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1. INTRODUCTION 

Define the Fibonacci number s F by F j = F2 = 1, 

(1.1) F ^ - F ^ - F = 0 
n+2 n+1 n 

This difference equation m a y be extended in both d i r ec t i ons , yielding 

F_ 

Lucas [2] ha s shown that the n X n de te rminan t 

= ( - D n + 1 F -n n 
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= F n+1 

This i s a lso a consequence of P r o b l e m s B-13 [5] and B-16 [6] in this Q u a r -

te r ly . Note that the rows of (1.2) a r e the negat ives of the coefficients of the 

difference equation (1.1) obeyed by the Fibonacci number s . The s q u a r e s of 

the Fibonacci n u m b e r s obey 

(1.3) F 2 - 2F 2 
n+3 n+2 

2 F 2 + F 2 = 0 m 
n+1 n 

If we take the negat ives of the coefficients of (1.3) and place them in a d e t e r -

minant analogous to (1.2), we find 
* Now at Stanford University,, 
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(1.4) 

2 
1 

0 

0 

2 

2 

- 1 
0 

- 1 

2 

2 

- 1 

0 

-1 ••• 
2 

2 
n+1 n+2 

Equation (1.4), which appears to be new, maybe proved by expanding along 
the last column and using induction on n. It is our aim to generalize (1.2) 
and (1.4), first for the Fibonacci sequence, and then for arbitrary second-
order recurring sequences. 

2. THE FIBONACCI CASE 

We define the Fibonacci generalized binomial coefficients m by 

F 

[-] 
F F , m m-1 m-r+1 

F 1 F 2 
( r > 0) ' ra 1 . 

Note that is defined for all integers and all non-negative integers r , 

[ Y ] = 0 for m = 0, 1, . . . , r - 1 . 

and that 

(2.1) 

It is convenient to set 

(2.2) [?] 0 for r < 0 . 

Jarden [ l ] showed that the term-by-term product P of k - 1 sequences 
each of which obeys (1.1) satisfies 

(2.3) g(_1 ) J ( J + 1 ) / 2 [ , ] P n_ j = 0 
In particular, if each is the Fibonacci sequence we have 
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(2.4) 

GENERALIZED BINOMIAL COEFFICIENTS 

| > j ( j + i ) / 2 r k - | F k - i = 

115 

This becomes (1.1) for k = 2, and (1.3) for k = 3. 
Determinants of the form 

(2.5) 

H 
a0 
0 

0 

a2 
a-i 

a0 
0 

a3 
a2 
al 

a0 

a4 

a3 
a2 

at 

• e| 

.. 

0 J 

are known as recurrents. We shall put the coefficients of (2.4) into an n X n 
recurrent and show its value is yet another generalized binomial coefficient. 
We remark that a general method for evaluating recurrents, from which the 
results here would follow, appears to date back to H. Faure (see [3], Vol. 2, 
p. 212). However, our approach seems somewhat more direct, and the 
specific results novel enough to warrant separate attention. 

Put 

D , = det (a ) , n,k v r s 

where 

a _ = -(-1) 
(s-r+l)(s-r+2)/2 

r s r k + i i 
[ s - r + l j 

( r , s = 1,2,•••,n) 

Recalling (2.1) and (2.2), we see that D ., is simply (1.2), and that D 9 
n,x n.)£ 

is (1.4). 
For n > k, expansion of det (a ) along the last column and simpli-

r s 
fication gives 

(2.6) D n,k g ( _ 1 ) W + 1 , / 2 [ k r ] l w 



116 A DETERMINANT INVOLVING [Apr. 

If we define 

(2.7) D Q j k = 1; D _ n j k = 0 for n = 1, 2, • • • , k - 1 , 

then (2.6) remains valid for n > 1. Now for fixed k, £ i s t n e Product of 
k sequences each obeying (1.1), so that using Jarden's result (2.3) we see 

(^ ??<-yjo+i)/Tr][v] = ° • 
By (2.1) and (2.7), 

D n,k = ^ k X ] (n = "k + ls "k + 2' " " ' 0) ' 

and by (2.6) and (2.8) both Dn fe and Tn ^ k | obey the same (k + l ) s t -o rde r 
recurrence relation. Hence, 

« > »..k - [° tk] • 

Note that this reduces to (1.2) and (1.4) for k = 1, 2, respectively. 

3. EXTENSION TO SECOND-ORDER RECURRING SEQUENCES 

Let the sequence ( u } be defined by U0 = 0, Uj = 1, 

( 3 a ) Un+2 " PUn+l + lU n = 0 (q f 0) . 

Let a and b be the roots of the auxiliary polynomial x2 - px + q of (3.1). 
We deal only with the case in which (3.1) is ordinary in the sense of R. F. 
Torretto and J. A. Fuchs [4] , i .e . , we assume that either a = b or a f--
b for n > 0. It follows that 
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I 11 - h11 

\ - b i f a * b • 
na if a = b . 

We define the U-generalized binomial coefficients \ \ by 
L r Ju 

L r J n U . . U , . - - U ( r > 0 ) ; L o J = 1 -
u J u 1 2 r u 

Note that 

(3.2) I 1 " I = 0 (m = 0, 1, . . . . r - 1) '. 
L J u 

As with the usual binomial coefficients, we define 

(3.3) I"111] = 0 (r < 0) ra -
L J u In a generalization of (2.3), Jarden has shown that the term-by-term product 

Qn of any k - 1 sequences, each obeying (3.1), satisfies 

(3.4) £ (-1)V(J~1)/2 [ f l Q n i = 0 . 
j=0 L J J u 3 

Equation (3.4) indeed reduces to (2.3) when p = -q = 1. We shall use the 
negatives of the coefficients of (3.4) to form a recurrent as before. 

Let 

Dn>k(U) = d e t ( b r s ) ( 

where 
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, _ ( !vS-r+l (s - r ) (s - r+l ) | k + 1 1 . . 0 . 
b r s " " ^ q L s - r + l J u

 ( r ' s = 1 « 2 » ' " ^ ) 

We find it convenient to set 

(3.5) D
0 , k ( U ) = 1 ; D - n , k ( U ) = ° (n = 1,2, . . . f k - 1 ) . 

Then expansion of det (b i ) along the last column gives 
i s 

for all n ^ l . 

Noticing that . | is the product of k sequences eacy obeying (3.1), 
L * J U 

we see from (3.4) that 

(3.7) s\-«J^-1) /2rk*1l V v \ =o 

Then 

-m Dn>k(U) = T ,, | (n = -k + 1, -k + 2, • • • , 0) 

and by (3.6) and (3.7), D n k(U) and f"n * k l obey the same (k + l ) s t -o rde r 
recurrence relation. Hence, 

(3.8) v k ™ - f ; k]„ • 

We conclude by investigating some particular cases of (3.8). First 
note that it reduces to (2.9) for p = -q = 1. If 

P = L s = F s - 1 + F s + 1 ' « = ( " 1 ) S • 
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then U n = F g n , so that for k = 2 , (3.8) yields 

L 
s 

- 1 

0 

0 

<-irT± 

L 
s 

- 1 

0 

0 

(-DS 

L 
s 

- 1 

0 

(-1) 

L 

s+1 

s 

= F s(n+l) 

Putt ing s = 1 p roves (1.2). 

If we let p = 2 , q = 1, then a = b = 1 and U = n. In this c a s e , 

["]„-(?)• 
the usual binomial coefficient. Equation (3.8) then yields 

det L"M) \s - r + 1/J = \ k j ( ( r , s = 1, 2 , n) . 

In p a r t i c u l a r , for k = 2 , we find 

2 - 1 0 0 

0 0 

2 - 1 
n + 1 , 

which f i rs t s e e m s to have been noted by Welstenholme (see [ 3 ] , Vol. 3 , p. 

394). Letting k = 3 , we obtain 
[Continued on page 162.] 



THE HIDDEN HEXAGON SQUARES 
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INTRODUCTION 

Pascal 's arithmetic triangle has been much studied. Further study con-
tinues to produce evidence of the great fertility of this array of numbers. 
Here we divulge a very surprising result. 

Theorem. Let I J be such that 0 < n < m , m > 2, then the product 
of the six binomial coefficients surrounding I J is a perfect integer square. 

Proof. The six binomial coefficients are: 

(m - l \ f m - l \ / m \ / m + l \ / m + l \ , I m \ 

n - l / ' \ n f \n * if [ n + if \ n )> a n d \n - if 

The product is 

(m - 1)1 (m - 1): m! (m + 1)1 
(n - 1)1 (m - n)! n!(m - 1 - n)! A (n + 1)1 (m - n + (m - n)!. X 

„ , ml 
A (n - l)!(m - n + 15" 

(m + 1)1 ml (m - 1)! I 5 

(n - l)!n!(n + 1)1 (m - n - l ) ! (m-n)! (m-n + l)I J 

Since each binomial coefficient is an integer, the product is an integer, and 
since the square of a rational number is an integer if and only if the rational 
number is an integer, it follows that the product is an integer square. 

Corollary. Each alternate triad of the six binomial coefficients have 
equal products. 
[Continued on page 133. ] 



SOME SPECIAL FIBONACCI 
AND LUCAS GENERATING FUNCTIONS 
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In [ l ] , Hoggatt and Bicknell derived by matrix methods that 

• 2n+2 

i=0 

2n+l 

i=0 

We next list three more similar sums. 

w £0 F k - ^ n 
k=0 

k=0 

« E (I) F 4k = ^ n 
k=0 

Identity (a) is well known, while (b) was in a private communication from D. 
Lind, and (c) is a special case of Problem B-88 in the Fibonacci Quarterly, 
April, 1966, p. 149. 

In [2] , various special related results are also derived by matrix 
methods. Here, we derive a new class of generating functions by following 
the suggestion given in [3], The column generators for Pascal 's left -adjusted 
triangle are 

121 
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n x 
(1 - x) 

while the generating function for the Fibonacci numbers is 

G(X) = — x — = y F x
n 

1 - x - x* ^ n 

n=0 

If we now sum 

n=0 n=0 k=0 

- x Z-/ n i l - x ] 
n=0 \ ' 

1 - x 

'-n^ra 
I • £ F 2„ X ' n 

1 - 3x + x' n 
n=0 

Thus 

S(J) F k = F2n • 
k=0 

Now, if we sum 

S'^w-LfEia^V-r-rT 
n=0 n=0 \k=0 / 1 - 5x + 

5x2 
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This is a special case of the general class of identities 

L x 
m = L x + 5 F 0 x2 + 5L 0 x3 + 52F„ x4 

m + 1 . 2 m x2ni OAJ3m ° 1?4m 1 - 5 F m x + ( - l r ^ S x 2 

+ 52LC x5 + . . . +5 k F 0 1 x 2 k 
5m 2km 

k 2k+l 
+ 5 L ( 2 k + l ) m X + ' " ' 

We discuss first a related special case. To see this requires a few identi-
ties and a neat trick in algebra. It is easy to establish that 

3 - 2x 

1 - 3x + x2 

X - X2 

1 - 3x + x2 

^ L 2k+2 x 

k=0 

OO 

= £ F2k+1 X 

k=0 

Now, 

3x2 - 10x4 V T 2k+2 ck - x 5 
1 - 15x2 + 25x4 f^ 2k + 2 

k=0 

x(l - 5x2) _ Y * ^ ~ 2 k + 1 *k 

1 - 15x2 + 25x4 . ft
 2 k + 1 

k=0 
Fnl , , x 5 

Notice that 

+ 3x2 - 5x3 - 10x4 _ (x - 2x2)(l + 5x + 5x2) _ x - 2x2 

1 - 15x2 + 25x4 (1 - 5x + 5x2)(l + 5x + 5x2) 1 - 5x + 5x2 

Next, we need 
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OO 

x ( l - x) 
1 - 2x - 2x2 + x3 

[Apr. 

= E F2 xn 
*—* n 
n=0 

Summing a s before , 

F^g n (x ) 
n=0 

Thus 

- E (S (j)nV 
n=0\k=0 J 

oo oo 

= y F2 *L_ = _i_ y F 2 / x in 

n (i X)n+1 i - x ^ n u~=-iJ 
n=0 U x> n = 0

 V 

1 - X 
1 - AT^\ - •(T^)' • (r^V 

x - 2x2 

1 - 5x + 5x2 

n=0 £U) 4 
k=0 

n _ x - 2x2 

S s k ( F 9 ^ + xL01_0)x 2k+l 
* _,_ e 2 — 2k+l ' AAJ2k+2 

1 - 5x + 5x^ . A k=0 

and 

2n+2 

E(2\+2) 
k-0 

F 2 
k 

5 n L 2n+2 

2n+l 

z 
k=0 

^ k / F k 5 F 2 n + 1 ' 
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which a r e given in the f i rs t pa rag raph of the paper . C lea r ly , then, the 

k=0 k=0 

a r e re la ted . We r e t u r n now to the special ca se 

- = Ljx + F2 5x2 + L3 5X3 + • • • 
1 - 5x + 5x2 

To see t h i s , we wr i t e 

s x + x2 _ T ^ T k+1 
.2 s^t 2 k + l X 

1 - 3x + x' . A k=0 

•E l - 3 x + x 2 ~ " 2 k 
Fn l x k . 

Next, 

x ( l + 5x2) V * T ck 2k+l 
— = L> L 2 k + 1 5 X 

1 - 15x2 + 25x4 , n k=0 

and 

5x2 r > ^ rk 2k E F 2 
1 - 15x2 + 25x4 ~ 2 k 

5 x 

Thus, 
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oo 

x(l + 5x + 5x*) _ y * k, 2k 
1 - 1 5 x ^ 2 5 x 4 " f - ; 5 ( F 2 k + x L 2 k + l > x • 

k=0 

But, 

1 - 15x2 + 25x4 = 1 + 10x2 + 25x4 - 25x2 = (1 + 5x2)2 - (5x)2 

= (1 + 5x + 5x2)(l - 5x + 5x2) . 

Thus, 

£ ^(Fo,, + xL01_, )x2k 

l - 5 x + 5x2 ~ " " 2 k " ^ 2 k + 1 
k=0 

and 

2n 

£ (2
k

n) F 2k = 5 " F 2 n 
k=0 

E( 2 \ + 1 K = 5% 
k=0 

We now return to our general class of identities 

L x ^_^ . m = y ^ k, 2k 
1 - 5 F m x + (-l)m + 15x2 " J ~ ^ X L (2k + l )m ) x 

We begin by writing 

XL (1 + ( - l ) m + 1 x 2 ) °° . + 1 

- 7 7 — 7 7 - - 2 . L ( 2 k + l ) m X 

2m k=0 
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while 

x L m ( l + ( - D m + 1 5 x S ) - ^ ^ 

1 - B L , x 2 + 2 5 x 4 " ^ < 2 k + 1 ' m X 

2m k=0 

Next , 

9 °° 
F 2 m 5 x -sr^ xr c k 2k 

= 2 , F 2 k m 5 X ' 1 - 5 L 0 x + 25x2 7~1 2 k m 
2m k=0 

XL (1 + ( - l ) m + 1 5 x 2 ) + xL (F 5x) 
m _ m m = Tj5k(F0. + x L , _ , ) x 2 k 

2m k=0 

x L (1 + 5 x F + ( - l ) m + 1 5 x 2 ) x L 
m m _ m 

1 - 5 L 0 x2 + 25x4 1 - 5 F x + ( - l ) m + 1 5 x 2 

2m m 

s ince 

5 L 9 = 5L 2 + 1 0 ( - l ) m " ^ = 5(5 F 2 + 4 ( - l ) m + 2 ( - l ) I i r r ± ) 
Zm m m -m-t-i 

= 25 F 2 - 1 0 ( - l ) m + 1 . m 

Thus 

1 - 5 L 9 x2 + 25x4 = 1 + 1 0 ( - l ) m + 1 x 2 + 25x4 - 2 5 F 2 x2 
z m ni 

o r 

(1 - 5 L „ x2 + 25x 4 ) = (l + 5 ( - l ) m + 1 x 2 ) - 2 5 F 2 x2 

= (1 - 5 F x + ( - l ) m + 1 5 x 2 )(1 + 5 F m x + 5 ( - l ) m x 2 ) . m m 

We now r e tu rn to the genera l p rob lem. 
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Remember, 

[Apr. 

