "^ - (1 - x)q = 0 and which gives the sums of the bi-
nomial coefficients found along the diagonals p/q as coefficients of succes-
sive powers of x. [Reader: Show | x | < 1/2 is sufficient. Editor.] 

Some references for readings related to the problem of this paper follow 
but the list is by no means exhaustive. We leave the reader with the problem 
of determining the properties of particular sequences of sums arising in this 
paper. 
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ERRATA 

In Volume 8, No. 5, D e c e m b e r , 1970, i s sue of the Fibonacci Qua r t e r ly , 

p lease make the following changes: 

Page 457: P l e a s e change the equation on line 10 to read as follows: 

f ( l , n ) = g ( l ,n ) n > 1 . 
a, <x 

Page 472: P l e a s e change E q s . (a) and (b) of Theorem 1 to r ead : 

(a) (0n,6n+1) = 1 ( n > 1 ) ; 

( b ) < 0 n ' f i n 4 3 ) = 1 { n - 1 ] • 

Page 488: P l e a s e change Eq. (1) to read: 

R ( F 2 n F 2 m > = R ( F 2 n + l F 2 m > = ( n " m ) F 2 * n + F 2 m - 1 ( n * m ) ' 



THE POSSIBLE END OF THE PERIODIC TABLE 
OF ELEMENTS AND THE "GOLDEN RATIO" 

J. WLODARSKI 
Pt-oz-Wasthoven, Federal Republic of Germany 

Atomic nuclei consist of protons (P) and neutrons (N). The number of 
protons in the nucleus is equal to the position number, or atomic number (Z), 
of the elements in Mendeleev1 s Periodic System of Elements. 

The heaviest element — found in nature long ago — the uranius (U), has 
for a long time occupied the last place (Z = 92) in the Periodic Table. 

During the last 30 years , the Periodic Table has become bigger on 
account of production of the artificial ntransuranium elements" (with Z >92). 
At present, the list of known elements already contains 104 names. 

The atomic physicists of the USA and USSR are now making great efforts 
to create some super-heavy elements in their laboratories. 

It is known that all elements with Z > 90 are spontaneously fissionable. 
The spontaneous fission half-life of nuclei decreases rapidly with increasing 
Z and makes the creation of super-heavy elements more and more difficult. 

Only in the region of two possible "islands of stability" some atomic 
nuclei have more chances of being relatively stabilized. According to some 
theoretical consideration, the best probability for a comparatively stable 
super-heavy element is at atomic number 114 (nucleus n4[x]298), but there 
are some theoretical indications that suggest this would occur also at atomic 
number 126 (nucleus i26[y]310)-

It should be noted that a probability for the creation of these two hypo-
thetical elements, besides fulfilling all remaining theoretical conditions, still 
depends on the value of fission parameter Z2/A (where A is mass number 
equal to number of P + number of N) for every nucleus. 

This parameter is a criterion of instability of nucleus against spon-
taneous fission and has a general trend of increasing with increasing Z. So 
for 92U238 the value of Z2/A = 35.6, for 94Pu239 = 37.0, for 98Cf246 =39.0, 
etc. 

On the basis of the liquid-drop model of atomic nuclei, the fission par-
ameter has a limiting value equal to 44.0. (See the illustration on page 92.) 
[Continued on page 92. ] 
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PYTHAGORAS REVISITED 
HARLAN L. UMANSKY 

Emerson High School, Union City, New Jersey 

A Pythagorean triplet consists of three numbers (a, b, c) in which 
a2 + b2 = c2. Such triplets are generated by m and n where m2 - n2 = a, 
2mn = b, and m2 + n2 = c. 

What are the conditions that in such triplets a + b = L2, as in (9, 40, 
41)? 

Set m + n = K and substitute K - n = m in a + b = L2, letting a = 
m2 - n2 and b = 2mn. Then, K2 - 2n = L2 or K2 - L2 = 2n. 

This last equation is of the form A2 - B2 = 2C2, whose general solu-
tion is A = t2 + 2u2, B = t - 2u2, and C = 2tu [1]. 

Hence, K = t2 + 2u2, L = t2 - 2u2, and n = 2tu. Since m = K - n, 
then by substitution, m = t2 + 2u2 - 2tu„ 

We desire to choose m > n„ This condition will obtain when t2 + 2u2:; 
tu > 4, 

Several other Pythagorean triplets of this type are (133, 156, 205), 
(2461, 5460, 5989), and (12,549, 34,540, 36,749). 

I. What are the conditions that in Pythagorean triplets a + b = L2 and 
m + n = K 2 , and in (1,690,128; 9,412,096; 9,562,640) in which m = 2372 
and n = 1984? 

Since m = K2 - n and the conditions for a + b = L2 have been found 
above, we can set t2 + 2u2 - 2tu = K2 - 2tu. Then K2 = t2 + 2u2 or K2 - t2 

= 2u2, an equation of the form A2 - B2 = 2C2, Whence 

K = x2 + 2f 

t = x2 - 2y2 

u = 2xy 

Therefore, 

2 
m = (x2 - 2y2) + 2(2xy)2 - 2(2xy)(x2 - 2y2) , 
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or 

2 

m = (x2 + 2y2) - 4xy(x2 - 2y2) 

and 
n = 4xy(x2 - 2y2) . 

2 
We desire to choose m > n. This condition will obtain when (x2 + 2 ^ ) : 

xy(x2 - 2y2) > 8. 
In the example above, x = 8, y = 1. Another such triplet is one in 

which x = 15 and y = 2, m = 28,249 and n = 26,040. 
31. What are the conditions that in Pythagorean triplets a + b + c = M2, 

as in (63, 16, 65)? 
Since a = m2 - n2, b = 2mn, and c = m2 + n2, we can set 

m2 - n2 + 2mn + m2 + n2 = M2 

by substitution. Then 

2m2 + 2mn - M2 = 0 . 

Use the quadratic equation formula to solve for m. Then 

m = -2n + N/4n2 + 8M2:4 

or 

m = -n ± N/n2 + 2M2:2 . 