L x m = X) 5 <F2km + x L ' o , ^ ™ ) x 2 k • 
1 - 5 F x + ( - l ) m + 1 5x2 ^ " " 2 k m ( 2 k + 1 ) m 

m ' k=0 

We start with the general problem. The generating function for every m 
Fibonacci number is 

th 

F x 
m 2', 1 - L x + (-1) x2 . A m v ' k=0 

km 
k 

x 

Consider the sum 

E FmnSn(x) 

n=0 

_J_f F / i_\n 
1 - x u m n l l - x l 

n=0 V / 

"m 1 - x 
1 " x »- V ( T ^ ) • <-«" (T^)' 

F x 
m 

(1 - x)2 - L m x ( l - x) + (-l)mx2 

F x 
m 

1 - (Lm + 2)x + (L m + 1 + (-Dm)x2 

n=0 k=0 
km 

Now, from 

L2 = L0 + 2(-l) m 2m 
m 
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L2 - 5 F 2 
n n = 4 ( - l ) L 

one can obtain four useful ident i t ies : 

L . + 2 = LI 4m 2m 

L4xn - 2 = L 2 m " 4 = 5 F 2 m 

L 4 m + 2 + 2 = L 2 m + 1 + 4 = 5 F 2 m + l 

L4m+2 " 2 L 2m+1 

Thus, for m = 2a (even) 

F 2 s X 

1 - (L 2 g + 2)x + ( L 2 g + 2)x2 n = Q k=0 ' 
F2skfX 

We now d i s cus s two special c a s e s , 

(A) 
F , x 4m F 0 (L0 x) 2m 2m 

J 2m 2m/ 1 - L 0 (L0 x) + (L„ x)2 
2m 2m 2m 

E F 0 (L0 x ) n 
2mnv 2m 

n=0 

= E^.LLx n n 
• * -

2mn 2 m ' 
n=0 

Thus , 
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E{J)F._.-Ii .*. . n 
4mk ^ m x 2mn 

k=0 

This is Problem H-88, Fibonacci Quarterly, April 1966, p. 149. 

(B) F 4 m + 2 X 

1 " ( L4m+2 + 2 ) x + ( L4m+2 + 2)x* 

= j i 2 m + l ( F 2 m + l x ) 

1 " 5 F 2 m + l ( F 2 m + l x ) + 5 < F 2m + l x ) 2 

L 2 m + 1 y 

1 - 5 F 2 m + i y + 5 y 2 

XT^ k 2k 
L~i 5 ( F (4m+2)k + y L ( 2 k + l ) ( 2 m + l ) ) y 

k=0 

2k 2k 
x ^ 5 (F(4m+2)k + F2m+lL(2k+l)(2m+l)) F2m+l 

k=0 

Thus, 

2n 
n 2n 

' (4m+2)k * (4m+2)n r 2m+l 
k=0 

E ( 2
k

n ) F ^- .^ = 5 n F _ , _ F ^ 

2n+l 

k=0 
F = 5 n T F 2 n + 1 

*(4m+2)k ° 'lj(2n+l)(2m+l) *2m+l 

Suppose, on the other hand, that we wish to alternate the signs in the above 
sums. Consider the sums 
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oo 

E 
m=0 

km 

LUCAS GENERATING FUNCTIONS 

( - l ) m g (x) 1 
1 - x 

(1 -

1 -

x)2 

F m 

m 1 - x 

F x m 

+ L x ( l -m 

- F x m 

1 -

+ (• 

x) 

X 

X 

- l ) m 

+ (-

y. 
Dm 

- X 

• x 2 

r 

1 + (L - 2)x - (L - 1 - (- l )m)x2 

again for even m. Thus, 

' F 4 m x 

1 + 5 F | m x + 5 F | m x 2 1 -

1 -

oo 

= E 
k=0 

OO 

-E 
k=0 

L 0 ( - F 0 x) 2m 2m 

5 F 2 m ( - F 2 m x ) + 5 ( - F 2 m x ) 2 

L
2 m y 

5 F 2 m y + 5y^ 

K k , _ _,_ T v 2k 
5 ( F 2 m k + y L ( 2 k + l ) 2 m ) y 

5 ( F 2 m k " F 2 m L ( 2 k + l ) 2 m ) ] 
\^2k 2k 

Thus, 

2n 

E <-»2°+k (?)» = F 2 n F 4mk 2m 2mn 
k=0 

2n+l 
„2n+l Z , ,2n+l+k f2n + l \ _ TT"" , J LT 

(~1} \ k r 4 m k " *2m L,(2k+1) (2n+l) ' k=0 



132 SOME SPECIAL FIBONACCI AND [Apr. 

Proceeding similarly with 

F 2 m + l ( " L 2 m + l x ) F 2 m + l y 

1 ~ L 2 m + l ( - L 2 m + l x ) " ( - L 2 m + l x ) 2 X - L 2 m + l y " ** 

r(2m+l)k y S*< k 
k=0 

k=0 
^ m + l " (2m+l)k x 

Thus 

k=0 

There remains unsolved 

2 ^ ( D ( k |F(4m+2)k L2m+1 F(2m+l)n 

k=0 k=0 

for m odd and greater than 3. Corresponding formulas are given also in 
[4] as follows: 

2n 
- 5nT F 2 n 

J(4m+2)k 1J(2m+l)2n r 2 m + l 
k=0 
E ( t ) 1 - - - - - **•--«--* 

V / 2 n + 1 \ T = 5 n F V 2 n + 1 

Z-f I k /ij(4m+2)k ° * (2m+l) (2n+l) * 2 k=0 
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2n 

2 ©<-
k=0 

2n 

1 } n + k T = T T n 

; ^ n n ^ k ^©m+Dn 2m+l 

£ (?) (mml) L4mk " 5 n L 4 m n F 2 m 

2 I V f"̂  + L4mk " 5 l lF2m(2n+l)F2n+ 

k=0 
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[Continued from page 120. ] 

SOME FURTHER RESULTS 

There are several other configurations which yield products of binomial 
coefficients which are squares. For instance, if two hexagons Hj and H2 

have a common entry, then the ten terms obtained by omitting the common 
entry have a product which is an integral square. Thus, one can build up a 
long serpentine configuration, or in fact build up snowflake curves. 

Secondly, it should be noted in passing that all results above hold for 
generalized binomial coefficient a r rays , in particular for the FIBONOMIAL 
COEFFICIENTS. 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited By 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-181 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

m n 
(am + en) (bm + dn) 

m,n=0 
mini (1 - ax)(l - dy) - bcxy 

where 

^-(ax+by)^ y = ye-(cx4dy) 

H-182 Proposed by S. Krishnar, Berthampur, India. 

Prove or disprove 

m 
(i) V* A = o (mod 2m + 1) , 

k2 
k = l K 

and. 
134 
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m 
(ii) Y^ = 0 (mod 2m + 1) 

~ (2k - 1)' 

when 2m + 1 is prime and larger than 3. 
[See Special Problem on page 216. ] 

SOLUTIONS 
GONE BUT NOT FORGOTTEN 

H-102 Proposed by J. Arkin, Suffern, New York. (For convenience, the problem is restated, using 
Bn=Am-> 

Find a closed expression for B in the following recurrence relation. 

( H ) [I] + X = B n " B n - 3 " B n-4 " B n -5 + B n -7 + B n -8 + Bn-9 " Bn-12 • 

where n = 0, 1, 2 , -«- and the first thirteen values of B0 through B12
 a r e 

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, and 47, and [x] is the greatest 
integer contained in x. 

Solution by the Proposer. 

In a recent paper* this author introduced a new notation, and because of 
the new method in the paper, we a re , for the first time, able to find explicit 
formulas in such recurrence relations as H-102. 

We denote by p (n) the number of partitions of n into parts not ex-
ceeding m, where 

(1) Fm(x) = 1/(1 - x)(l - x2) • .- (1 - x m ) = J2 Pm( n ) x I 1 

n=0 

and p (0) = 1. ^m 
The new notation we mentioned above is defined as follows: 

*Joseph Arkin, "Researches on Partitions,' ' Duke Mathematical Journal, Vol. 
38, No. 3 (1970), pp. 304-409. 



136 ADVANCED PROBLEMS AND SOLUTIONS [Apr. 

(2) A(m,n) = 1 if m divides n 

A(m,n) = 0 if m does not divide n , 

whe re 

m = 1, 2, 3, ••• , n = 0, 1, 2, ••• , 

and 

A(m,0) = 1 . 

Now, in (1), it is plain that 

oo 
F2(x)/(1 - x3)<l - x4)( l - x5) = J2 PsWx11 , 

n=6 

and we have 

oo 
(3) F2(x) = (1 - x3)(l - x4)( l - X5) J2 PsWx11 

n=0 

Then, combining the coefficients in (3) leads to 

(4) p2(n) = p5(n) - p5(n - 3) - p5(n - 4) - p5(n - 5) + p5(n - 7) 

+ P5(n - 8) + p5(n - 9) - p5(n - 12) , 

and it is evident that the right side of (4) is identical to the right side of (H). 
Now* it was shown that 

^Joseph Arkin, "Researches on Part i t ions," Duke Mathematical Journal, 
Vol. 38, No. 3 (1970), Eq. (6), p. 404. 
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p2(2u) = u + 1 

and 

p2(2u + 1) = u + 1 (u = 0, 1, 2, ••••) , 

so that 

(5) ft (a) = [n/2] , 

where n = 0 , l , 2 , e " , and [x] is the greatest integer contained in x, 
Then, combining (5) with the left side of (4) and since 

B n = p5(n) (n = 0, 1, 2, • • . ) , 

it remains to find an explicit formula for the p5(n). 
To this end*, we see that 

6n4 + 180n3 + 1860n2 + 7650n + 7719 1 
(270n + 2025) ( - l ) n 

1920A(3,n) 
2160(A(49n) + A(4,n + 3)) 

3456A(5,n) J 

A LARGE ORDER 

H-161 Proposed by David Klarner, University of Alberta, Edmonton, Alberta, Canada. 

Let 

* Joseph Arkin, "Researches on Part i t ions," Duke Mathematical Journal, 
Vol. 38, No, 3 (1970), Eq, (19), p. 406. 

PsW - j ^ 8 0 
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where the sum is extended over all compositions of n and the contribution to 
the sum is 1 when there is only one part in the composition. Find an asymp-
totic estimate for b (n). 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Put 

b, (n) = X (ai + aA (*2 + a 3V • • I**-1 + % I 
k a1+.*H-ak=nV *2 I \ *3 ) \ *k I 

00 

ra = E \(n) xn • 
n=0 

It is known (see "A Binomial Identity Arising from a Sorting Problem," 
SIAM Review, Vol. 6 (1964), pp. 20-30), that fk(x) is equal to the following 
determinant of order k + 1: 

1 x 
1 1 x 

1 1 x 

1 1 x 
1 1 

It follows that 

W x > = ***> " xfn-l<x> 

Since f0(x) = 1, fj(x) = 1 - x, we find that 

F(z) = JT fk(x) zk = -
k=0 1 

1 - xz 

z + xz* 
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In the next place, 

1 - xz = 1 / a2 __ j32 \ 
1 - z + xz2 a - jS \1 - az 1 - j3z / 

where 

a + ft = 1, aft = x 

It follows that 

ak+2 _ ^ + 2 
fk( x ) a- p ' 

so that 

00 

n=0 « - 0 

Now, if k = 2r + 1, 

4 ^ # = TT «* - ^ ) 
^ " P S = l 

-ii- , 0 2iris/k\/„ „ -27Jls/k\ 
= I I (a - j3e • )(a - /3e ) 

s=l 

f / l - 4x cos2 ^ ] . = TTI'1 - 4 x 

s -

If we put 
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(3) i r f i - ^ c o ^ f ) " 1 ^ - As 
S JL ., X g = i . _ 4x cos* f 

we find that 

But 

2(r- l) TTS 0 r - l 2(r-l) 7Ts 
COS ' -rr 2 C 0 S "F 

TT f cos2
 T - - cos2

 r 1 TT I cos - ^ - cos ^-J 

t^s # s 

^ 2 ( r - l ) 7TS 

so that 

cos -r-
k 

7T(t + S) . 7T(t - S) TJ sin B L l ^ i s i n 
t=l 
#s 

2r 
r TT sin & 

T T sin 2 * + 2> sin I L Z J O = ( . I , B - 1 ^ 1 * _ 
t=l k k sin ™ sin 2 " 
# s k k 

(-D^k 
0 k . o 7TS TTS ' 
2 sin*2 - ^ cos -— 

q . 2 k sin* ™ c o s 2 ^ 1 ^ 
( - l ) 8 " 1 k (4) A„ = ( - I ) 8 " 1 *—,- * 

Then, by (2), and (3) and (4), 
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, k + 2 l ( k + 1 ) , s i n 2 , ^ * ^ a - P _ 21*'" V , -vS-1 — k + 2
 w o k + 2 

~k+2 __ A+2 k + 2 - 2 - / 1 _ 
a s=l 

A 2 A " 8 

4x cos4 k + 2 

.k+2 ^ ( k + 1 ) 00 
S - l . ? 7TS k f S V * /vi \ n 2 n ^"S 

^ IA„\ g k + 2 
s=l n=0 

k + 2 oo 4(k+D 
= 2 V (4x)n V (-1)8"1 sin2 ^ s c o s k + 2 n - ^ — k + 2 2L/ * ' 21* l ; k + 2 C 0 S k + 2 9 

n=0 s=l 

Therefore, by (1)9 

k+2n+2 ^ ( k + 1 ) 
/r\ u / \ 2 x-^ / .jxS-1 . o 7TS k+2n TTS /, ,,v 
(5) bk(n) = k + 2 2 J (-D sin2 j ^ - ^ cos , — g (k odd) 

s=l 

This implies the asymptotic formula 
9k+2n+2 , 9 

<6> bk(n> ~ i m r sin2 rfs cos kTi (k odd) 

Next, if k = 2r , 

<* " P 0 2 - / 3 2 8=1 

r - 1 * 

s=l * 
1 - 4x cos2 ££ 

If we put 
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we get 

A s r -1 

n 
t=i 

ADVANCED PROBL1 

cos 2 ( r ~ 2 ) ™ k 

( 27TS 27Tt \ 

\ k
c o s — - c o s — J 

2 r ^ 2 2(r-2) 7TS 
k 

[Api 

c o s 2 ( r " 2 ) ™ k 
f r / 27TS 27Tt \ £ T . 7T(t + 

j 7 ^ c o s _ . c o s _ j pr sin-4. 
il>sin_____^__ 

Since 

7 7 sin #Jt 

f f sin 2ft^j) sin 2__J--i = (-i)3"1 t=l k 

t = 1 k sin ^ s i n _« s . n (̂r + s) 
# s 

(-1) 

k~ "A" ~TT ° i l x k 

s -1 k 
0 k . o 7TS ^ o A"s 

2 sin4 -r- cos4 -r-
k k 

it follows that 

s 

2 k sin4 ™ c o s k " 2 ™ 
= (-I)8"1 ^ L 

Then 

, . Q fk . 2 ITS k 7TS 
Q 0k+2 4 _ 1 sin4

 1——-r cos i • , o a - p _ _2 <c-̂  , vS-1 k + 2 k + 2 
k+2 J_+2 k + 2 _L, {"1} - . 2 7TS 

a " * s=i x " 4 x c o s FTT 

= FT* E ^ T ^ s*2 FT* cosk+2n ™ k + 2 
n=0 s=l 
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so that 

9k+2n+2 2 K , ^ . . m 
m\ u /v,\ - 2 V ^ / i \ s _ l • 2 fins k+2n TTS ,, v 
(7) bk(n) " k + 2 2 ^ (_1) s m FT2cos FT2 (k e v e n ) • 

s= l 

Th is impl ies the asymptot ic r e s u l t 

Qk+2n+2 . , 0 
/o\ i / \ 2 . 9 7TS k + 2 n 7T /, v 
(8) bk(n) ~ k + 2 s m FTT c o s FT^ (k e v e n ) 

We may combine (5) and (7) in the single formula 

k+2n+2 [Jfc+i>] 
/^\ i / \ 2 v ^ / - s S - 1 . o TTS k + 2 n TTS 
0) bk(n) = -g—y. 2 <-x> sm2 FTT c o s irn* 

s=l 

and (6) and (8) in 

js+2n+2 / I A \ i / \ 2 • ? 7T k+2n 77 
(10) bk(n) ~ - g - ^ sin* ^ — cos , — g 

LUCA-NACCI 

//-7£3 Proposed by hi. H. Ferns, Victoria, B. C, Canada. 