We will show that n2 + 2M2 is a perfect square when n = d2 - 2e2 

and M = 2de. 
Set n2 + 2M2 = P2. Then 

P2 - n2 = 2M2, 
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which is an equation of the type A2 - B2 = C2. Whence 

P = d2 + 2e2 

n = d2 - 2e2 

M = 2de 

Then, by substitution, 

m = -d2 + 2e2 ± N/(d2 - 2e2)2 + ^2(2de)2:2 

or m = 2e2, -e2„ Discard the negative result. 
We desire to choose m > n. This condition will obtain when d < 2e 

and d2 > 2e2. 
In triplets of this type, there is the bonus that m + n is also a square, 

namely, d2„ 
ELL What are the conditions that in Pythagorean triplets a + b = L2 

and a2 = b + c, as in (57, 1624, 1625)? 
Since a2 = b + c, then by substitution, 

(m2 - n2) = 2mn + m2 + n2 

or 

2 
(m2 - n2) = (m + n)2, 

whence, m = n + 1. 
We have shown earlier that if a + b = L2, then m = t2 + 2u2 - 2tu 

and n = 2tu. Since m = n + 1 if a2 = b + c, then set 

t2 - 2tu + 2u2 = 2tu + 1 

or 

t2 - 4tu + 2u2 - 1 = 0 . 
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Solve for t using the quadratic equation formula. Then 

t = 4u ± ^16u2 - 8u2 + 4:2 

or 

t = 2u ± N/ 2u2 + 1 . 

Now 2u2 + 1 will be a perfect square when u = 0, 2, 12, 70, 408, • • • , 
a recurrent series in which q4 = 0, q2 = 2, and a = 6q - q . 

As u = 0, 2, 12, 70, 408, • • • , t correspondingly equals ±1, 4 ± 3. 
24 ± 17, 140 ± 99, 816 ± 577, 

The first six Pythagorean triplets in which a + b = L2 and a2 = b + c 
are listed below in abbreviated form, since in these triplets, n = m - 1 and 
c = B + 1. 

M 
5 

29 

169 

985 

5,741 
33,461 

9 

57 

337 

1,969 
11,481 
66,921 2, 

REFERENCE 

teiler, Recreations in the 

40 

1,624 
56,784 

1,938,480 
65,906,680 

,239,210,120 

Theory of Numbers, 
tions, Inc. , New York, 1964, p. 129 



FIBONACCI AND LUCAS NUMBERS 
TEND TO OBEY BENFORDpS LAW 

J. WLODARSKl 
Proz-Westhoven, Federal Republic of Germany 

In numbers that appear in tables of physical and chemical constants. 
and similar tabulations, the digit 1 appears as first digit almost three times 
more often, as one would expect, 

This phenomenal distribution of first digit is known at least for over 
30 years when the physicist Frank Benford published a paper on this subject 

In his paper5 Benford offered a general "law of anomalous numbers. fT 

The probability that a random decimal begins with digit p is 

log (p + 1) - log p , 

where logarithms are based on 10. 
Now the mathematician Ralph A. Raimi has, in [2] , recently concerned 

himself with analysis of this number phenomenon, but did not refer to Fib-
onacci and Lucas numbers. 

It seems that the first digits of Fibonacci and Lucas numbers tend to 
obey very closely the formula of probability offered by Benford. The chart 
on the following page shows the relation of frequencies for the first 100 Fib-
onacci Numbers and the first 100 Lucas numbers with frequencies of Benford's 
law. It would be interesting to make use of much more than 100 Fibonacci 
and Lucas numbers for the purpose of further analyzing Benford7 s law. 
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GREATEST COMMON DIVISORS 
IN ALTERED FIBONACCI SEQUENCES 

UNDERWOOD DUDLEY and BESSIE TUCKER 
DePauw University, Greencastle, Indiana 

Let the Fibonacci and Lucas sequence be defined a s usual : 
F n + 1 = F n + F n - 1 ' L n + 1 = L n + L n - 1 ' n = 2 , 3 , • •• , 

Fj = F2 = Lj = 1, L2 = 3 . 

It i s well known that success ive members of the Fibonacci sequence are 
relatively prime, but if we alter the sequence slightly by letting 

Gn = F n + ( - l ) n , n = 1, 2 , ••• , 

then we have very different behavior, a s can be seen in the following table: 

n 

G n 
(Gn'<W 

1 

0 

2 

2 

1 

3 

1 

4 

4 

4 

5 

4 

6 

9 

3 

7 

12 

8 

22 

11 

9 

33 

10 

56 

8 

n 11 12 13 14 15 16 17 18 19 

G 88 145 232 378 609 988 1596 2585 4180 

( G n ' G n + l ) 2 9 2 1 7 6 5 5 

Inspection of the table shows that the f i r s t , t h i rd , fifth, • • • en t r i e s in 

the (G , G -j ) l ine a r e the second, fourth, s ixth, • • •. Fibonacci n u m b e r s , 

and the second, fourth, s ixth, ••• en t r i e s a r e the th i rd , fifth, s e v e n t h , * " 

Lucas number s . It i s the purpose of th is note to prove this and some re la ted 

r e s u l t s which a r e co ro l l a r i e s of T h e o r e m 1 below. 

T h e o r e m 1; 
(1) 
(2) 

(3) 
(4) 
n = 1, 2 , . . . . 

89 

F 4 n 
F 4n+1 
F 
r 4 n + 2 F 
r 4 n + 3 

+ 

+ 

+ 

+ 

1 

1 

1 

1 

= F 2 n - l L 2 n + l ' 
F 2 n + l L 2 n ? 

F2nH-2L2n ' 
F 2 n + l L 2 n + 2 J 

F 
r 4 n F *4n+l 

F r 4 n + 2 
F *4n+3 

- 1 

- 1 

- 1 

- 1 

i= 

= 
= 
= 

F 2 n + l L 2 n - l ' 
F 2 n L 2 n + l ' 
F 2 n L 2 n + 2 ' 
F T 

2n+2 2 n + l ' 
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Proof. From [1, p. 59], we have 

(5) F ^ + F = F L , p even , 
N n+p n-p n p ^ 
<6) F n + p + F n -p = F p V P odd> 

<7) F n + p " F n -p = F pV P e v e n • 
(8) F _̂ - F = F L , p o d d . 

n+p n-p n p * 

Using (6), we get 

F4n + * F4n + F 2 F(2n+l)+(2n-l) + F(2n+l)-(2n-l) 
F 2n- l L 2n+l ' 

Using (5), we get 

F4n+1 + 1 = F 4 n +1 + F l F(2n+l)+2n + F(2n+l)-2n 
F2n+lL2n " 

Similar applications of (5)-(8) give the remaining six identities in (l)-(4). 
Although it is not known whether or not the Fibonacci sequence con-

tains infinitely many primes, Theorem 1 shows that the sequences { F + l} 
and ( F - l} contain only finitely many primes. 

Corollary 1. F + 1 is composite for n > 4 and F - 1 is composite 
for n > 7. 

Proof. From Theorem 1, F8 ± 1, F9 ± 1, F10 ± 1, • • • are all com-
posite because all of the factors on the right-hand sides of the equations in 
(l)-(4) are greater than one. Inspection of early values of F then com-
pletes the proof. 

The property of greatest common divisors noted at the beginning of this 
note is proved in 

Corollary 2. 
(G4n'G4n+l) = L2n+1' (G4n+2' G4n+3) = F2n+2 ' 
(G4n+l,G4n+3) L2n+1 ' 

n = 1, 2, 
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Proof. F r o m Theorem 1, we have 

( G 4 n ' G 4 n + l } = ( F 4 n + X> F 4 n + 1 " X) = ( L 2 n + l F 2 n - r L 2 n + l F 2 n ) 

L 2 n + l ( F 2 n - l j F 2 n ) = L 2n+1 ' 

The proofs of o ther equations a r e s i m i l a r , the l a s t one needing the fact 

that ( F 2 n , F 2 n + 2 ) = 1, n = 1, 2, • • • . 

Using Theo rem 1 in a s i m i l a r way, we can prove 

Coro l l a ry 3. If H = F - ( - l ) n , n = 1, 2 , • • • , then 

( H 4 n , H 4 n + l ) = F 2 n + l J ( H 4n+2 ' H4n+3 ) = L2n+2 ' 

( H 4 n + l s H 4 n + 3 ) F 2 n + 1 

1, 2 , 

It would be na tura l to now cons ide r the sequences ( L + (-1) } and 

( L - (-1) }, but different methods a r e needed. 

The au thors wish to thank the Edi tor for valuable suggest ions. 

Note. The r e a d e r s may wish to prove the additional ones l i s ted below. 

Edi tor . 

A ' ( F 4 n + l + !• F 4 n + 2 + 1 } = L 2 n > 

B ' ( F 4 n + l + ^ F 4 n + 3 + 1} = F 2 n + 1 ' 

C. 

D. 

E. 

F . 

G. 

H. 

I. 

( F 4 n + l 

( F 4 n + l 

( F 4 n - l 

( F 4 n - l 

( F 4n+3 

( F 4n+3 

( F4n+4 

•att, J r . , 

- !• F 4 n + 2 " 1 } 

- ! • F 4 n + 3 " X) 

" !• F 4 n + 1 " X) 

+ *• F 4 n + 1 + » 

+ !• F 4 n " « = 

+ ! • F 4 n + 2 - » 

- !• F 4 n + 3 " 1 J 

REFERENCE 

= F 2 n ' 

L 2n+1 ' 

= F 2 n ' 

= L 2 n ' 

F 2 n + 1 ' 

= F 2 n ' 

= L 2 n + 1 -

, Fibonacci and Lucas Numbers ; 

Boston, 1969. 



THE POSSIBLE END OF THE PERIODIC 
92 TAPLI3 OF ELEMENTS AND THE "GOLDEN RATIO" Feb. 1971 
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Atomic Number Z 

The Fission Parameter Z2/A for Some Representative Nuclides 

The limiting value Z2/A = 2a / a = 44, from the incompressible 
s c 

lieuid-drop model is shown dotted. All the nuclides shown above Z = 90 
exhibit spontaneous fission but not as their major mode of decay. (See [1].) 

All nuclei with parameter Z2/A > 44 could not practically exist, be-
cause they would decay already in "statu Nascendi.ff (See [1], [2] . ) 

For the aforementioned possible comparatively stable candidate in the 
region of the first "island stability" the nucleus 114 [x]298 has the value of 
Z2/A = 43.6, which is very close to the limiting value of the fission par-
ameter = 44. 

It seems that the element with Z = 114 would be practically the last 
one in the Periodic Table of Elements. The most stable candidate at the ele-
ment with Z = 114 is the nucleus U4[x]298. His proton-neutron ratio Z/N = 
0.6195« •• and this value is one of the best approximations to the "Golden 
Ratio" in the world of atoms. (See [3J.) 

REFERENCES 
1. Evans, Robley D. , The Atomic Nucleus, McGraw-Hill, Inc. (1955), pp* 

385-391. 
2. Mukhin, K. N. , Introduction to Nuclear Physics, Moskov, USSR (1963), 

pp. 321-323 and pp. 367-369. 
3. J. Woldarski, "More About the 'Golden Ratio? in the World of Atoms," 

Fibonacci Quarterly, Vol. 6, No. 4 (1968), p. 244 and p. 249. 
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DISCOVERING THE SQUARE-TRIANGULAR NUMBERS 
PHILLAFER 

Washington State University, Pullman, Washington 

Among the many mathematical gems which fascinated the ancient Greeks, 
the Polygonal Numbers were a favorite. They offered a variety of exciting 
problems of a wide range of difficulty and one can find numerous articles 
about them in the mathematical literature even up to the present time. 