Prove the following ident i t ies : 

k=l 

k=l 
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where F £ 
respectively. 
where F and L are the n Fibonacci and n Lucas numbers, 

Solution by A. G. Shannon, Mathematics Department, University of Papua and New Guinea, 
Boroko, T.P.N.G. 

i. s^i; E22k"2LkF
k+3

 = L i F 4 = 3 -
k=l 

and 

2 n F ^ + 1 - 1 = 2 * F | - 1 = 3 

Assume identity true for n. Then, 

n n+1 

k=l k=l 

2 2 n F U _ 1 + 2 2 n L n + i F ^ 

= 2 2 n ( F ^ 1 + (Fn + F n + 2 ) ( F n + 3 + F n + 2 ) ) - l 

= 2 (F2 + 2F2 + 2 F F + F F + F F ) - l 
4 u n + l n+2 n n+2 n n+1 n+1 n+2; 

= -22 n(2F* + F J 0 ( 2 F + 2 F x 1 ) ) - l N n+2 n+2 N n n+1 

= 2 2 n + 2 F2 1 
2 F n + 2 - 1 

which proves the result. 

2. It can be readily shown that 

<3> L k F k + 3 = F k L k + 3 + 4 < - 1 ) k • 
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by using 

L k = ak + £• 

and 

F k = {ak - pk)(a - iS)"1 . 

From (1) above, it follows that 

n 

<4 ) 5 E *k~2 L k F k + s = a 2 n ^ + 1 - pQ+1>1 - 5 • 

k=l 

With (3), the left-hand side of (4) becomes 

k=l k=l 

n 
_ \ ^ 02k-2 _ T ^ /Q2n+2 , i xn , x 

= 5 1 / 2 FkLk+3 + (2 <-« " 4 ) ' 
k=l 

The right-hand side of (4) reduces to 

22n( a2n+2 + ^n+2 + 2 ( _ 1 ) n ) _ g 

= ( 2 2 n L n + 1 - l ) + ( 2 2 n + 2 ( - l ) n - 4 ) . 

and result (2) follows. 

/1 /M solved by M. Yoder, C. B. A Peck, J. Milsom, M. Hatch ford, D. V. Jaiswal, and the Proposer. 



REGULAR POLYHEDRONS AND PASCAL'S TRIANGLE 
J. WLGDARSKI 

Porz-Westhoven, Federal Republic of Germany 

It is known that any convex polyhedron has three parameters. Numer-
ical values of parameters of all regular polyhedrons are shown below. 

1. 
2. 

3. 

4. 

5. 

Polyhedron 

Tetrahedron 
Hexahedron 
Octahedron 
Dodecahedron 
Icosahedron 

4 

6 

8 
12 

20 

V 

4 
8 

6 
20 

12 

E 

6 

12 

12 
30 

30 

where F represents the number of faces, V the number of vertices, and E 
the number of edges. 

Numerical values of these parameters form a sequence: 

4, 6, 8, 12, 20, 30 . 

It is remarkable that the half-values of all members of this sequence 
form two apexes of Pascal 's triangle. 

The first apex is situated just below the edge-series of ones and the 
second one below the first apex. 

Both apexes look like this: 

146 



SEQUENCES WITH A CHARACTERISTIC NUMBER 
IRVING ADLER 

North Bennington, Vermont 

1. A Fibonacci sequence a09 al9 a2, • • * , a , • • • is called a Fibonacci 
sequence if it satisfies the recursion relation 

CO a (0 = a ,., + a 
n+2 n+1 n 

A well-known property of such a sequence is that there exists a number a 
such that 

(2) a a ±„ - a2
± 1 = {-if a 

n n+2 n+1 N ' 

for all n = 0, 1, 29 • °e
 8 The number a is called the characteristic number 

of the sequence [1]. The purpose of this paper is to explore the significance 
of the characteristic number [2] and to identify all sequences that have a 
characteristic number. We shall consider only sequences of rational numbers* 

2„ We call a sequence geometric if there exist numbers a and r such 
that 

(3) a = ar n
9 n = 09 1, 2, 0 8 9 . . 

If a sequence is geometric, then 

(4) a a ^0 - â  = 09 n = 09 1, 29 
v ' n n+2 n+1 J 9 

Conversely, suppose Eq. (4) holds8 If a / 0 for all n9 then 

/K\ an+2 _ a n+l _ n - 9 
(5) - ——, n - 09 1, 29 ••• . 

an+l an 
147 
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Then the sequence satisfies (3) with a = ao, and 

r = — . a0 

If a = 0 for some n, then by Eq. (4), a - = 0. If n > 2 , then by Eq. (4), 

a 0 a - a2 = 0, n-2 n n-1 

and a - = 0 . Hence, if a = 0 for some n, then a = 0r for all n = 1, 
2, 3, • • •. That i s , either every term of the sequence is 0, or only a0 is not 
0. In the first case, the sequence satisfies Eq. (3) with a = 0, and r arbi-
trary. In the second case, it satisfies Eq. (3) with a = a0, and r = 0. 
Therefore, a sequence is geometric if and only if it satisfies Eq. (4). Equa-
tion (4) is a special case of Eq. (2) with d = 0. Since Eq. (2), with d f 0 
represents a minor deviation from the typical behavior of a geometric sequence, 
we shall call any sequence satisfying Eq. (2) with d f 0 a parageometric 
sequence. 

3. We shall call a sequence almost geometric if it is not geometric, but 
there exist numbers r such that r for n = 0, 1, 2, • • • , and 
the sequence (r ) approaches a limit as n becomes infinite. For example, 
in the Fibonacci sequence defined by 

(6) F0 = 1, Fi = 1, F n + 2 = F n + 1 + F n , n = 0, 1, 2, . • • , 

the terms of the sequence are given by the Binet formula 

(7) \=^-^-> ^^r^* ^ = H^ 
n ^ 2 2 

Then 
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an+1 - f+1
 =

 a ~ P ( I f 
r n B 0n 

a - (3 x 

• • '(i) ,n+l (-ir 

1 + I i I (.yn+1 W' 
But 

Therefore, 
o? 6 + 2N/5 

< 1 

= 0 , 

and lim r = ae So the Fibonacci sequence, defined by (6), which is para-
geometric with d = 1, is also almost geometric. 

4. We shall call a sequence alternating if a , = a, a„. - = b, a ^ b, 
for all n = 0, 1, 2, • e •. An alternating sequence satisfies Eq. (2) with d = 
a2 - b2. Then d = 0 if and only if b = -a. So, an alternating sequence is 
geometric if and only if b = -a , and it is parageometric in all other cases, 
However, a parageometric alternating sequence is not almost geometric. In 
fact, if a = 0 and b f 0, then r cannot be defined for even n. If a / 0 
and b = 0, then r cannot be defined for odd n. If neither a nor b is 
zero, then 

b 
r = — 
n a 

for even n, and 

* . - 5 

for odd n, and 
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a / b 
b f a ' 

so, while r is defined for all n, it does not approach a limit as n becomes 
infinite. Hence, every alternating sequence is not almost geometric. 

5. We shall call a sequence eventually almost geometric if it is not a l -
most geometric, but the sequence obtained by deleting the first k terms, for 
some positive integer k, is almost geometric. For example, the sequence 
0, 1, 0, 1, 0, a5, a6, a?, 8 # - , where a = F for m = 0, 1, 2, • • • , 
is parageometric and is not almost geometric, but it is eventually almost geo-
metric. Similarly, the sequence 8, 5, 3, 2, 1, 1, 0, 1, 0, 1, 0, a^, a^, 
••• , where a -- = F for m = 0, 1, 2, ••• , is parageometric, is not 
almost geometric, but it is eventually almost geometric. 

We shall call a sequence eventually alternating if it is not alternating, 
but the sequence obtained by deleting the first k terms, for some positive 
integer k, is alternating. For example, the sequence 8, 5, 3, 2, 1, 1, a7, 
a&, • • • , where afi is 0 for odd n, and is 1 for even n, is parageo-
metric , is not alternating, but is eventually alternating. 

6. We can now state our principal result. 
Theorem. If a sequence is not geometric, and no term of the sequence 

is 0, it is parageometric if and only if it satisfies the recursion relation 

(8) a l 0 = ka M + a 
n+2 n+1 n 

for some rational number k. If k = 0, the sequence is alternating, and if 
k f 0, the sequence is almost geometric. 

A zero term may occur in the sequence only if the absolute value of its 
characteristic number is a perfect square. If there is a zero term in the 
sequence, then either the sequence is alternating, or the sequence is eventually 
alternating, or the sequence is eventually almost geometric. In the first case, 
the sequence satisfies the recursion relation (8) with k = 0. In the second 
case, for some index i > 0, a0;, al9 • • • , aj is a fragment of an almost geo-
metric sequence satisfying the recursion relation (8) for some k ^ 0, and 
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a i+l 5 a i+2 ' " " ' ai+n5 " " i s a n alternating sequence satisfying (8) with k = 
0. In the third case, there are two possibilities: (1) For some index j > 0, 
ao, al5

 , , c , a. is a fragment of an alternating sequence satisfying the recur-
sion relation (8) with k = 0, and a. , - , a. i n , • • • , a., , ••• is an almost 

l+l i+2 j+n 
geometric sequence satisfying (8) for some k f 0. (2) For some non-negative 
index i, a0, a j , • • • , a. is a fragment of an almost geometric sequence sat-
isfying the recursion relation (8) for some k f 0; for some positive index 
j > i , a., a. - , • • • , a. is a fragment of an alternating sequence satisfying 
the recursion relation (8) with k = 0; and a . , - , a . , 0 , 8 • • , a., > ••• is an 

j + i j+z j+n 
almost geometric sequence satisfying (8) for some k ^ 0. Consequently, a 
parageometric sequence consists of at most three consecutive segments each 
of which satisfies the recursion relation (8) for some value of k. 

Proof. (1) Let (a ) be a sequence that is not geometric and with a f 
0 for all n = 0, 1, 2, • • •. If it is parageometric, we have 

a a l 0 - a2 ,- = (-1) d . n n+2 n+1 

Then 

an+lan+3 " an+2 = ^ ^ d 

Therefore, 

Hence 

Vn+2 " an+l + V l a n + 3 " <+2 = ° 

a n+l ( a n + 3 - V l ' = an+2(an+2 " a n ) 

Then, since a ^ 0 for all n, 

an+3 " an+l =
 an+2 an 

an+2 an+l 
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Thus 

a l 0 - a n+2 n _ . 
a n+l 

for some rational constant k and all values of n = 0, 1, 2, • • • . Then (a ) 
' ' n 

satisfies Eq. (8). 
Conversely, suppose the sequence satisfies (8). Then 

an+3 " V l an+2 " an . 
_—. = = ^ 9 

an+2 an+l 

Consequently, 

an-Han+3 " an+2 = "(anan+2 " a n + l ) 

for all n = 0, 1, 2, ' • •. If we let d = aoa2 - a|, then we have 

V n + 2 ~ a n + l = ( - 1 ) D d * 

Since the sequence is not geometric, d f- 0, and the sequence is parageo-
metriCo If k = 0, then a ? = a . Since the sequence is not geometric, 
a f a -. Hence it is alternating. The characteristic equation associated 
with (8) is 

(9) x2 - kx - 1 = 0 , 

whose roots are 

/ inv k + ^k2 + 4 k - # 7 1 (10) r = — — 5 , s = * 

Then, by the theory of linear recurrence relations [3] , 
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(11) a = a r + bs , 

153 

where a and b have the va lues 

(12) a = 
^/k2 + 4 

b = 
a 0 r - a i 

\P" + 4 

d = a0a2 - ai = (a + b)(ar2 + bs 2 ) - (ar + bs)2 = ab(r - s)2 = ab(k2 + 4) 

Since d f 0, it follows that a / 0 and b / 0. If k > 0, 

< 1 

If k < 0, 

< 1 

n+1 a r + bs n+1 , , n+1 r + 

n a a r + bs 

b J s \ n a | r \ n 

+ s 

1 + a \ r j b \ s / + 1 

If k > 0, 

< 1 , 

and l im r = r . If k < 09 
n -*oo n 

< 1 , 

and l im r = s. Consequently, if k f 0, the sequence i s a lmos t geomet r i c . n —* oo n 
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(2) If some term a, = 0, then 

a k V 2
 = 4 + 1 = (-1)Ild > 

and hence 

- a | + 1 . = (- l )kd . 

If k is odd, d is a perfect square. If k is even, -d is a perfect square. 
Since d f 0, a - f 0. If k f 0, we have 

a k - i a k + i - 4 = ( - 1 ) n _ l d • 

or 

Then 

and 

\-iVi= ( - 1 ) k _ l d 

ak-lak+l 4+1 ' 

ak+l(ak-l " V l * = °-

in the Then, since a, - ^ 0 , a, - = a, y That i s , every zero term i 
sequence is flanked by a pair of equal non-zero terms. Consequently, if a = 

a = 0, with k < m, then m - k > 1. If a, = 0, it is possible that 
ak+2 = ° ' anc* a -2 = ° **• ^ exists. Then a, belongs to a sequence of 
alternate zero terms 

ak-2£ " ak-2+2£ " a k - 2 a k ak+2 " ' • " \ + 2 m ° ' 

where I > 0, 2£ < k, and m > 0. 



1971] 

( \ - -2£--1> 

SEQUENCES WITH A CHARACTERISTIC NUMBER 

a k-2£+l = " \ - l ~ \ + l ak+2m+l t 0 

155 

9 

where the parentheses around the term \_2n_1 indicate that it is included 
only if it exists. (That i s , if k - 2£ ^ 0.) Then \_2i_^ a

k_2£J ° " 5 

ak+2m+l? w n i c n i s a segment of the sequence (a ), is an alternating se -
quence with zero terms alternating with non-zero terms. Let us extend this 
alternating sequence as far as we can to both lower and higher indices by in-
cluding a, lQ l 0 and a. ,_ i 0 if a, _ i n = 0, and by including a. nn 0 

& k+2m+2 k+2m+3 k+2m+2 J & k-2£-2 
and \_90o if they exist and a, 9 = 0. Then the following four possibil-
ities a r i se , depending on whether or not the alternating sequence begins with 
a0 on the left and whether or not it terminates on the right: 

I. The alternating sequence begins with a0, and does not terminate. 
II. The alternating sequence begins with a., i > 0, and does not 

terminate. 
III. The alternating sequence begins with a0, and terminates with a., 

j > 0. 
IV. The alternating sequence begins with a., i > 0, and terminates with 

a., i > L 
J 

In case I, the sequence (a ) is an alternating sequence, with either the 
odd-numbered terms or the even-numbered terms equal to zero. That i s , it 
has the form 0, a, 0, a, 0, a, ••• or a, 0, a, 0, a, 0, • • • , where a f 0. 
Such a sequence satisfies the recursion relation (8) with k = 0. 

In case H, a. f 0, a. - = 0, and a. - ^ 0. The infinite sequence 
a., a. - , ••• is an alternating sequence of the form a, 0, a, 0, • • • . We 
shall show that for every n < i, a ^ 0. 