To the uninitiated, the polygonal numbers are those positive integers 
which can be represented as an array of points in a polygonal design. For 
example, the Triangular Numbers are the numbers 1, 3, 6, 10, • • • associ-
ated with the arrays 

x 
X X X 

X X X X X X 

X , X X , X X X , X X X X , 

The square numbers are just the perfect squares 1, 4, 9, 16, • • • associ-
ated with the arrays: 

X X X X 

X X X X X X X 

X X X X X X X X X 

X, X X, X X X, X X X X, 

Similar considerations lead to pentagonal numbers, hexagonal numbers and 
so on. 

One of the nicer problems which occurs in this topic is to determine 
which of the triangular numbers are also square numbers, i. e. , which of the 
numbers 

1 3 6 10 ••• n ( n + 1} . . . 
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are perfect squares. There are several ways of approaching this problem [1], 
I would like to direct your attention to a very elementary method using the 
discovery approach advocated so well by Polya [2], 

A few very natural questions ar ise , such as , nAre there any square-
triangular numbers?". This is easily answered since 

is such a number. To show that more than this trivial case occurs, we find 
that 

36 = 62 = ± £ 
z 

is also a square triangular number. One would then naturally ask, MAre 
there infinitely many square-triangular numbers?". This is considerably 
more difficult to answer since a careful check reveals the next one to be 

352 = 4*50 = 1 2 2 5 

and we see that they do not appear to be very dense. In seeking to answer the 
last question, one quite naturally asks , "Is there a formula which always 
yields such a number, or better yet, is there a formula which yields all such 
numbers?". This, in turn, leads us to ask, "Is there a pattern in these num-
bers which would help us guess a formula?". 

To find a pattern from the three cases 1, 36, 1225, seems rather 
futile, so we apply a little (!) more arithmetic to find that the next two cases 
are 

2042 = 2 8 8 ' 2 8 9 = 41,616 
Li 

and 
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1189̂  = M81^82 = l ! 4 1 3 } 7 2 1 . 

We now seek a pa t t e rn from the five c a s e s : 1; 36; 1225; 41,616; 1 ,413,721. 

One i s immedia te ly diseouragingly i m p r e s s e d by the re la t ive s ca r c i t y of 

s q u a r e - t r i a n g u l a r number s and the poss ibi l i ty of a nice e a s y - t o - g u e s s pa t te rn 

s e e m s quite remote ; but , having gone this fa r , i t does not hur t to a t l e a s t p u r -

sue this cou r se a l i t t le fur ther . Let u s introduce some notation to facil i tate 

the work by cal l ing S , T , and (ST) the n s q u a r e , t r i angu la r , and 

s q u a r e - t r i a n g u l a r n u m b e r s , respect ive ly . Organizing o u r data to da te , then, 

we have: 

1 = (ST)i = Si = l2 = ^ = Ti 

36 = (ST)2 = S2 = 62 = *± = T8 

1,225 = (ST)3 = S35 = 352 = 

41,616 = (ST)4 = S204 = 2042 = 

2 

49-50 _ 
— 2 ~ ~ T49 

288-289 
L288 

1,413,721 = (ST)5 = S1189 = H89 2 = I 6 8 1 ' 1 6 8 2 = T 1 6 8 1 

The adventurous r e a d e r i s encouraged a t this point to look for a pa t te rn 

and formula on his own before reading any fur ther . 

F o r the unsuccessful g u e s s e r s o r those wishing to compare r e s u l t s , l e t 

u s c a r r y on by wri t ing the number s in va r ious ways; in p a r t i c u l a r , we might 

look at them in p r i m e factored form. 

1 = ( S T ) l = S l = I2 = ( L I ) 2 = ^ = | = ^ 

36 = (ST)2 = S6 = 62 = (2-3)2 = M = ^ 3 ^ 

1,225 = (ST)3 = S35 = 352 = (5-7)2 = ^ 2 = ^ 2 l = T^ 
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41,616 = (ST)4 = S204 = 2042 = (22.3-17)2 = H | H £ = *!^1]1 = Tm 

1,413,721 = (ST)5 = S1189 = 11892 = (29-41)2 = 1 6 8 1 ' 1 6 a 2 = 2 ' 2 9 ' : 4 l 2 = T1881 

Is there a pattern now? We note that as far as patterns are concerned, 
the form of the S fs Is a little nicer than that of the T Ts, but essentially n n J 

they are the same, so we shall concentrate on the S T s. 
Since we only have five cases at hand, and the sixth case is likely to be 

a bit far off, we must make the most of what we have. We might note that 
three of the cases are the square of exactly two factors whereas the trivial 
case Si = l2 could be written with any number of lTs and 

^204 (22.3-17)2 

could be reduced to the square of two factors if we dropped the requirement 
of prime factors. It might be worthwhile to write each S as the square of 
two factors. This allows no options except for S204 which could then be 
written in five non-trivial ways, namely, 

S204 = (2-102)2 = (3-68)2 = (4-51)2 = (6.34)2 = (i2.17)2 . 

Do any of these fit into a pattern with the other four? If we looked only for 
the monotone increasing pattern of the factors we would choose S204 = (12* 17)2. 
Now, looking at the data so arranged, we have: 

St = (1-1)2 

S6 •= (2-3)2 

S35 = (5-7)2 

S204 = (12-17)2 

S1189 = (29-41)2 

Look hard, now, for there is a very nice pattern here; and in fact, it is 
recursive of a Fibonacci type. Do you see that 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 
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5 , 2 + 5 = 7, 5 + 7 = 12, 5 + 12 = 17, 12 + 17 = 29, and 12 + 29 = 41? 
Le t us wr i t e this into ou r data a s : 

(ST)! = (1-1)2 

(ST)2 = (2-3)2 = (1 + 1)2.(1 + 1 + 1)2 = ( i + 1)2.(2-1 + 1)2 

(ST)3 = (5-7)2 = (2 + 3)2.(2 + 2 + 3)2 = (2 + 3)2.(2-2 + 3)2 

(ST)4 = (12-17)2 = (5 + 7)2.(5 + 5 + 7)2 = (5 + 7)2.(2-5 + 7)2 

(ST) 5 = (29-41)2 = (12 + 17)2.(12 + 12 + 17)2 = (12 + 17)2.(2'12 + 17)2 

Before formal iz ing and t rying to prove this g u e s s , it would be well to 

t e s t i t a s much a s poss ible to see if it works at al l . Our f i rs t t es t will be to 

see if (29 + 41)2(29 + 29 + 41)2 i s a t r i angu la r number . 

(29 + 41)2(29 + 29 + 41)2 = 702-992 = 4900-9801 = 9 8 Q Q ' 9 8 Q 1 

i s t r i angu la r and our confidence in our guess i s considerably s t rengthened. 

Our next t e s t will be to see if this new squa re - t r i angu l a r number i s , in fact, 

the next one; i . e . , i s it (ST)6? This involves checking to see if t he r e a r e 

any squa re s between T1681 and T9800 which i s hard ly an inviting exe rc i s e in 

a r i t hme t i c . The re fo r e , le t us u se the some t imes wise advice that "If you 

canTt prove i t , genera l ize it . M 

In o r d e r to p roceed on with a proof we introduce a bit m o r e notation. 

Let a be defined by the r e c u r s i v e re la t ion a0 = 0, a-j = 1, and a = 
n J u l n 

2a - + a _2 for n > 2. F o r n = 1 , 2 , 3 , 4 , 5, this gives us the sequence 

1, 2 , 5, 12, 29 which we recognize a s the f i rs t fac tors for (ST)j, (ST)2, 

(ST)2, (ST)4, (ST)5, respec t ive ly . We also note that the second fac tors 1, 

3 , 7, 17, 41 a r e a* + a0, a2 + a l 3 a3 + a2, a4 + a3 , a5 + a4, respec t ive ly . 

F ina l ly , before proceeding with our proof, we notice that in o r d e r to 

prove a posi t ive in teger m i s a t r i angu la r number , it suffices to show that 

t he re ex i s t s a posi t ive in teger n such that 

n(n + 1) 
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or equivalently that there exists positive integers a and b such that 

ab 1X1 = T 

with |a - b | = 1. 
We now attempt to prove the following conjecture which is a formalized 

generalization from our data. 

Conjecture A: (ST) = a2 (a + a ^1)2 for n = 1, 2, 3, ••• 

Proof: We will attempt the proof in two parts . 
(1) The sequence of numbers a2 (a + a - ) 2 for n = 1, 2, 3, ••• 

are square-triangular numbers. 
(2) This sequence is in fact all of the square-triangular numbers. 

Clearly, a2 (a + a . ) 2 i s a square number for all n > 1 so we concen-
trate on showing these numbers are also triangular for n > 1. Using math-
ematical induction, we first dispense with the case for n = 1 as 12(1 + 0)2 = 
1 = (2-l)/2 with |2 - l | = 1. 

Now assume a2 (a + a - )2 is triangular with 

2a2 (a + a , )2 

9 / , \2 n n n-1 
a2 (a + a - r = o 

nx n n-1 2 

and 

2a2 - (a + a - )2 = 1 • n v n n-1 ' 

for some n > 1. Then 

2(2a + a 1)2(2a + a - + a )2 

n2 /n + a \2 = n n - l n n-1 n 
a n+l l a n+l a n ; 2 

where 



1971] DISCOVERING THE SQUARE-TRIANGULAR NUMBERS 99 

K + V l ' 2 - <3an + Vl>2l 
= |<8a£ + S a ^ + 2a^_1) - (9a^ + fty^ + ^_±)\ 

-a2 + 2a a 1 + a2 
n n n-1 n - 1 1 

= la2 - 2a a , - a2 -1 = ba2 - (a + a - ) 2 | = 1 1 n n n-1 n-1" ' n v n n-1 ' 

Therefore a2
 1 ( a + 1 + a )2 is also triangular and (1) is proved. 

Now let 

2 M ^ i + 1) 
m i = — - 5 

be an arbitrary square-triangular number. There are two cases which can 
be considered, namely kj even or kA odd. It is immaterial which we con-
sider first, as we will be alternating back and forth from one to the other in 
a descending, sequence of square-triangular numbers which will terminate 
finally at (ST)j = 1. To be definite, let kt be odd which implies 

ki + 1 

is an integer and 

/ ki + 1 \ 
\ k l > - 2 - ) = 

(we are using the common notation of letting (a,b) denote the greatest com-
mon divisor of a and b). Therefore 

m i = k i 9 — 

a square implies that both kt and (kt + l) /2 are squares. Let 
^ + 1 

= bj 
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and kt = c2 with b j , Cj > 1. Now kA > 1 impl ies bj < Cj and, in fact, 

bj = c 4 , if and only if 

kt + 1 
kt = — j — 

if and only if kj = 1 if and only if nij = 1, in which case 

m2i = a2i(ai + a 0 ) 2 = (ST)i , 

and we a r e done. Cons ider then bj < ct and define b2 = ct - blf c2 = 

2bi - c1? and m2 = b 2 c 2 . 

Since 

2bf - c2! = kj + 1 - ki = 1, 

we factor and get 

( As/2bi - ct)( *J%bt + c4) = 1 , 

where b^, c4 > 1 impl ies \ / 2 b i + Cj > 0 , which impl ies that N/2bj- Cj 

> 0, so N/2bi > c j . Now 3/2 > ^ so it a lso follows that Sbj /2 > c t 

which is equivalent to 3bj > 2cj and thus 2b} - Cj > Cj - b j . Also , Cj > bj 

impl ies both that c4 - b t > 0 and that fy > 2bj - cl9 which then gives us the 

inequality Cj > bj > 2bj - c ^ C j - b ^ O , o r equivalently, Cj > bt > c2 > 

b2 > 0. 

F u r t h e r m o r e , 

2b? Co 
2 ? 2 

m2 = b2 c2 = — g — ' 

where 
|2b2

2 - c | | = |2(C l - b i ) 2 - (2bj - Ci)2 | = \c\ - 2b* | = | - l | = 1 , 
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2 

so m2 i s also a s q u a r e - t r i a n g u l a r number and is n e c e s s a r i l y s m a l l e r than 
2 

ia1 from the l a s t inequality. Now le t 

2b! c2
2 M ^ 2 + 1) 

m 2 = - a " = — 9 — 

with 2b2 = k2 (since 2b2. - c\ = - 1 gives c\ = 2b2 + 1) and we get k2 

even a s predic ted e a r l i e r . It might be observed that in this case m2 ^ 1 

which i s equivalent to our fact that c2
 > b2. 