Incase HI, a. f 0, a. - = 0, and a.,- f 0. The finite sequence a0, 
J J- 1 J+1 

aA, • • • , a. has the form 0, a, 0, a, • • • , 05 a or a, 0, a, 0, • • • , 0, a. 
We shall show that for every n > j , an f. 0. 

In case IV, a. ^ 0, a .+ 1 = 0, a . ^ 7̂  0, a ^ 0, a = 0, a ^ 0. 
The finite sequence a., • • • , â  has the form a, 0, a, 0, • • • , 0, a. We 

I J 
shall show that for every n < i and every n > j , an f 0. 

Suppose a. ^ 0, a. - = 0, a., - ^ 0 (cases IE and IV). We shall call 
these assumptions Assumptions A. We show that for every n > j , an ^ 0. 
From 
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a. - a. t 1 - a? = (-1)J~ d 

we get a? = (-l)-'d . 

(13) a . a . + 2 - a j + 1 = (-1)1 d = a j . 

T h e r e f o r e , 

a . la .lin, — a . ) a.,.. • 
J J+2 J 3+1 

We cons ide r f i r s t the ca se where -a. > 0. Then, s ince a . , - ^ 0, a. l 0 - a. > 
3 J+l 3+2 j 

0, and a.^Q > a. > 0. 
3+2 3 

(14) a j + 1 a j + 3 - a ^ = ( - l ) ^ d = -a j . 

The re fo re , 

a--ii a-_LQ = a ? , 0 - a? > 0 . j+ l j+3 j+2 j 

Then a . + 3 i s not z e r o , and has the s a m e sign a s a. - . F r o m (13) and (14), 

a . a . i 0 - a ? , - + a . , - a . l 0 - a ? l 0 = 0 . j j+2 j+ l j+ l j+3 j+2 

T h e r e f o r e , 

V2V2-V = ViV'V^-
Hence a . l 0 - a . , - has the s a m e sign a s a . - and a . l 0 . T h i s , if a . ( 1 > 0, j+3 j+ l 5 j+ l j+3 j+ l 
aj+3 > aj+r a n d i f aj+i < °' aj+3 < aj+r fc e i t h e r c a s e ' h + s M V i l > 

0. Now we proceed by induction. Assume that a „. > a - . o ^ o > ''' > 

a. > 0, that a . + 2 n + 1 , a . + 2 f c + 1 , a
1 + 2 k - 3 ' " ' » a i + l ^ ^ t h e s a m e s i g n ' a n d 

that 

V2k.ll> IV2k.ll> •••> | V l | > 0 • 
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( 1 5 ) a
j + 2 k a

j + 2 k + 2 " a j + 2 k + l = < ~ 1 ) j + 2 k d = <-X>Jd = a ] • 

<16) a
j + 2 k - l a

j + 2 k + l - a j + 2 k = ( - D j + 2 k " 1 d = - ] • 

a j+2kaj+2k+2 " a j+2k+l + a j + 2 k - l a j + 2 j + l " a j+2k = ° -

a j+2k (aj+2k+2 " a j+2k ) = a j+2k+l ( a j+2k+l " a j + 2 k - l ) ' 

Then , s ince a j + 2 k + 1 > a j + 2 k _ 1 , and a . + 2 k + 1 = a . + 2 k _ 1 have the s a m e s ign, 
and a . + 2 k > 0, a . + 2 k + 2 - a j + 2 k > 0 , and 

a j + 2 k + 2 > a j + 2k > " > a3 > ° -

<17> a
j + 2 k + l a j + 2 k + 3 - a ] + 2 k + 2 = ( - 1 > j + 2 k + l d = <- 1 > J + l d = " a l • 

T h e r e f o r e , 

a j+2k+l a j+2k+3 aj+2k+2 " a j > ° 

T h e r e f o r e , a. „. - and a. ? , „ have the s a m e sign. F r o m (15) and (17), 

we ge t 

a j+2kaj+2k+2 " a j+2k+l + a j+2k+l a j+2k+3 " aj+2k+2 " ' 

Then 

a j+2k+l (aj+2k+3 " a j + 2 k + l ) aj+2k+2(aj+2k+2 a j+2k ) 

T h e r e f o r e , a . + 2 n + 3 - a 1 + 2 n + 1 has the s a m e sign a s a 4 + 2 k + l e H e n c e > 

a j+2k+39 a j + 2 k + l ' " " 9 a j + l 

have the s a m e s ign, and 
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\^+2k+B\> | V 2 k + l | >"- > | a
J + l | > ° • 

If a. < 0, a similar argument shows that 

aj+2k < aj+2k-2 < ' " < a j < ° ' aj+2k+l' a j+2k-l ' " " ' a j+l 

have the same sign, and 

|«W+i| > I V2k-i| > • - > | V i | > °-

Hence, for every n > j , a ^ 0. 
Suppose i > 0, a. f 0, a. - = 0, a. - ^ 0 (cases II and IV). We 

shall call these assumptions Assumptions B. Because of the symmetry with 
respect to i of the indices in the equation 

a i - l a i + l " a i = (-1>i"1(i = (-Di+1d , 

and because Assumptions A are symmetrical to Assumptions B with respect to 
i if we write i instead of j in Assumptions A, the argument above proceeds 
just as well in the direction of decreasing indices. Hence, for every n < i, 
a f 0. Then by (1), in cases II and IV, the sequence a0, • • • , aj_2. satisfies 
Eq. (8) for some k f 0, and is a finite segment of an almost geometric se -
quence; and in cases III and IV, the sequence a. - , a. 2 , • • • , a , • • • sat-
isfies Eq. (8) for some k f 0, and is an almost geometric sequence. This 
completes the proof of the theorem. 

An example of case IV is given in Section 5. Another example is the 
sequence 

58, 24, 10, 4, 2, 0, 2, 0, 2, 0, 2, 8, 34, 144, ••• . 

In this sequence, the characteristic number a = 4. The sequence is made up 
of three consecutive segments: 

I. 58, 24, 10, 4; 
H. 2, 0, 2, 0, 2, 0, 2; 

n r 8, 34, 144, ••• ; 
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where Segment I is a fragment of an almost geometric sequence satisfying the 
recurrence relation a = -2a - + a . Segment His a fragment of an alter-
nating sequence satisfying the recurrence relation a Q = a ; Segment III is 

n~r̂  n 
an almost geometric sequence satisfying the recurrence relation a = 4a 
+ a . n 

7. Consider the set of all almost geometric sequences satisfying the 
recurrence relation (8) with given k f 0. The associated characteristic equa-
tion is (9), where roots are r and s given in (10). If r and s are irration-
al , the theory of these sequences is analogous to that of rational Fibonacci 
sequences. For example, just as the set of all rational Fibonacci sequences 
can be given a field structure isomorphic to the field extension R(a) (see [4]), 
the set of all rational sequences satisfying the recurrence relation (8) with 
given k / 0 such that r is irrational can be given a field structure isomor-
phic to the field extension R(r). In fact, we may represent each such sequence 
a0, a l s ••• by the ordered pair (a0, a j ) , since the sequence is fully deter-
mined by its first two terms and the recurrence relation (8). Then (a0, aj)—» 
a0 + a*r is an isomorphism if we define addition and multiplication of sequences 
by 

(a0, aA) + (b0, bj) = (a0 + b0, aj + bt) . 

(a0, ai)(b0, bi) = (a0b0 + a ^ , a ^ + a^o + k a ^ ) . 

3. If 

a 1 +
 X 

a2 + 1 _ 
a3 

is a continued fraction, the convergents 

pn 
c = — 
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for n = 1, 2, 3, • • • are given by p0 = 1, q0 = 0, pA = al9 qt = 1, and 
p n = Wl + p n - 2 ' q n = a n V l + q n - 2 for n > 1 [5]. If we let H = a2 = 
• • • = k / 0, where k is rational, then the equations take the form p0 = 1, 
q0 = 0, P l = k, q4 = 1, and p n = kpjQ_1 + p n _ 2 ? qn = k q ^ + qn_2 for 
n > 1. Moreover, qt = p0, and q2 = kqA + a0 = k = p4. Hence, for all 
n > 0, qn = P n - r Then 

c n 
_ Pn _ pn 

q n Pn-1 

for n > 0. In this case, lim C = r , where r is a root of x2 - kx - 1 
n—»oo n 

0. Moreover, the relation 

P i + 2 V l " P i + l V 2 = ^ 

in this case takes the form 

PiPi+2 " Pi+1 = <"1>i = ("1) i d • 

where d = 1. Hence the sequence p l 9 p2, • • • , p n , • • • is a parageometric 
sequence with characteristic number 1, and is also an almost geometric 
sequence satisfying the recursion relation p « = kp - + p . If k is a pos-
itive integer, the sequence is related to the golden-type rectangle [6], 

9. Every sequence that has a characteristic number d is either geo-
metric (with d = 0) or parageometric (with d f 0). If it is parageometric, 
it consists of at most three consecutive segments, each of which satisfies the 
recursion relation (8) for some value of k . If it is a geometric sequence 
(ar ), and r f 0, it satisfies the recursion relation (8) with k = r = 1/r. 
If r = 0, the sequence is a, 0, 0, ••• , and is composed of two consecutive 
segments a and 0, 0, • ° • , each of which trivially satisfies Eq. (8). Hence, 
every sequence that satisfies Eq. (2) and therefore has a characteristic number 
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a consists of at most three consecutive segments each of which satisfies Eq. 
(8) for some value of k •• 

Let us now consider any sequence satisfying Eq. (8), to see if it also 
satisfies Eq. (2) and hence has a characteristic number. If the sequence is 
geometric, it satisfies Eq. (2) with d = 0. If the sequence is not geometric, 
and no term of the sequence is 0, we have already shown in Section 6 that it 
satisfies Eq. (2) with d f 0. Suppose now that the sequence is not geometric 
and contains a term a. = 0. Then the method of proof used in Section 6 breaks 
down. However, this case can be covered by a general proof that does not r e -
quire that all terms of the sequence be different from 0. 

Let aQ, al9
 8 , a , a n _ i , ••• be a sequence satisfying Eq. (8) for some 

value of K. Let d = a0a2 - aj. Then, for n = 0, the sequence satisfies 
Eq. (2). We now proceed by induction. Assume 

a a l 0 - a2 ,- = (-1) d n n+2 n+1 N 

for some fixed n. 

Hence 
has_a 

a n+l a n+3 an+2 = a , n (ka ^ n+1 n+2 
= k an+l an+2 

= a
n +2 ( k a n+l 

= an+2("an) + 

= ( - l ) n + 1 d . 

n+1 
- a 2 + 

n+2 
- an+2> 
an+l = 

- a2 
an+2 

a2 
a n+l 

+ a n+l 

- ( a n a n + 2 - a n + l > 

, every sequence satisfying Eq. (8) also satisfies Eq. (2), and therefore 
characteristic number. 
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A NEW ANTHESIS 
JOSEPH P. MUtMZENRIDER 

Warner Robbins, Georgia 

Louis Pasteur pursued and assessed his studies in the light of his be-
lief that: 

" . . . t h e r e is a cosmic dissymmetric influence which presides 
constantly and naturally over the molecular organization of principles 
[sic] immediately essential to life; and that, in consequence of this, 
the species of the three kingdoms, by their structure, by their form, 
by the disposition of their t issues, have a definite relation to the 
movements of the universe. M [1] 

Fathoming the occurrence of a specific angle of dynamic orientation 
throughout a range of pehnomena involving gravitation andelectromagnetism: 
stellar and atomic systems and living molecules, may fulfill such belief that 
there is unitary, fundamental interdependency (relativity) of each such sys-
tem one upon the others, mutually generated of cosmic necessity. 

In 1783, Herschel found in the constellation Hercules the point among 
Earth 's neighborhood of "fixed" stars toward which the Solar System moves, 
the Solar Apex. The pole of the ecliptic, known from ancient t imes, is in 
the constellation Draco. Though the individual members of the Solar System 
are variously oriented, the system as a whole spirals toward Hercules along 
a trajectory inclined about 37° from the pole of the ecliptic [2]. 

Galactocentrically, that is of great interest. The plane of the ecliptic 
intersects the plane of the Milky Way, our Galaxy, at points in Sagittarius 
and Gemini. Beyond Sagittarius lie the mass center and dynamic foci of the 
Galaxy. Thus, the Solar System plane is about perpendicular to the galectic 
center, while the axis of the Solar System is inclined to the plane of the 
Galaxy. As the Solar System spirals along its galactic orbit, towardCephaus, 
it would seem that we would rise out of the Galaxy, but, the fact is that the 
Galaxy itself moves overall at an inclination to its plane, at an angle that 

may be determinable with respect to our neighbors in the local cluster of 
163 
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galaxies. It may also be determinable how galactic clusters in general are 
oriented: their members among themselves; one cluster to others [3]. 

The axis of the overall motion of the Solar System is of additional inter-
est with respect to the "abandoned" theory of the JEther. Adolph Griinbaum 
[4] argues that acceptance or rejection of the AEther depends substantially 
upon oneTs philosophical and historical comprehension of the issue, as well as 
upon scientific criteria. Arthur Moestler [5] reviews the history of the r e -
jection of the JEther and concludes that contemporary scientists have glossed 
the issue. On theoretical grounds, P. A. M. Dirac [6] has reconsidered and 
found a reconceived JEther necessary. 

Somewhat like Laplace not needing the "hypothesis" of God, one may 
say, Einstein [7] early argued that Relativity Theory eliminated the need for 
JEther postulates, experiments, and interpretations. Firm in his belief that 
God does not cast dice, however, by 1952, Einstein wrote: 

" . . . the foundation of electromagnetic theory taught that a part i -
cular inertial system must be given preference, namely, that of the 
luminiferous aether at r e s t . . . 

"Since the special theory of relativity revealed the physical equiva-
lence of all inertial systems, it proved the untenabilityof the hypothesis 
of an aether at r e s t . . . 

"It appears therefore more natural to think of physical reality as 
a four-dimensional existence, instead of, as hitherto, the evolution of 
a three-dimensional existence. 

"This rigid four-dimensional space of the special theory of rela-
tivity is to some extent a four-dimensional analogue of H. A. Lorentz's 
rigid three-dimensional aether. " [8] 

Inquiry as to the results of the Michaelson-Morely experimental pro-
gram would, then, seem as legitimate as it is interesting. As summarized 
by Robert W. Wood: 

"The most exhaustive series of observations extending over a 
period of thirty years have been made by D. C. Mil ler . . . " He "com-
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puted the velocity and direction of the earth1 s absolute motion in space, 
on the assumption that the observed effects were real. Astronomical 
observations indicate that the solar system is moving with a velocity 
of 19 kms/sec with respect to the brighter s tars toward the cons te l -
lation of Hercules* Miller1 s results showed an absolute motion in the 
opposite direction of 208 k m s / s e c . . . . A very full and convincing 
account of these laborious observations and calculations will be found 
in Review of Modern Physics, Vol. 5, No. 3, July, 1933." [9] 

Herbert Dingle, a member of the British solar eclipse expeditions of 
1927, 1932, and 1940, to test Einstein1 s prediction of the bending of light 
rays passing through the gravitational field of the Sun, has long questioned 
the Special Theory of Relativity and all its consequents, arguing that there 
is a serious e r ror at the root of Einstein* s mathematical reasoning. The 
history of science is largely a human story of accurate results obtained in 
terms of inadequate theory. Dingle insists that, some time, however incon-
venient it may be, the inadequacies of Special Relativity must be faced [10]. 

The e i ther is still considerable. But a concept is best judged by its 
fruits. Beginning in 1925, in terms of his revamping of the ^Ether, Carl F. 
Krafft [11] discovered what is fully described by the title of his first, p r i -
vately published monograph of 1927, Spiral Molecular Structures the Basis 
of Life, which is replete with diagrams. In that and subsequent writings, 
which Mendelianly remain unrecognized, Krafft fully developed a theory of 
helical molecular structure for proteins, with full understanding of the gene-
tic import of his discovery, and much more. 