Now continue in the same manne r by defining b3 = c2 - b 2 , c3 = 2b2 -

c2 , and m3 = b | c | . In this c a s e , b3 < c3 s ince if b3
 > c 3 , then by s u b -

sti tution c2 - b2
 > 2b2 - c2 which impl ies c2

 > 3b2/2. Recal l ing that 

2b2; - c2 = c\ - 2b2! = - 1 , 

which i s equivalent to c2 - 2b2 = 1, we get by using c2 > 3b2/2 that 

(3b2/2)2 - 2b2 < 1 . 

This impl ies 

which impl ies b2 i s a posit ive in teger with square l e s s than 4 , o r that b2 = 

1. T h i s , however , yields c2 - 2-12 = 1 o r c | = 3 in which case c2 = \[3 

must be a posit ive in teger , which i s false. Thus the hypothesis that b3 > c3 

i s false and b3 < c3 a s c laimed. We might note that b3 = c3 i s equivalent 

to c2 = 3b2 / 2 which impl ies 

•2 ,2 b 2 

2b^ = (3b2/2)2 - 2\% = ^ , 

which impl ies that b2 = 2 and also that 

c2 = | • 2 = 3 . 

T h i s , in t u rn , gives us b3 = c3 = 1 a s well as b4 = 5, Cj_ = 7, so 
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ml = 52 . 72 = a|(a3 + a2 )2 = (ST)3 

and we are done. 
In general, with b3 < e3, 

2 2 2 b 3 C 3 

m3 = b3c3 = — — , 

with 

[2bl - c2
3| = |2(c2 - b2)2 - (2b2 - c2 ) 2 | = |c2

2 - 2bl| = 1 

so m3 is again a square-triangular number. Since 

c2 > b2 > 2b2 - c2 > c2 - b2 > 0 , 

or equivalently 

c2 > b2 > c3 > b3 > 0 , 

2 9 
m3 is again smaller than m2. If we let 

2b^c2
3 (k3 + l)k3 

m3 = —z— = sp-

with k3 = c3 (since from above 2b3 - c | = 1 gives 2b3 = c3 + 1) we have 
2 2 ^ = k3 + 1. Thus k3 is now odd as in the first case and one can proceed 

in exactly the same manner generating new and smaller square-triangular 
jrs until we fin 
This gives us 

numbers until we finally arrive at m2 = b2 c2 = 1 with b = c = 1 J n n n n n 

and 

1 = b = c - , - b ., n n-1 n-1 

b = c - - b i n n-1 n-1 
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which gives b n _ 1 = 2 and 0 ^ = 3 when solved. It follows that 

and 

2 = b n - 2 = C n -2 " b n - 2 

3 = c T = 2 b o - c „ n - 1 n-2 n-2 

which yields b n _ 2 = 5 and c^_2 = 7, • • • . In gene ra l , for j > 2 , b . -

c . - b . 
3 ] 

and 

c . , - = 2b. - c . , 
J + 1 J 3 

b . = c. - - b . - , c. = 2b. ., - c. - . 
3 3-1 3-1 3 3-1 3-1 

T h e r e f o r e , 

2b. + b . ( 1 = 2(c. - - b . - ) + (c. - b . ) = 2c. - - 2b. - + (2b. - - c. - ) 
3+1 3-1 3-1 3 3 3-1 3-1 3"1 ^ n 

« > 1 ~ b ^ ) = b . _ , 

b . + b . - = b . + (2b. + b . ^ ) = 3b. + b . ^ = 3c. - - 3b. -3 3-1 j j j+1 j j+1 j - 1 j - 1 

+ (2b. 1 - c . , - ) - (c. - - b . ! ) = c. - . 3-1 3+1 3-1 3-1 3-1 

We have jus t done the computation for an induction proof that b . = a -

and c. = a . - + a . for i = 1, 2 , • • • , n. In p a r t i c u l a r , for j = 1, i t 3 n-3+l n-3 J ^ J 

follows that 

m | = b2iC2i = a2 (a + a - )2 
1 J 1 n n n - 1 

and m\ is in our sequence as c la imed, and (2) i s proved. 

Since the sequence i s monotonically inc reas ing , we have that 

(ST) = a2 . (a + a - )2 
n n n n - 1 
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as claimed, and our Conjecture A is true. 
Thus the empirical data of five cases led us to guess a very nice recur-

sion formula which turned out to be valid. So even though the square-triangular 
numbers are very sparse, not only in relation to the positive integers, but 
also in relation to either the square or triangular numbers themselves, there 
are still infinitely many of them and they behave very well. In fact, they be-
have beautifully. 

There are many other very nice relationships in these numbers which 
are left for the reader to derive and/or prove. A few of these are listed here 
to whet the appetite. 

(i) (ST)i = a2!(ai + a0)2 

(ST)2 = al(a2 + a i ) 2 = (2a i + a 0 ) 2 (3 a i + a0)2 

( S T ) n = a n ( a n + Vl)2 = ( 2 a n - l + an-2 ) 2 < 3 V l + a n - 2 ) 2 f o r n ^ 2 ' 

(ii) (ST) is odd if and only if n is odd if and only if a is odd. 

m a =il±^)n-a-^)nand(ST) = (^ ^ " ^ ^ V , 
n 2^2 n V 4 ^ / 

(iv) 2a2
n - (an + a n _ 1 ) 2 = (-if'1 for n > 1 . 

(v) If v (v + 1) 
(ST) = a2 (a + a - )2 = S = u2 = T = n n

0 , 
n n n n-1 u n v 2 

n n 
then v 1 = u 1 + v + u for n > 1. This may be proven with 
or without (vi) below. 

(vi) The sequences of u Ts and v Ts are generated by the recursive 
formulae: 
u0 = 0, u-j = 1, and u = 6u n - u 0 for n > 2 , u » i » n n_i n_2 ' 
v0 = 0, Vj = 1, and v = 6 v - , - v 0 + 2 for n > 2 . u ? 1 9 n n-1 n-2 

(vii) u = (3 + 2N/2)n - (3 - 2 ^ 2 ) n 

n 4^2 

= (4 + 3 N/2 )(3 + 2 N/2 ) n " 1 - (4 - 3 N/2)(3 - 2 ^f"1 1 

4^2 " 2 

(viii) The square-triangular numbers are precisely the numbers x 2 ^ 
such that x2 - 2y2 = 1 or x2 - 2V2 = -1 with x and y positive 
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integers. These types of Diophantine equations are commonly 
known as PelPs Equations. 

Having seen these very nice results , the mathematician naturally asks, 
"What about the triangular-pentagonal numbers, square-pentagonal numbers, 
and so on?ff. This is not at present completely answered, butmany in-roads 
have been made by some outstanding mathematicians. In particular, W. 
Sierpinski devoted some time to this problem [3], but perhaps the nicest r e -
sult so far obtained is one derived by Diane (Smith) Lucas as an undergradu-
ate at Washington State University. In a paper (not yet published) she obtained 
the very beautiful result that for 3 < m < n, there exist infinitely many 
numbers which are both n-gonal and m-gonal if and only if 

(i) m = 3 and n = 6 
or 

(ii) (m - 2)(n - 2) is not a perfect square. 
With the machinery she developed, it is quite easy to derive for exam-

th pie, that the n pentagonal-triangular number 

/•n v (2 - N/3)(97 + 56 ^ ) n + (2 + ^3)(97 - 56\/3)n - 4 
(P 5 f 3 ) n - jg ~ 

which is a result obtained by Sierpinski. 

REFERENCES 

1. L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, 
Vol. 1, 1919. 

2. George Polya, Mathematics and Plausible Reasoning, Princeton Univer-
sity P re s s , Vol. 1, 1954. 

3. W. Sierpinski, nSur les Nombres Pentagonaux," Bull. Soc. Royale 
Sciences Leige, 33 (1964), pp. 513-517. 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

B-202 Proposed by Richard M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let F j , F2 , *•• be the Fibonacci Sequence 1, 1, 2, 3, 5, 8, ••• with 
F n + 2 = F n + 1 + F n L e t 

G = F + F + F 
ri *4n-2 *4n r4n+2 

(i) Find a recursion formula for the sequence Gl9 G2, ' ' " . 
(ii) Show that each G is a multiple of 12. 

B-203 Proposed by Richard M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Show that F g _. + F g + F g + . is always a mult iple of 168. 

B-204 Proposed by V. E Hoggatt, Jr., San Jose State College, San Jose, California. 

Let Fi = F2 = 1 and F l 0 = F ^ + F . Show that 1 L n+2 n+1 n 

(i) Ftx + F3x2 + F5X3 + F7x4 + •-• = (x - x 2 ) / ( l - 3X + x2) 

106 
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for |x | < (3 - N / 5 ) / 2 . 

(ii) 1 + 2x + 3x2 + 4x3 + • • • = 1/(1 - x)2 for | x | < 1. 

(iii) n F l + (n - 1)FS + (n - 2)F 5 + . ~ + 2 F ^ 2 + F ^ = F 2 n + 1 - 1. 

B-205 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 

(2n - l ) F i + (2n - 3)F3 + (2n - 5)F5 + • • • + 3 F 2 n _ 3 + F 2 n _ 1 = L ^ - 2 , 

where L i s the n Lucas number ( i . e . , L4 = 1, L2 = 3, L = L 
n+2 n+1 

+ L ). n 

B-206 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + N/5 )/2 and sum 

^ a F - + F n=l n+1 n 

B-207 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Sum 

n=l F + N/5F , - + F _,_„ n n+1 n+2 

SOLUTIONS 

CONTRACTING INTO A SQUARE 

B-184 Proposed by Bruce W. King, Adirondack Community College, Glen Falls, New York. 

Let the sequence ( T } satisfy T „ = T - + T with a r b i t r a r y 

init ial conditions. Le t 
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g( n ) = TnTn+3 + 4 T n + l T n + 2 • 

Show the following: 
(i) g(n) = 0* + 1 + TlJ . 

(ii) If T is the Lucas number L , n n 

g(n) = 2 5 F | n + 3 . 

(See Fibonacci Quarterly, Problems H-101, October, 1968, and B-160, 
April, 1968.) 

Solution by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Substituting T = T . - T . and T lQ = T ^0 + T ,n into g(n) to n n+2 n+1 n+3 n+2 n+1 & 

we have 

g(n) = (Tn + 2 - T n + 1 )2(T n + 2 + Tn+1)2 + 4T^ + 1 . T^+ 2 

= K+Z ~ T ^ + l ) 2 + 4 T L - 1 T U 
= T n + 1 + 2 T U T n + 2 + Tn+2 

= < T U + T L + 2 ) 2 • 

Thus (i) is established. 
By substituting in terms of r and s in the usual way, (ii) is established. 

2 
} . . n+1 n + 1 2 , n+2 n+2,2 

n+1 n+2; 
/T2 _L T2 \2 r/ n + 1 , n+1,2 , , n+2 , n+2 A 
( Ln+l + Ln+2) = [ ( r + S > + ( r + S > 1 

r 2n+3, -1 , , , 2n+3, -1 , *,2 

= [ r (r + r) + s (s + s)J 

= [ ( r - s ) ( r 2 n + 3 - s 2 n + 3 ) ] 2 

= 2 5 F 2 n + 3 

where r and s are the roots of x2 - x - 1 = 0. 

Also solved by W. C. Barley, A. K. Gupta, John Kegel, John W. Mi/som, Henry Newmon, C. B. A. 
Peck, A. G. Shannon (Australia), and the Proposer. 
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LUCAS RATIO I 

B-185 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

L5n /Ln = LL - <-1)nV " 1 

Solution by C. B. A. Peck, State College, Pennsylvania. 