The years 1925—1927 were those when Schroedinger, Meisenberg, 
Born, Jordan, Wigner, Pauli, Fermi , Dirac, de Broglie, Base, Einstein, 
et al , were developing the fundaments of quantum mechanics. 

In 1948, Linus Pauling [12] discovered the base of contemporary 
knowledge of helical molecular structure of proteins, in terms of which 
F. H. C. Crick and J. D. Watson discovered the helical molecular structure 
of Deoxyribose Nucleic Acid (DNA). Presenting their theory and structure, 
Crick and Watson wrote: 
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"We have assumed an angle of 36° between adjacent residues in 
the same cha in . . . . The structure is an open one, and its water con-
tent is rather high. At lower water contents we would expect the bases 
to tilt so that the structure could become more compact. " [13] 

That assumed 36° molecule of the DNA double helix, articulated with 
respect to the molecular axis, to which the purine and pyrimidine bases of 
the genetic code are perpendicular and planar. 

In 1927, Krafft theorized that the spiral structure of proteins provided 
an explanation of optical activity. This is as yet unsettled. Discussing the 
"Origin and Role of Optical Isomery in Life," A. S. Garay states: 

"Living organisms possess only one of two possible optical iso-
mers . There is no generally accepted theory for the origin of this 
asymmetry. " [14] 

It i s , however, generally thought that polarized light is necessary to 
the origin, development, and maintenance of life. Garey asks: "What is the 
source of circularly polarized light in nature?" A. Dauvillier notes: 

"Rectilinear polarized light exists in the solar light diffused by 
the sky and is produced in nature by reflexion, at an incidence of 37°, 
from the surface of water or on flat crystalline facets. The light from 
the sky is not polarized elliptically. Circularly polarized light, which 
is obtained by causing rectilinear polarized light to fall on a quarter-
wave plate — or a Fresnel parallelepiped, may also be produced natur-
ally by polarized light falling on a birefringent quartz or apar crystal." 
[15] 

In the molecule of water, the hydrogens are bonded at an angle of 104.6° 
across the pole of the oxygen. Regarded in an upsidedown, Alice sort of way, 
one may say that the hydrogens are oriented to oxygen at 180 — 2 x 37.7° 
[16] . 

Investigating "Rotary Brownian Movement. The Shape of Protein Mole-
cules as Determined from Viscosity and Double Refraction of Flow," John T. 
EdsaLl wrote: 
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"All these measurements involve the rotation and partial orien-
tation of protein molecules in an external field of force . . . the orienta-
tion achieved is only partial, since it is opposed by the disorienting 
action of the Brownian movement of the molecules. . . involving rota-
tion of the molecules about their axes, arising from thermal agitation. 
Its effect is to produce a purely random distribution of molecular o r -
ientations, in the absence of external orienting forces. In the presence 
of such orienting forces, a steady state is gradually achieved, a state 
intermediate between the two limiting conditions of complete orienta-
tion and of complete disorder. The exact character of this intermediate 
state depends on the magnitude of the orienting forces relative to that 
of the rotary Brownian movement M [17] 

In terms of the rationale then presented, the experiment performed on 
various proteins and other substances involved having a fixed core within a 
concentric tube rotatable to impart motion to a solution contained in the tube, 
through which polarized light is passed, its behavior being measured. For 
at least myosin, the protein of muscle, the angular parameters emerged as 
53° and/or 37°. 

(Edsall, in another discussion, makes the only reference to the work 
of Carl F. Krafft which I have yet found [18].) 

Gunther S. Stant, both historian and practitioner of molecular biology, 
discussing the seemingly startling permanence of the genetic code over geo-
logic time, ventures the possible explanation that: 

M . . . there exists some as yet unfathomed geometrical or stereo-
chemical relation between the anticodon nucleotids triplet and the amino 
acid which it represents. Indeed, if such a relation exists, it would be 
bound to hold one of the keys to understanding the origin of life. M [19] 

In "Toward aDefinition of Mind," citing the work of D. L. Reiser [20], 
Harold Kelman wrote this beautiful passage: 
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nThe forming process is metaphorically a spiral, constituted of 

an intimately connected sequence of levels or a continuum of transfor-
mations with movement possible from depth to surface and vice versa. 
The helix is of crucial import in Indian cosmology. TNature moves in 
a helical pattern in time, so that spiral forms get ingrained at many 
l e v e l s . . . . This is all part of a galactic rotation in which a Cosmic 
field plays an important part in transmitting spin (angular momentum) 
to mat ter . ' This is one facet of Reiser fs concept of cosmic imagina-
tion which moves in similar directions to my ideas on cosmic minding. 

"X-ray crystellography reveals DNA as a double stranded alpha 
helix [ s i c ] . . . . It directs protein synthesis and heredity. What was 
intuited thousands of years ago regarding life and living is being con-
firmed by science or science confronts us with ancient t ruth." [21] 

In terms of the evidence marshaled for the universal occurrence of an 
angle of about 37?^-38°, it seems that now and henceforth, it shall be less 
metaphorical to make such assertions. 

A. N. Whitehead wrote: 

?T.. .the search for a reason is always the search for an actual 
fact which is the vehicle of reason. The antological pr inciple . . . , con-
stitutes the first step in the description of the universe as a solidarity 
of many actual entities. M [22] 

and: 
"The task of reason is to fathom the deeper depths of the many-

sidedness of things. We must not expect simple answers to far-reaching 
questions.fT [23] 

A fact is not an answer, but should be of service in approaching an ans-
wer, however Zenoic the process of approach may ultimately be. 

Musing in Autumn on "The Secret of Life," Loran Eiseley says: 

" . . . I have come to suspect that the mystery may just as well be 
solved in a carved and intricate seed case out of which the life has 
flown, as in the seed itself. " [24] 
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Natural Philosophy, as contemporary as it is ancient and honorable, is 
especially pertinent in this two-cultured era, when I am "credentially" a 
"litterateur. M As such, however, I am particularly a student of the Phil-
osophy of Owen Barfield, whose preface compelled my attention to E. Grant-
Watson7 s exposition [25] of many beautifully amazing aspects of structure 
and behavior of living creatures. This was my introduction to the botanical 
principle of Phyllotaxis; the aesthetic principle of the Golden Section; and to 
the significance of the Fibonacci Series. 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, • • • , 

or 

1/1, 1/2, 2 /3 , 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89, 89/144,* •• . 

These fractions, 1/2 = 0.5; 2/3 = 0.66; 3/5 = 0.6; successively vacillate 
until a/b = 0.6180 ••• . 

This Fibonacci Number, 0.6180- • • , is the value of the Sine of 38.166°. 

"Elected Silence, sing to me 
And beat upon my whorled e a r . . . . 
Be shelled, eyes, with double dark 
And find the uncreated l ight . . . . f ! 

G. M. Hopkins, S. J. , "The Habit of Perfection. " 

Having discovered the equiangular, logarithmic spiral, which is the 
shape of the shell of the Chambered Nautilus; whose equation is satisfied by 
the Fibonacci Number, Jacob Bernoulli (1654-1705) had this figure inscribed 
on his tombstone, with the inscription: 

"Eadem mutata resurgo (Though changed I shall r ise the same)." 

[26] 

The French poet, Paul Vallery, having caught Einstein's allusion to a 
"mollusc" of reference [27], essaying on "Man and the Sea Shell," wrote: 
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"Without the slightest effort life creates a very TgeneralizedT 

re la t ivi ty . . . . 

"It does not separate its geometry from its physics but endows 
each species with all the axioms and more or less 'differential1 invari-
ants it needs to maintain a satisfactory harmony between the individual 
and the world around i t . . . . 
"The pattern of the colored furrows or bands that curve around the 
shell, and of the bands that intersect them, reminds us of Tgeodesic 
lines' and suggests the existence of some sort of f field of forceT which 
we are unable to discern, but whose action would give the growth of the 
shell the irresistible torsion and rhythmic progress we observe in the 
finished product. " [28] 

A line segment is a Golden Section if it may be split A.. .B C 
such that AB/BC = BC/AC. 

Turning the segment AB perpendicular to BC and completing the 
rectangle produces the Golden Rectangle. 

A Golden Rectangle may be constructed geometrically by taking any 
line as the base of a square; drawing the square; bisecting the square; draw-
ing a diagonal in one of the created interior rectangles; using that diagonal as 
a radius; swinging that radius until it intersects a line extended from the 
original base; from which point, completing a new rectangle containing the 
original square. 

The Golden Section, and forms based thereon, occur throughout a r t i s -
tic endeavors from the Greeks through the Renaissance through BartokTs 
music [29]. A beautiful and extraordinarily meaningful example of a Golden 
Rectangle is this graph by Linus Pauling: 

100 

80 

f 60 

Z 40 

20 

0 20 40 60 80 100 120 140 160 

"Fig. 8. A curve of proton number Z as a function of neutron 
number N, calculated as described in the text. The horizontal lines 
show the ranges of stable isotopes for alternate Z-even elements (for 
large Z the four most stable isotopes). " [30] 



1971] ANEWANTHESIS 171 

The value of the Tangent of 38.1+° is 0.7854, which is the value of 
(pi)/4, which is generated by the Gregory/Leibniz Series: [31] 

1 - 1/3 + 1/5 - 1/7 + 1/9 • • • . 

Assessing the mass ratios of electron, positron, proton, neutron, the 
mesons and hyperons, etc. , John J. Grebe found "A Periodic Table for Fun-
damental Particles,M as : 

"The existence of unique relations among the fundamental par t i -
cles based on exponentials of (pi)/4 has been discovered in the search 
for symmetry, unity, and simple structure. n [32] 

Grebe has also employed the logarithmic spiral ingeniously in plotting 
a three-dimensional Chambered Nautilus of a graph ordering all things in 
terms of frequencies of cycles per nanosecond through cycles per eons 
[33] . 

Hermann Weyl, whose discussion [34] of the significance of the Fib-
onacci Series eases one's mind in daring such sweeping claims as are being 
presented herein, has stated: 

?t TlPerhaps the philosophically most relevant feature of modern 
science is the emergence of abstract symbolic structures as the hard 
core of objectivity behind — as Eddington put it — the colorful tale of 
the subjective storyteller mind . . . . In the progress of science such 
elementary structures as roughly correspond to obvious facts are often 
later recognized as founded on structures of a deeper level, and in this 
reduction the limits of their validity are revealed. M [35] 

The objection that the Fibonacci Number and its associated Golden Angle 
at best only approximate to established parameters in astronomy, from which 
inference about gravitation haaybe made; in the interaction of electromagnet-
ic radiation with matter, fr^m which inference about electromagnetism and 
about chemical structure may be made; in microphysics; and in biology; may 
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be met by stating that appropriate investigation of the deviations from equal-
ity may be profoundly significant. The radius of curvature in non-Euclidian 
Space Time may be involved. The variation of gravitation with time may be 
involved. 

Considering such things in "Gravitation — An Enigma5
?T E. H. Dicke 

says: 

"The chief conclusion... is that it is a serious lack of observa-
tional data that keeps one from drawing a clear portrait or gravitation. 
Each tiny fragment of information appears as a star shining through a 
murky haze. Conclusions regarding the most fundamental of physical 
concepts are based on numbers which may be off by a factor of 100.M 

[36] 

Rectification may be achieved by recognition and pursuit of the unifi-
cation that seems possible in terms of the Golden Angle. 

Before finding the details presented here, in an unpublished paper writ-
ten in January 1968, on the significance of Carl F. Krafftfs work and neglect, 
I perhaps gave myself as litterateur too free a rein when I wrote: 

"Krafft unambiguously formulated, and, over several years : 

amplified and exploited his idea of spiral molecular structure as the 
basis of life. In terms of his development of Descartes1 vortices and 
his unique fpanpsychism,T... one can visualize Life as an inherent 
function of energized matter: From electrons spiraling about nuclei, 
which consist of spiraling mason clouds, yielding atoms which aggre-
gate into stars and planets which spiral about each other and about a 
focus of a spiral galaxy; which galaxies perhaps ultimately spiral about 
each other as their overall form of motion in the universe, which may 
not be expanding if Krafft's ((and my independent)) interpretation of the 
red shift in the spectra of galaxies prove more accurate than the 
Doppler effect interpretation of that red shift. As an inherent product 
of universal spiral motion, under suitable conditions, matter is ener-
gized to spiral into molecular structures which live, evolve, and finally 
are energized to such density of redundant interaction as to resonate 
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"self-consciousness, yieldingTeilhard deChardin!s Noosphere in a way 
he doubtless would have rejoiced in understanding. 

"It maybe flamboyants but I think that the model of DNA ?sculpted? 

by Crick and Watson, and the models of the alpha-helix by Pauling and 
Corey; of hemoglobin by Perutz; of myoglobin by Kendrew; and of in-
sulin by Frederick Sanger; should be enshrined along with if not above 
the works of Praxiteles and Michelangelo, as the greatest testimony to 
the truest humanistic value of science (man's cosmically emplacedim-
pulse to know) in fathoming the secret of the ultimate, or at least pen-
ultimate, formative principle of life.. . . M 

Perceiving the European philosophical tradition as a series of footnotes 
to Plato, A. N. Whitehead wrote: 

M . . . i f we had to render PlatoTs general point of view with the least 
changes made necessary by the intervening two thousand years of human 
experience in social organization, in aesthetic attainments, in science, 
and in religion, we should have to set about the construction of a phil-
osophy of organism.?? [37] 

Ludwig von Bertalanffy, independent cofounder with Whitehead and others 
of contemporary Organismic Philosophy, recently concluded an excellentori-
tique of psychology in the modern world: 

M.. . science is more than an accumulation of facts and technological ex-
ploitation of knowledge in the service of the Establishment; it may still 
be able to present a grand view and to become deeply humanistic in its 
endeavor. If we achieve as much as contributing a bit toward human-
ization of science, we have done our share in the service of society and 
civilization.TT [38] 

G. D. Birkhoff, whose gravitational theory needs review of itself if not 
in the context of this anthesis; who perceptively explored Aesthetics mathe-
matically [39], wrote: 

"The prophetic conjecture that Nature is mathematical is one 
which which goes back to Pythagoras and the ancient Greeks. The scientific 
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"development of the intervening 25 centuries has only served to estab-
lish this conjecture to a remarkable degree. The complementary fact 
that mathematics is natural i s , however, just beginning to be grasped. . . 

"The essential genetic foundation here is obvious. The mental 
codification of the facts of Nature in logical and mathematical terms 
has its origin in the uniformity of Nature and of Mind. " [40] 

Many thinkers, addressing themselves to problems engendered by the 
growth of detailed knowledge, advocate radically new departures. This 
Anthesis, however, is rooted in Tradition embracing Goethe, Leonardo de 
Vinci, Leonard of Pisa/Fibonacci, Plato, Pythagoras, and so many more. 
This Anthesis affirms Man and his capacity to know, and, what though, not 
thinking, at the foot of the cross men cast dice for the seamless raiment, 
this Anthesis affirms Einstein's belief that God does not cast dice. 
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FIBONACCI, LUCAS, AND THE EGYPTIANS 
SAL LA BARBERA 

San Jose State College, San Jose, California 

1. INTRODUCTION 

One of the obvious dis t inct ions between Egyptian ma thema t i c s and the 

ma thema t i c s of o the r cu l tu re s i s i t s addit ive c h a r a c t e r of the dependent a r i t h -

me t i c . A typical example i s recognized when we examine the a lgor i thm used 

by the Egyptians in doing mult ipl icat ion in compar i son to o ther a lgor i thms . 