Substitute in the r . h . s . L = a + b where ab = - 1 , multiply by 
a + b f 0 afterward to get a n + b n . 

Also solved by W. C Barley, Wray G. Brady, Warren Chaves, Herta T. Freitag, Edgar Karst, Charles 
Kenney, John l/l/. Mi I so m, John Wessner, David Zeitlin, and the Proposer. 

LUCAS RATIO I I 

B-186 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
LK /L = [LQ - ( - l ) n3]2+ (-l)n25F2 . 5n ' n L 2n N ' J N ' n 

(For n even, this result has been given by D. Jarden in the Fibonacci Quar-
terly, Vol. 5 (1967), p. 346.) 

Solution by John Wessner, Montana State University, Bozeman, Montana. 

Using the well-known identity, 

L0 = 5 F2 + 2(- l ) n , 2n n 

and the result of Problem B-185, we find 

L^ /L = L2
0 - (-l)nLQ - 1 5n ' n 2n 2n 

\U-,2 , r / - x n T = [ L 2 n - 2(-l)"] + 5(- l )"L2 n - 10 

= [L 2 Q - 3( - l ) n ] 2 + 5(- l)n[5F^ + 2(- l)n] - 10 

= [ L 2 Q - 3(-l)n]2 + 25( - l )V 
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This is the result given by Jarden in the reference. The M5M in the problem 
statement was a misprint. 

The following solved the corrected problem or pointed out the misprint: W. C. Barley, Wray G. 
Brady, Herta T. Freitag, John Kegel, Henry Newmon, C. B. A. Peck, and the Proposer. 

A DIOPHANT1NE E Q U A T I O N 

B-187 Proposed by Carl Gronemeijer, Saramoc Lake, New York. 

Find positive integers x and y, with x even, such that 

(x2 + y 2 ) (x 2 + x + y 2 ) ( x 2 + f x + y 2 ) = 1 ,608,404. 

Solution by Richard L Breisch, Pennsylvania State University, University Park, Pennsylvania. 

Since 

(x2 + y 2 ) < (x2 + x + y 2 ) < (x2 + - |x + y 2 ) , 

(x2 + y2) < ^1 ,608,404. Hence, it is sufficient to consider x and y such 
that (x2 + y2) < 117; that requires 0 < x < 10 and 0 < y < 10. Since 
1,608,414 factors into 22-7.17-3M09, (x2 + y2) must equal either 

68 = 4 + 64 = 22 . 17 , 

or 

24 = 9 + 25 = 2 • 17, 

or 

109 = 100 + 9 . 

Only this last value works, and thus with x = 10 and y = 3, we get 

109 • 119 • 124 = 1,608,404. 
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Also solved by W. C. Barley, Wray G. Brady, Herta T. Freitag, J. A. H. Hunter (Canada), Charles 
Kenney, John W. Milsom, C B. A. Peck, David Zeitlin, and the Proposer. 

INSCRIBED CIRCUMSCRIBED QUADRILATERAL 

B-188 Proposed by A. G. Shannon, University of Papua and New Guinea, Boroko, Papua. 

Two circles are related so that there is a trapezoid ABCD inscribed 
in one and circumscribed in the other. AB is the diameter of the larger 
circle which has center O, and AB is parallel to CD. 0 is half of angle 
AOD. Prove that sin 0 = (-1 + *IE)/2. 

Solution by Joseph Konhauser, Macalester College, St. Paul, Minnesota. 

In a circumscribed quadrilateral, sums of opposite sides are equal, so 

AB + DC = AD + BC . 

Substituting AB = 2r, 

DC = 2r sin0.fa/2) - 20 , AD = 2r sin 6, 

where r is the radius of the larger circle, we obtain, after simplifying, 

sin 6 = 1 - sm26 . 

It follows that sin 0 = (-1 + <s/5)/2. 

Also solved by Richard L Breisch, Herta T. Freitag, C. B. A. Peck, John Wessner, and the Proposer. 

FIBONACCI EXPONENTS 

B-189 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let a0 = 1* 2Lt = 7, and an + 2 = a n + 1 a n for n > .0. Find the last 

digit (i. e„ , units digit) of am» 
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Solution by David Zeitlin, Minneapolis, Minnesota. 

The units digit has a repetitive cycle of six digits: 1, 7, 7, 9, 3, 7. 
th Since a999 is the 1,000 term, and 1000 = 6(166)+4, the required units 

digit is 9. 

Also solved by W. C. Barley, Wray G. Brady, Richard L Breisch, Warren Chaves, Herta T. Freitag, 
J. A. H. Hunter (CaHada), Henry Newmon, C. B. A. Peck, Richard W. Sielaff, John Wessner, and the 
Proposer. 

[Continued from page 50.] 
show that Theorem 2 yields an equivalent formula. 

REFERENCES 

1„ James A. Jeske, "Linear Recursive Relations, Part I ," Fibonacci Quar-
terly, Vol. 1, No. 2, p. 69. 

2„ James A. Jeske, "Linear Recursive Relations, Part II ," Fibonacci Quar-
terly, Vol. 1, No. 4, p. 35. 

3. James A. Jeske, "Linear Recursive Relations, Part in , " Fibonacci Quar-
terly, Vol. 2, No. 2, p. 197„ 

4. Brother Alfred Brousseau, "Linear Recursive Relations, Lesson HI," 
Fibonacci Quarterly, Vol. 7, No. 1, p. 99. 

5. Brother Alfred Brousseau, "Linear Recursive Relations, Lesson IV," 
Fibonacci Quarterly, Vol. 7, No. 2, p. 194. 

6. Brother Alfred Brousseau, "Linear Recursive Relations, Lesson V , " 
Fibonacci Quarterly, Vol. 7, No. 3, p. 295. 

7. Brother Alfred Brousseau, "Linear Recursive Relations, Lesson VI," 
Fibonacci Quarterly, Vol. 7, No. 5, p. 533. 

8. Paul F. Byrdfs Lecture Notes (San Jose State College). 
9. Ruell V. Churchill, Operational Mathematics, McGraw-Hill, New York, 

1958, p. 25. 