Multiplication (Egyptian Style) i s done by a doubl ing-summing p r o c e s s 

s i m i l a r to the one shown in the following example . Le t u s solve the follow-

ing problem: 19 x 65. The Egypt ians noted that the number 19 was equal 

to 1 + 2 + 16 (the sum of powers of two), hence , by the addition of a p p r o -

p r i a t e mul t ip les of 65 the Egyptians a r r i v e d at the de s i r ed re su l t . We m a y 

a r r a n g e the p rob lem in the following way: 

<1* 
. 2 * 

doubling \ . 
doubling \ f t 

doubling ^ ^ 

19 

Upon careful examinat ion of the p r o c e s s e s used in this a lgor i thm, we 

find that t he r e a r e two bas ic concepts that contr ibute to i t s efficiency. N a m e -

ly , they a r e the concepts of d is t r ibut ivi ty and comple teness . The l a t t e r con-

ceived by P r o f e s s o r V e r n e r E . Hoggatt , J r . [ 1 ] . 

We can eas i ly identify the ro le which i s played by the d is t r ibut ive law 

in the a lgor i thm, for example , in the preceding p rob lem 65 x 19 = 65 (1 + 

2 + 16). However , the contribution made by the concept of comple teness i s 

not self-evident . Let us tu rn to the definition of comple teness before we e x -

amine i t s ro le in the Egyptian a lgor i thm. 

*65 
*130 

260 

520 

*1040 

doubling 

doubling 

doubling 

doubling 

1235 

177 
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Definition. A sequence S of posi t ive in t ege r s i s said to be complete 

if and only if every e lement n , where n is an e lement of the posi t ive i n t e -

g e r s can be r ep re sen t ed a s a sum of d is t inct e l ements of S. 

The sequence used in the Egyptian method of mult ipl icat ion the au thor 

shall de sc r ibe a s T , where T = 2 (n > 0 ) . In o r d e r to show that T is 

comple te , we mus t f i r s t prove the following l e m m a . 

L e m m a 1. T0 + T-, + T? + TQ + • • • + T - = T - 1. 
— u i L 6 n - 1 n 
Proof. We shall p rove this l e m m a by mathemat ica l induction. H e r e , 

we have 

P(n) : T0 + T j + T2 + T3 + • • • + T ^ = TR - 1 . 

Then P ( l ) : T0 = Tt - 1 i s eas i ly seen to be t rue since 1 = 2 - 1 . 

T h u s , we have accomplished our inductive bas i s . 

Now, suppose that 

P(K) : T0 + T i + T2 + T3 + - • . + T ^ = Tfe - 1 

i s t rue (the inductive assumpt ion) , and we mus t then prove: 

P(K + 1) : T0 + T i + T2 + T3 + • • • + T k = T k + 1 

By our inductive assumpt ion , we know that 

T0 + T i + T2 + T3 + - - - + T k _ x = T k - 1 

Hence , by substi tution into P(k + 1), we have that 

T, - 1 + T. = T. - - 1. k k k+1 

It follows that 

2 T k - 1 = T
k + i - 1 • 

hence , 2T,. = T . + 1 . Since T k = 2 k , we have that 2Tfc = T k + 1 - T h e r e f o r e , 
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we have shown that if P(K) is t r u e , then P(K + 1) i s t r u e , and we have 

completed the inductive t rans i t ion . 

Employing L e m m a 1, we may prove the following theorem. 

T h e o r e m 1. The sequence T , whe re T = 2 n (n > 0) is a complete 

sequence. 

Proof. As an inductive b a s i s , we know that 

1 = 1 
2 = 2 
3 = 1 + 2 
4 = 4 
5 = 1 + 4 
6 = 2 + 4 
7 = 1 + 2 + 4 , e tc . 

Hence , we m u s t a s s u m e that the re a r e r ep re sen ta t ions for a l l the posi t ive 

in t ege r s N: 

1 < N < 2 n + 1 - 1. 

T h e r e f o r e , we mus t show that the re a r e r ep resen ta t ions for all posi t ive i n t e -

g e r s M: 

2 n + 1 - 1 < M < 2 n + 2 - 1 . 

By subtrac t ing 2 from the above inequali ty, we have that 

- 1 < M - 2 n + 1 < 2 n + 2 - 2 n + 1 - 1 . 

n-t-1 n + 1 

Le t Q = M - 2 ; hence , - 1 < Q < 2 - 1 . This leads us to the con-

clusion that Q is r ep re sen tab le as a sum of powers of 2 by our inductive 

assumpt ion . And, from t h i s , we can conclude that M is r ep re sen t ab l e as a 

sum of powers of 2 s ince M = Q + 2 and 

2 n+1 1 = l + 2 + 2 2 + 2 3 + - - - + 2 n 

Hence, we have completed our inductive t ransi t ion. 
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2. FIBONACCI-EGYPTIAN METHOD 

As we noted in the introduct ion, the n e c e s s a r y and sufficient conditions 

for the Egyptian a lgor i thm to "work" a r e comple teness and dis t r ibut ivi ty . 

The au thor , upon reaching this conclusion, went in s e a r c h of o ther 

sequences that would sat isfy the above condit ions. The f i r s t sequence e x a m -

ined proved to be fruitful. It was the Fibonacci sequence. It i s obvious that 

the d is t r ibut ive law i s sa t isf ied, s ince we a r e working solely with posi t ive 

in tegers ; however , i t i s not so obvious that the Fibonacci sequence i s c o m -

ple te . Let u s then prove this fact. 

As be fore , we m u s t prove a l e m m a before proving the main theorem. 

It i s the following: 

L e m m a 2. 

F n+2 - 1 = F i + F2 + F 3 + F 4 + • • • + F n . 

Proof. We shal l p rove the l e m m a by mathemat ica l induction. 

P(n) : F n + 2 - 1 = FA + F 2 + F 3 + F 4 + • • • + F n . 

Then P(J.) : F 3 - 1 = F j which i s t r u e , s ince 2 - 1 = 1. T h u s , we have 

accompl ished our inductive bas i s . Now we m u s t suppose that 

P(K) : F k + 2 - 1 = F t + F2 + F 3 + F 4 + • • • + F k 

i s t rue (the inductive assumpt ion) , and we mus t then prove: 

P(K + 1) : F k + 3 - 1 = F i + F 2 + F 8 + F 4 + • • • + F k + 1 . 

By the addition of F, - to both s ides of the equation P(K), we have 

F k + 2 + F k + 1 - 1 = F t + F 2 + F 3 + • • • + F k + F k + 1 , 

which Heads us to 

F k + 3 " 1 = F 1 + F 2 + F 3 + . . . + F k + 1 
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by the r ecu r s ion re la t ion for Fibonacci n u m b e r s , namely 

F = F + F 
n+3 n+2 n+1 

Using th is l e m m a , we m a y prove the following theorem. 

T h e o r e m 2. The Fibonacci n u m b e r s form a complete sequence. 

Proof. The inductive proof will be cons idered in the following way. We 

obse rve that 

1 = F i = F2 

2 = F3 = F 2 + Fj[ 

3 = F4 = F3 + F2 

4 = F 4 + F 2 = F 3 + F 2 + F l f e tc . 

We shall use th is a s our inductive b a s i s . Next, we m u s t a s s u m e that t he re 

a r e r ep resen ta t ions for all posi t ive in t ege r s N , such that 

n+2 

i s t r u e . We mus t therefore show that t he re a r e r ep resen ta t ions for al l p o s -

itive in tege r s M, such that 

F - 1 < M < F « - 1. n+2 n+3 

By subtrac t ing an F 2 from the above inequali ty, we have that 

- 1 < M - F < F - F - 1 . 
1 M n+2 *n+3 n+2 

Let Q = M - F + 2 ; hence , 

- 1 < Q < F n + 1 - 1 . 

This leads us to the conclusion that Q is r ep re sen t ab l e a s a sum of F ibon-
acc i n u m b e r s by ou r inductive assumption. And from th i s , we m a y conclude 
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that M is r ep resen tab le a s a sum of Fibonacci n u m b e r s , s ince 

M = Q + F n + 2 

and 

• F _, 0 - 1 = Fi +• Fo + F 8 + • • • + F . 
n+2 i & t n 

Hence , we have completed our inductive a rgument . 

Le t us examine the Fibonacci-Egypt ian method for mult ipl icat ion. F o r 

example , cons ider the p rob lem 19 x 65. We note that 

19 = 1 + 5 + 13 , 

a l l of which a r e Fibonacci number s . Toge ther with the Fibonacci r ecu r s ion 

re la t ion , and the following s e t - u p , we m a y approach the p rob lem in the fol-

lowing way: 

1* * 65 
+ + 

2 130 
+ + 

3 195 
+ 5* *325 + 

+ 520 
+ 13" *845 + 

19 1235 

One may obse rve that in the preceding example , the en t i re Fibonacci 

sequence was not used. Upon examinat ion, one will find that the f i rs t n u m -

b e r of the sequence has been t runcated. This does not , however , effect 

e i the r the comple teness of the sequence nor the dis t r ibut ivi ty . The author 

shal l r e f e r to the Fibonacci sequence with one e lement omit ted as the Deleted 

F Sequence. Hence , le t u s prove the following theorem. 

T h e o r e m 3. The deleted F sequence , where f = F (n > 1) with 
a r b i t r a r y F not used , i s complete . 
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Proof. From the previously proven theorem, it was noted that we may 
represent any positive integer n, where l < n < F + 1 - l by using only 
the Fibonacci numbers Ft through F _-, without using F . Hence, we 
shall consider F n as the arbitrary Fibonacci number to be omitted. We may 
observe that F n + 1 can represent itself. Since this is t rue, it is noted that 
we now have representations for 1 < n < 2F - - 1. Since we have increased 
our upper bound from what it was formerly, we may use this particular tech-
nique so that we may have representations for any positive integer without 
using F . For example, if F = 1, which is proposed to be the deleted 
number, then the sequence would remain complete. 

Therefore, we have another method for multiplication which may be 
employed by those who have not mastered the traditional algorithm. 

3. LUCAS-EGYPTIAN METHOD 

Another sequence which proves fruitful in using our algorithm is the 
Lucas sequence. The Lucas sequence is composed of the numbers 

(1, 3, 4, 7, 11, 18, 29, 47, •••) 

and can be used effectively for the base sequence in an Egyptian multiplica-
tion problem. However, there is one acute difficulty in the consideration of 
this sequence for our algorithm; it does not have any representation for the 
positive integer 2. Therefore, something must be done to the sequence be-
fore we can apply it to our algorithm, since without a representation for the 
number 2 it is not complete. 

The author chose to augment the sequence in the following way and de-
fine his Augmejite^lJ-^^ A = L - , where At = 2, A2 = 15 

A3 = 3, and so on. 
The reader will observe that this augmented sequence has a represen-

tation for 2 and also observe the recursion relation for the Lucas Sequence, 
namely A = A +A -. Hence, we may use it for our base sequence in 
the Egyptian algorithm. The problem 18 x 54 may be set up in the follow-
ing fashion. 
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+ 

+ 

+ 
+ 

+ 

+ 

2 

1 

3 

4 

7 

11 

18 

18 

108 
54 

162 

216 

378 

594 

972 

972 

+ 

+ 

+ 
+ 

+ 

+ 

The augmented Lucas sequence i s complete and may be proved to be in a 

s i m i l a r fashion to T h e o r e m 2 , by use of L e m m a 3 , which s t a t e s 

L e m m a 3. 

L0 + L i + L2 + L3 + - • • + L n = L n + 2 - 1. 

Proof. Using an inductive proof, we have as our bas i s 

P ( l ) : L0 + L j = L3 - 1 

which i s t r u e , s ince 2 + 1 = 4 - 1 . Our inductive assumpt ion is 

P(K) : L0 + Lj + L2 + L3 + ' ' ' + L k = L k + 2 - 1 . 

We m u s t then prove that 

P(K + 1) : L0 + Li + L2 + L3 + • • • + L k + 1 = L k + 3 - 1 

i s t r u e . This may be accompl ished by adding a L k + 1 to both s ides of P(K). 

Hence , we have that 

L0 + L i + L2 + • • • + L k + L k + 1 - L k + 2 + L k + 1 - 1, 

which l eads us to the fact that 

L0 + L i + L2 + L3 + L4 + • • • + L k + 1 = L k + 3 - 1 
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Hence, our induction transition is complete. 
Invoking this lemma, we may prove the following theorem. 
Theorem 4. The augmented Lucas sequence is complete. 
Proof. As our inductive basis, we have that 

1 = Lt 

2 = L0 

3 = L2 

4 = L3 

5 = L3 + Lj , etc. 

As our inductive assumption, we assume that for N, a positive integer, 
there are representations for N in terms of Lucas numbers so that 

1 < N < L n + 2 " 1 • 

Hence, we must prove that for M, a positive integer, M is representable 
as a sum of Lucas numbers between the intervals of 

L I 0 - 1 < M < L J _ Q - 1 . 
n+2 n+3 

Using the same idea as described in the previously proven theorems, we 
shall subtract an L „ from the above inequality. Hence, we have that 

- K M - L n + 2 < L n + 3 - L n + 2 - 1 . 

Let Q = M - Ln + 2 - Therefore, 

-1 < Q < L n + 3 - L n + 2 - 1. 

This leads us to the conclusion that 

-1 < Q < L n + 1 - 1 . 
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We may conclude that Q is representable as a sum of augmented Lucas num-
bers. And from this, we can conclude that M is representable as a sum of 
augmented Lucas numbers, since M = Q + L ? . 

Other sequences may be investigated and tested for completeness; how-
ever, no others with starting values other than (1,1), (1,2), and (2,1) will 
be found which satisfy the generalized Fibonacci recursion relation. In gen-
eral , other sequences that are complete will follow the following generalized 
recursion relation 

n-1 
Gn = E Gq J = ( 2 , 3 , 4 , . . . ) , 

q=n-j 

and where the starting values for the above sequences are taken from either 
the augmented Lucas sequence or the deleted F sequence. For example, 
let us examine the Tribonacci sequence, where three numbers are added. 
The generalized recursion relation would look like the following: 

n-1 
G = y G . 

n Z—i q 
q=n-3 

Hence, the sequence would be 

(1, 2, 3, 6, 11, 20, •••) . 

In general j determines the number of terms to be added together and also 
the number of starting values to betaken from either the deleted F sequence 
or the augmented Lucas sequence. 

The author at this point feels that it would be valuable for the reader to 
have a simple method for determining whether a sequence is or is not com-
plete. It was observed and proven by John L. Brown, J r . [2] that the neces-
sary and sufficient conditions for a sequence to be complete is that the 
sequence satisfy the following general summation formula 
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n 
A n + 1 * 1 + E Ai 

i=l 

where Aj = 1. Hence, we now have a convenient way in which to determine 
a sequence complete. 

The material submitted in this paper is not completely theoretical and 
does have very definite practical application. The author used both the de-
leted F sequence and the augmented Lucas sequence in conjunction with the 
Egyptian method in a class of "slow learners. M The results were phenomenal. 
Those students who could not multiply by traditional means were then given 
a method even they could handle. You see, all one needs to be proficient in 
the methods given above is an adequate understanding of simple addition. 
The author found that most slow learners could add correctly, however, they 
could not multiply. Therefore, this algorithm best fit the needs of those 
students. 

The concepts mentioned throughout the paper may also be used in ad-
vanced mathematics classes. Hence, as one can see, the utility of these 
topics and their applications is boundless. 

It is the author's intent that the reader search for other complete se -
quences and establish those concepts revealed in this paper, so that he may 
transfer the concepts to others and hence, give many an algorithm for mul-
tiplication which they may not already have. 

The author would also like the reader to be aware of the fact that it is 
sometimes advantageous to use one complete sequence over another. For 
example, it is better to use the Lucas sequence when multiplying the numbers 
18 x 432, than it is to use the Fibonacci sequence or the powers of two se-
quence, since 18 is an element of the Lucas sequence. Therefore, this was 
the primary reason the author went in search of other complete sequences. 

The author hopes that the methods for multiplication developed in this 
paper will be tried, and hopes that the success of those using them will be as 
rich as his own. 

[Continued on page 194. J 



THE GOLDEN RATIO IN AN ELECTRICAL NETWORK 
J. WLODARSK! 

Proz-Westhoven, Federal Republic of Germany 

At the end of June 1967, Poland called together an international physics 
olympiad for grammar-school students in Warsaw. Five countries partici-
pated: Bulgaria, Poland., Romania, Czechoslovakia, and Hungary. 

During this competition, the following problem was presented, among 
others: 

An infinite network consists of the resistors r. Calculate the res is t -
ance between points A and B. 

T C C T 
A * V V V 1—-j I v W 

B « - — — — ; r . - j -
D! D 

The solution of this problem can be presented in different ways. One 
quite brief version is possible as follows: 

Suppose the resistance of the infinite network on the right-hand side of 
points C and D is equal to r . 

If we go one step to the left from points C and D to C and D', the 
resistance of the network would be 

r • r 
n 

rCTDf r + r 
n 

in accordance with relation: 

_J_ = I + I. 
r r r 

CTDT n 

The next resistor r is added on the left behind the resistance r r T • 
therefore, the resistance between A and B is 

[Continued on page 194. ] 
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KAPREKAR'S ROUTINE WITH TWO-DIGIT INTEGERS 
CHARLES W.TRIGG 
San Diego, California 

KaprekarTs routine consists of rearranging the digits (not all alike) of 
an integer, N0, to form the largest and the smallest possible integers, find-
ing their difference, Nj, and repeating the operation on N4 and on the sub-
sequent differences until a terminal situation is reached. He found p.] that 
when the routine is applied to any four-digit (not all alike) integer in the deci-
mal system, the self-producing 6174 is eventually reached. The routine has 
been expanded to other number bases [2] , [3] , and to three-digit [4] and 
five-digit [5] integers. 

When applied to two-digit integers, an integer and its reverse are in-
volved, the smaller being subtracted from the larger in each step of the rou-
tine. In the system with base r , all differences are multiples of r - 1. 
Each step may be called a reversal-subtraction-operation (RSQ). 

There are three possible terminal situations which may result when the 
routine is applied to a two-digit integer, namely: 

A. If at any step of the repetitious routine, an integer with two like 
digits is produced, its Nj will be 00. 

B. A self-producing integer is formed. That i s , the integer is repro-
duced when subjected to an RSO. For example: 37 in the scale of 
eleven, where 73 - 37 = 37. 

C. A regenerative loop is formed, in which an RSO on one member 
produces the next member. For example: in the scale of nine, 
53 - 35 = 17, 71 - 17 = 53, and so on. 

In each of these categories, if all two-digit integers in a particular sys-
tem lead to the same result, it is said to be unanimous. 

The two-digit ordered integers ab and a + k b + k have the same NA, 
Hence, to investigate the entire field in the scale of r , it will be sufficient 
to examine only the r - 1 integers with the form r - 1 b, where b < r - 1. 
Each of these is the representative (rep) of all two-digit integers from which 
an RSO produces the same NA. Any two-digit integer can be converted into 
its rep by addition of an appropriate multiple of 11, ThuSj 52 + 44 = 96 in 
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the decimal system, so 52 - 2 5 = 27 = 9 6 - 69. All integers with the same 
rep have the same value of a - b. 

THE EXAMINATION PROCEDURE 

An RSO is performed on each of the reps. Each difference, Nj, is 
converted into its own rep. These results are assembled into flow charts 
such as those given below. All NjTs with the same rep are placed below a 
common subtraction line. Their common rep is placed below them on the 
left. The category letter of each terminal situation is placed below it. 

Thus, only r - 1 RSO!s are necessary to examine the entire field in 
the base r. The number of steps necessary to convert any integer into the 
terminal result can be read directly from the chart after locating its rep. In 
the scale of five, three RSOTs convert 12 (which has the rep 43) into the self-
producing 13. 

In the charts for bases eleven and twelve, the symbols X and E stand 
for the digits ten and eleven, respectively. 

OPERATIONAL FLOW CHARTS 

Base Two 

10 

01 

01 

B 

Base Three 

21 

15 
02 

20 

02 

11 
A 

Base Four 

30 

03 

-21 

32 

23 

-03 

C 

31 

13 

12 

Base Five 

43 

34 

04 

40 

04 

31 

42 

24 

13 

B 

41 

14 

22 

A 
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Base Six Base Seven Base Eight 

191 

50 
05 

r 4 1 

52 

25 

23 

54 

45 

• 05 

C 

53 

35 

14 

51 

15 
32 

65 

_56 

06 

60 

06 

51 

62 

26 

33 

A 

63 

36 

24 

64 

46 

15 

61 

16 
42 

70 

07 

-61 

72 

27 

43 

75 

57 

16 

73 

37 

34 

71 

17 

52 

74 

47 

25 

B 

76 

67 

•07 

C 

Base Nine Base Ten 

85 

58 

26 

84 

48 

35 

86 

68 

81 

18 

62 

87 

78 

08 

80 

08 

83 

38_ 

44 

A 

• 1 7 

82 

^ 8 

L53 

C 

71 

90 

09 

81 

97 
79 

18 

92 

29 

63 

96 

69 

27 

94 

49 

45 

98 

_89 

L09 

c 

91 

19 

72 

95 
59 

36 

93 

39 

54 



1971] KAPREKAR'S ROUTINE WITH TWO-DIGIT INTEGERS 

Base Eleven Base Twelve 

192 

X9 

9X 

OX 

XO 

OX 

X5 

5X 

46 

X8 

8X 

X3 

3X 

64 

X7 

7X 

28 

X4 

4X 

XI 

IX 

82 

91 

X2 
2X 
73 

X6 
6X 
37 
B 

19 55 
A 

EO 
OE 

,rXl 

E2 
2E 
83 

29 

E4 
4E 
65 

EX 
XE 

LOE 
C 

E9 
9E 
IX 

E5 
5E 
56 

E7 
7E 
38 

E6 

6E 

47 

E8 

8E 

E3 

3E 

74 

El 

IE 

92 

SUMMARY AND GENERALIZATIONS 

1. Every system with an odd base has a sequence leading to 00, since 

r - 1 (r - 3)/2 - (r - 3)/2 r - 1 = (r - l ) /2 (r - l ) /2 

In bases three and seven, 00 is unanimous. 
2. If a self-producing integer, kx with k < x, exists in a system 

with base r , then 
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(rx + k) - (rk + x) = rk + x 

whereupon 

r = <2x - k)/(x - 2k) = 2 + 3k/(x - 2k) . 

Then, since x < r , self-producing integers, which will have the form 
k 2k + 1, exist in and only in systems with bases of the form 3k + 2. 

Such bases are two (in which 01 is unanimous), five, eight, and eleven. 
3. Both r - 1 c and r - l r - 3 - c have N^s which are the reverse 

of each other, since 

r - l c - c r - 1 = r - 2 - c c + l 

and 

r - l r - 3 - c - r - 3 - c r - l = c + l r - 2 - c . 

Hence, the NjT s have the same rep. 
4. If r is even and not of the form 3k + 2, the result of application 

of RSO!s to the reps in that system is a unanimous regenerative loop of r /2 
elements. 

REFERENCES 
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tic Teacher. 

5„ Charles W. Trigg, "Kaprekar* s Routine with Five-Digit Integers," sub-
mitted to Mathematics Magazine. 
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[Continued from page 188. ] 

, r • r n 
*AB r + r 

Since the network is infinite, we can disregard the addition of one s e c -
tion of each sequence. This allows to determine the resistance between points 
A and B as equal to the resistance between C and D. 

Consequently, 

r • r 
r = r + — • 
n r + r 

n 

After solving this equation, we have * 

r n = r • — ^ - = r • 0 

where </) is the Golden Ratio. 
See also, S. L. Basin, "The Fibonacci Sequence as it Appears in Na-

tu re , " Fibojna^cJ^u^rterij;, Vol. 1, No. 1, p. 53. 

[Continued from page 187. ] 

Editorial Note: The question remains how the students are to find the Fibonacci 
or Lucas representation for the first factor. To find the Fibonacci represen-
tation for 28, we subtract the largest Fibonacci number not exceeding 28, 
namely 21. This leaves 28 - 21 = 7y so our next choice is 5' 28 - 2 1 — 5 
= 2, a Fibonacci number. Thus, 28 = 21 + 5 + 2. This will always yield 
the representation with the least number of summands. 

REFERENCES 

1. V. E. Hoggatt, J r . , Fibonacci and Lucas Numbers, Houghton-Mifflin 
Company, Boston (1969), pp. 69-72. 

2. John L. Brown, J r . , "Note on Complete Sequence of Integers," American 
Mathematical Monthly, Vol. 67 (1960), pp. 557-560. 



A NUMBER PROBLEM 
J. WLODARSKI 

Porz-Westhoven, Federal Republic of Germany 

The last digit of one number is 6. Take away this digit and put it in 
front of a given number. 

Thus a new number can be formed which will be 6 times bigger than the 
original one. 

What smallest of all possible numbers satisfies this condition? 

Simple Solution 

6 
36 

216 
1296 

7776 
46656 

•1016949 6779664 

L-a period with 58 digits—* 

The number to be found is: 

1016949152542372881355932203389830508474576271186440677966 . 

Find this number in another way using the Fibonacci terms. 
Remark. 2, 8, 34, 144, ••• , etc. are third, sixth, ninth, twelfth, ••• 

(general: F . , where n = 1, 2, 3, 4, ' • ' ) ' , etc. terms of Fibonacci se-
quence 1, 1, 2, 3, 5, ••• . 

The solution by using the Fibonacci numbers is given on the follow-
ing page. 
[Continued on page 198. J 
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NUMBERS THAT ARE BOTH TRIANGULAR AND SQUARE 
THEIR TRIANGULAR ROOTS AND SQUARE ROOTS 

R. L. BAUER 
St. Louis, Missouri 

There is an infinite series of numbers, N, which for integral T and 
S: 

(1) | T ( T + 1) = N = S2 . 

The first nine members of the series are tabulated below, together with their 
triangular roots, square roots, and index numbers, n. 

N 
0 

1 

2 

3 

4 

5 

6 

7 

8 

0 

1 

8 

49 

288 

1681 

9800 

57121 

332928 

0 

1 

36 

1225 

41616 

1413721 

48024900 

1631432881 

55420693056 

0 

1 

6 

35 

204 

1189 

6930 

40391 

235416 

By inspection of the tabulation, we note the recursive formula for 

(2) N = 34 N - - N 0 + 2 , 
n n-1 n-2 ' 

from which we can develop a generalized formula for N: 

(3) N n = A [(17 + 1 2 ^ ) n + (17 " 12N^")n - 2 ] . 

N: 

Similarly, 
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(4) T = 7T - - 7T 0 + T 0 9 
n n-1 n-2 n-3 ' 

and 

(5) T n = | [(3 + 2 *J2 f + (3 - 2 ^ ) n - 2 ] . 

Also: 

<6) S n = 6 S n - l " S n - 2 • 

and 

S n = | N/2 [(3 + 2 ^ 2 ) n - (3 - 2 ^ 2 ) n ] . 

Other recursive formulas and relations were found by inspection of the 
tabulation: 

(7) S0 = S (S _,_- - S - ) 
2n n n+1 n-1 

(8) T0 - = (T - T , )2 

2n-l n n-1 

(9> S 2 n - 1 = N n " N n - 1 

(10) T 2 n = 8Nn 

(11) T - T , = S + S -
' n n-1 n n-1 

<12> T 2 n - 1 = ( S n + S n - l ) 2 

<13> S 2 n - 1 = <Sn ' S n - l ) ( T n " T n - 1 > 

<14> N n - N n - 1 = ( S n " S n - l ) ( T n " T n - 1 > 
*This simplification of the authorfs more complicated formula was furnished 
by Hoggatt 
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BOTH TRIANGULAR AND SQUARE 

(15) T = 8S2 

2n n 
J 

(16) S0 - = (S - S - )T% -
2n-l n n-1 2n-l 

(17) N - N - = ( S - S - ) ( S + S - ) . 
n n-1 n n-1 n n-1 

By the use of the recursive formulas, the tabulation was extrapolated for 
negative index numbers. It was found to be perfectly reflexive about 0 ex-
cept that the values of S became negative for negative index numbers, while 
the values of N and T remained positive. All generalized formulas and 
recursive formulas and relations held for the reflected series. 

[Continued from page 195. ] 

Solution by Using the Fibonacci Terms 

2 
8 
34 

144 

610 

2584 

10946 

46368 

196418 

832040 

3389-

3 X 3389 • • • = 1016949 • • • . 



RECREATIONAL MATHEMATICS 
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ASYMPTOTIC EUCLIDEAN TYPE CONSTRUCTIONS 
WITHOUT EUCLIDEAN TOOLS1 

JEAIM J. PEDERSEN 
University of Santa Clara, Santa Clara, California 

INTRODUCTION 

" . . . , Gauss made the remarkable discovery that those, and only 
those, regular polygons having a prime number of sides p can be con-
structed with straight edge and compasses if and only if p is of the 
form 22 + 1. Now the ancient Greeks had found how to construct with 
straight edge and compasses regular polygons of 3, 4, 5, 6, 8, 10 and 
15 sides. If in the formula p = 22 + 1 we set n = 0 and 1, we ob-
tain the primes 3 and 5 respectively — cases already known to the 
Greeks. For n = 2, we find p = 17, which is a prime number. 
Therefore Gauss showed that a regular polygon 6f 17 sides is con-
struct ive with straight edge and compasses, which was unknown to the 
Greeks. Gauss was vastly proud of this discovery, and he said that it 
induced him to choose mathematics instead of philology as his life workT.T 2 

This quote from Howard W. Eves! recent two-volume set, In Mathe-
matical Circles, suggests that the construction of regular polygons having a 
prime number of sides is not easy, even when possible, with a straight edge 
and compass. Note that Gauss showed it is impossible to construct with a 
ruler and compass the regular seven-sided polygon. Furthermore, one 
method for showing that a general angle 6 cannot be trisected with Euclid-
ean tools involves showing that it is impossible to trisect the angle whose 

*Text and illustrations copyright 1971 by Jean J. Pedersen. 
2HowardW. Eves, In Mathematical Circles, Quadrants UI and IV, Prindle, 

Weber and Schmidt, Inc., Boston, 1969, p. 113. 
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measure is 7r/3 — hence, the nine-sided regular polygon is not constructible 
with a ruler and compass either. * 

The first part of this article deals with a way to approximate, by fold-
ing a paper strip, any regular polygon whose number of sides is of the form 
2 ± 1 , for some natural number n. Note that when n = 3, the expression 
2 n ± 1 yields 7 and 9. 

A modification of the iterative folding sequences used on paper strips 
is presented. It suggests a method for approximating an angle having meas-
ure 6/(2 + 1), where n is any natural number and 0 is any given angle 
whose measure is between 0 and TV Particularly interesting is the case 
when n = 1, which produces a trisection approximation process. 

Finally, as an illustration, instructions are given describing how paper 
strips may be used to construct models of regular convex dodecahedra. The 
constructions suggest, as will be seen, that a "parallel strip" classification 
of certain polyhedra might provide an interesting point of view from which to 
study their properties. 

FOLDING SEQUENCES INVOLVING ONE ITERATIVE EQUATION 

As an elementary example, take a roll of ordinary adding machine tape 
and make a fold on any straight line, t0, near the end of the tape so that 
t0 crosses one of the parallel edges of the tape at a point, A0. Fold again 
through A0 to bisect one of the angles formed by t0 and an edge of the tape. 
Do this so that the newly created transversal, tA, goes towards the roll of 
paper. One endpoint of tj is A0, the other endpoint is named MAj. M Now 
fold the tape through A1;> bisecting the obtuse angle created by tj and the 
edge of the tape. This fold yields yet another transversal, 1 ,̂ whose end-
points are Aj, A2. To continue this folding process always bisect, by fold-
ing through A , the obtuse angle, having sides t and an edge of the tape; 
thereby obtaining a new transversal, t - , having endpoints A , A - (for 
n = 1, 2, 3, • • • ) . The acute angle formed by t and an edge of the tape is 
denoted x ... n-1 

*Howard W. Eves, An Introduction to the History of Mathematics, Rinehart 
and Company, Inc. , New York, 1953, pp. 96-98, p. 107. 



1971] RECREATIONAL MATHEMATICS 201 

For the most accurate results , both in this case and all other examples 
which follow, fold the tape so that whenever transversals are formed, the tape 
remains folded on these creases and the next fold always occurs on the por-
tion of the paper strip which comes from the top of the existing configuration. 
Thus, the triangles which are formed will either stack up or form a zig-zag 
type pattern in the folding plane, but the configuration formed will never need 
to be turned over during the folding process. One quickly discovers, how-
ever, that certain rotations of the configuration in the folding plane facilitates 
the folding process. Figure 1 illustrates one case of how the unfolded tape 
appears after the folding process has taken place. 

When the above folding process is accurately carried out, an accordian-
like stack of triangles results. And, it soon becomes visually apparent that 
successive triangles are getting more and more alike — consequently, the 
measure of x must approach TT/S as n gets large. 

For skeptics, the proof can be ascertained. Firs t , note that since the 
edges of the tape are parallel, the measures of successive acute angles al-
ways satisfy the equation 

2 x n + V l = « ' 

where n = 1, 2, 3, • • • . Successive computations of x1? x2, x3, e t c . , 
yields 

x n = | [ 1 + (-1/2)1 + ( _ l / 2 ) 2 + . . . + ( - i^) 1 1 " 1 ] + ( - l /2 ) n x 0 , 

which can be verified by mathematical induction. Then, using the formula 
for the sum of a geometric sequence, it follows that 

xft = I [1 - (-l /2)n] + ( - l /2) n x0 . 

Consequently, 

lim x = 7T/3 . n—*°° n 
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Notice that the difference, in radians, between x (which is formed 
nH n 

by the (n + 2) u fold of the tape) and ir/3 is 

( - l / 2 ) n [x 0 - 7T/3] . 

This means each new accurate fold on the tape produces an angle whose 
measure is twice as close to 7r/3 as its predecessor. In fact, the maximum 
value for the actual e r ro r (which occurs when x0 approaches zero) indicates 
that one can always expect an approximation of tr/3 with accuracy better than 
one minute after 14 folds. But, as one is not likely to choose x0 close to 
zero, this degree of accuracy will occur, in most cases, when n < 14. 

It turns out to be practical, in the paper tape construction of models, 
to have the following: 

Visual Criterion. When the consecutive longest transversals formed 
on a tape by an iterative folding process, appear to be of the same length, 
then the tape is called usable. 

Suppose the length of successive transversals obtained from some i ter-
ative folding process approaches some fixed value, in the limit sense. Then 
there must exist some number k f 0 such that consecutive acute angles 
formed by those transversals and an edge of the tape converge to an angle 
having measure 7r/k. 

Definition. On a usable tape, whose successive smallest acute angles 
converge to 77/k; when the portion not satisfying the Visual Criterion is cut 
off, the remaining tape is denoted nT(7r/k).n 

Accordingly, the usable tape produced in the above example is denoted 
?rT(7r/3)Tf and called a Mpi thirds tape. n 

The method of obtaining T(ir/k) implies that there will always be some 
natural number, p , such that the transversals t , where n < p, will not 
appear on that tape. But, it is not necessary to identify p. Thus, in describ-
ing constructions, reference to a transversal tn on T(7r/k) will mean any 
transversal on T(7f/k). However, once t has been identified for use in a 
particular construction, then t + (where q is any natural number) will 

th mean the q transversal following t . 
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Since T(7r/3) contains approximations of equilateral triangles, it may 
be used to construct models of hexagons and deltahedra. As an example, cut 
T(7r/3) on t and t + 1A> then fold the ten triangle strip on t „ and t fi. 
Now, because straight lines are easier to fold than to cut, the t 1 0 end of 
the tape is wrapped around t when the tape is folded on t q to complete 
the model of a hexagon. Note that the definitive edges do not include either 
of the cut edges t , t l i r k . & n n+10 

The above folding process generalizes in the following way. 
Theorem 1. If 
(1) n is some fixed natural number. 
(2) A paper tape of width w is folded on some transversal, t0, which 

crosses one of the parallel edges of the tape at A0. 
(3) One angle formed by t0 and an edge of the tape is then divided into 

2 par ts , by folding through A0; creating, in order, the new set 
of transversals , t l s t2, t3, • • • , t , where tj < t2 < t3 < • • • < t . 
The measure of the acute angle formed by t and the edge of the 
tape is denoted x0. The endpoint of t which lies on the opposite 
edge of the tape from A0 is called AA. 

(4) In general, folds are made so as to divide into 2 parts the obtuse 
angle having vertex A, and an interior with no transversals. The 
new transversals , t k n + 1 > t ^ , • • • , t k n + n > are such that t ^ 
< W 2 < ••• K W The endpoint of t ^ , called Afc+1, lies 
on the opposite edge of the tape from A, (for k = 1, 2, 3, • • • ) . 
The measure of the acute angle formed between t and an edge 
of the tape is denoted x, . 

Then , lim x, = 7r/(2n + 1) and consequently, this folding pro-
cess produces T(7r/(2n + 1)). 

Proof. From the description of the folding process, it follows that the 
measures of successive acute angles satisfy the equation 

(1) 2 n x k + x ^ = 7T , 

where k = 1, 2, 3, • " . Then, using mathematical induction, it can be 
shown that 
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x, k 2 n + 1 
[1 - ( - l /2 n ) k ] + ( - l /2 n ) k x 0 , 

for k = 1, 2, 3, • • • . But, since | - l / 2 n | < 1, it follows immediately that 

, lim x = 7r/(2n + 1) . 
K -—• CO 

The theorem is surprisingly fruitful. For example, Figure 2(a) illus-
trates how the folded tape appears just after the folding process has taken 
place with n = 2. Figure 2(b) shows how this same tape appears when it is 
unfolded. This folding process produces the usable tape, T(7r/5). If T(7r/5) 
is cut on t 2 n and t 2 n + 6 , and folded on t ^ , t 2 n + 3 , t 2 n + 5 , a model of the 
regular pentagon shown in Figure 2(c) is formed. The sides of this pentagon 
approximate w/sin (27r/5). But, a regular pentagon whose sides approximate 
w/sin (TT/5) may also be formed from T(7r/5). TO see this, cut T(7f/5) on 
t0 ,- and t0 1Q; then fold in a winding fashion on the transversals t0 , 0 , 
t2n+4' W e ' Sn+S' W o * Sn+12 • T h e r e s u l t ' a m o d e l o f a r e § u l a r P e n " 
tagon with a pentagonal hole in the center, is shown in Figure 2(d). 

As another example, consider the results of the theorem when n = 3. 
Figure 3(a) shows how the beginning of the tape which produces T(7T/9) might 
appear. Once T(7r/9) has been obtained, it may be used to construct models 
of regular 9-gons whose sides approximate either w/sin (ir/9), w/sin (27T/9), 
or w/sin (4ir/9). This is done by folding T(7T/9) on consecutive transversals 
whose labels are equal to 0 (mod 3), 2 (mod 3), and 1 (mod 3), respectively. 
Figure 3(b) illustrates the regular 9-gon which is formed by folding on t« - , 
t« 4 , to ,7> • • • j to joo'* and whose sides approximate w/sin (47T/9). 

In general, T(7r/(2n + 1)) will produce models of n non-congruent 
regular (2 + l)-gons whose sides approximate w/sin (2 7r/(2 +1)), k = 1, 
2, ••• , (n - 1). The actual construction involves folding T(7r/(2 + 1)) on 
successive transversals whose labels are equal to 0 (mod n), (n- 1) (mod n), 
(n - 2) (mod n), • • • , 1 (mod n), respectively. 

A BONUS 

Suppose the folding process described in the theorem takes place on a 
piece of paper whose straight edges are not parallel* Thus, suppose angle 
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ABC, having measure 0 (between 0 and IT), and supplementary angle A BD, 
occur so that DBC lies on the edge of a pieaa of paper. Then the paper is 
cut along the line AB (see Figure 4). A point, A0, is selected between D 
and B and the paper is folded, through A0 on some line, t0, which is not 
parallel to AB. The transversals t (where k = 1, 2, •••) are formed by 
folding so that tA bisects the angle formed by to and A0B, determining a 
point, Aj, on the line containing AB. And, in general, t, bisects the 
angle A. 2A. -B , determining a point A, on the line containing A, ~B 
(when k >. 2). The measure of the angle A ^ Q B is denoted x0 and half the 
measure of angle A, nA B is denoted x. - for k > 2. & k-2 k_i k-1 

Then, since the sum of the measures of the interior angles in any t r i -
angle is always equal to 1T it follows that 

2 x k + X k _ 1 + (7T - 0) = 7T , 

when k = 1, 2, 3, • • •. Thus, 

(2) 2xk + xk_x = 6 , 

when k = 1, 2, 3, • • • . 
But this is similar to Equation 1, where n = 1* In fact, a review of 

the proof for Theorem 1 reveals that it would not have been any more difficult 
if Tt77Tf were replaced with M6M and that Equation 2 would lead to the result 

. lim x. = e/3 . 

Thus the method illustrated in Figure 4 really represents a trisection 
approximation method for angles whose measure is between 0 and 77. A s a 
practical matter it is not, in this case, possible to fold accurately indefinite-
ly, as was the case with parallel lines. Nevertheless, the method is effective 
— especially when judicious choices of A0 and to are made — i. e. , choose 
A0 as far away from B as the paper will allow and make a visual guess 
when folding to so that when x0 is formed, it will be as close to 0/3 as 
possible. 
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Figure 4 
OTHER FOLDING SEQUENCES 

The folding sequences considered thus far have involved just one i tera-
tive equation. But, as the next theorem shows, other folding sequences do 
exist. 

Theorem 2. If 
(1) n is some fixed natural number greater than 1. 
(2) A paper tape, of width w, is folded on a transversal, t0, which 

crosses an edge of the tape at some point, A0. 
(3) The angle formed by t0 and the edge of the tape having vertex A0 

is divided, by folding, into 2 parts producing transversals tl9 

* 
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k > 3̂ 9 ''' » t so that ti < t2 < t3 < - • • < t ; and t has end-
points A0, A4. The measure of the acute angle which t n makes 
with the edge of the tape is denoted x0. 

(4) The obtuse angle at A j is bisected, creating a new transversal 
t -. It has endpoints Al5A2 and forms an acute angle with an 
edge of the tape, denoted xt. 

(5) In general, either (i) the obtuse angle at A, is divided into 2 
par ts , when k is even, so that each new transversal is longer than 
its predecessor and the last transversal folded creates the point 
A, - on the opposite edge of the tape from A, ; or (ii) the obtuse 
angle at A, is bisected, when k is odd. In either case, the 
measure of the acute angle between the transversal joining A, , 
A, - and an edge of the tape is denoted x, . 

Then , lim x91 = 7r/(2 - 1) and„ consequently, the folding 
sequence produces T(7r/(2 - 1)). 

Proof. By the description of the folding process, it follows that the 
measures of consecutive acute angles satisfy 

,„v 2 x 2 k - l + X 2 k - 2 = «\ 
„n A J for k = 1, 2, 3, 
2 x2k + x 2 k - l = * ) 

Solving for x2. - in the first iterative equation, then for x^. In the second 
yields 

X2k = ( 7 r + X 2 k - 2 ) / 2 n + 1 ' 

It can then be shown, by mathematical induction, that 

x, 2k nn+l 

for k = 1, 2, 3, • • - . Thus 

[1 - ( l / 2 u " r ± r ] + U / 2 n ^ ) x0 , 

lim x9. = 7r/(2n+1 - 1) 
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In general, if T(ir/(2n - 1)) is folded on all t .,, t. 9 , where k = 
n+1 0 (mod (n + 1)), a regular (2 - l)-gon will be formed. 

As an example, suppose n = 2 in Theorem 2. Figure 5(a) illustrates 
how the beginning of this tape, which produces T(7r/7), might appear. 

If T(7r/7) is folded, in a winding fashion, on all t, - , t, 9, where 
k = 0 (mod 3), the model formed is a regular seven-sided polygon (Figure 
5(b)), whose sides approximate w/sin (ir/7). 

Likewise, if T(TT/7) is folded on all t. where k f 1 (mod 3), the r e -
sult is a seven-sided polygon whose sides approximate w/sin (BTr/7). If this 
is done so that the folds on t , when k = 0 (mod 3), wrap the tape around 
the polygon being formed; then the result appears as shown in Figure 5(c). 

Note, however, that as illustrated in Figure 5(d), if T(7r/7) is folded 
on all t where k f 2 (mod 3), a regular seven-sided star polygon is 
formed whose sides approximate w/sin (7r/7). It can be shown that the short-
est distance between consecutive vertices approximates w/sin (27r/7). 

CONSTRUCTING DODECAHEDRA WITH T(fl/5) 

When cash register tape (which is more porous than adding machine 
tape) is used with white glue, surprisingly sturdy models of polyhedra may 
be made. 

To construct a dodecahedron, for example, fold the cash register tape 
to obtain T(7r/5) containing at least 90 usable triangles. Cut T(7r/5) on 
t9 and tQ _fi, then fold the resulting strip, glueing the overlapping por-
tions in position as shown in Figure 6. Label the edges of the pentagons as 
shown. The polyhedron is completed by .first forming a ring-like figure and 
glueing one of the shaded parallelograms on top of the other. Then join the 
remaining 18 pairs of edges so that edges labeled with like numbers cor res -
pond with each other. Tabs for joining the edges may be conveniently obtain-
ed by cutting on nineteen successive long transversals of T(7r/5). 

If the tabs are labeled so that when they are glued in place it preserves 
the numbers shown on each of the edges, it is then possible, upon completion 
of the dodecahedron, to observe that 

The dodecahedron, formed from T(TT/5) of width w, and whose edge 
approximates w/sin (27T/5) may be constructed with no fewer than six 
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bands, each of which contains 12 consecutive triangles from T(7r/5). 
(In practice, an extra triangle would be required on some bands — but, 
since it serves only as a tab, it is not counted.) 
To see that this is t rue, take a strip of T(TT/5) which contains 12 t r i -

angles and observe that it is possible to position it on the completed dodeca-
hedron so that its short transversals all coincide with edges whose label in-
cludes the symbol Ml. , T But, it may also be positioned in five other ways so 
that its short transversals coincide with the edges each of whose labels in-
clude the symbols"2," "3,M M4,M " 5 , " and f f6 , n respectively. Because the 
label on every edge contains at least one number, six bands are sufficient for 
this particular construction of ihe dodecahedron. Note that if any one num-
ber were removed from the labels on this dodecahedron, there would be some 
edges with no label. Therefore, at least six bands are necessary for the 
construction of this dodecahedron. 

This model may be used to show that if a dodecahedron were constructed 
from six bands, each containing 12 consecutive triangles from T(TT/5), there 
would be six edges crossed by exactly two bands and those edges would be 
oriented so that (a) their midpoints are the vertices of an inscribed octa-
hedron; (b) the collection of pentagonal diagonals parallel to those six edges 
form the edges of an inscribed cube; and, since alternative vertices of a cube 
define vertices of a tetrahedron, (c) the vertices of two distinct inscribed 
tetrahedra may be identified on this model. 

A second, somewhat different, dodecahedron may be constructed using 
T(7r/5). This model is particularly easy to make from gummed tape. Cash 
register tape and white glue produce a better looking model but, having one 
side gummed makes the description of the construction easier. Accordingly, 
the following instructions are given for gummed tape. 

F i rs t , cut from T(fl/5) six strips of 22 triangles each. The first por-
tion of a typical strip is shown, with the gummed side down, in Figure 7. 
Label the ungummed side of each of the strips by replacing the letter "X" 
shown in Figure 7 with the letters "A," M B," ! fC," "D ," " E , " " F , " on the 
first, second, third, fourth, fifth, and sixth str ips, respectively. As an 
example, the first strip, called "strip A," will have i*« p-leven long transver-
sals labeled "Aj , " "A2," • • • 9 "An," consecutively, and all transversals will 
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be labeled with an a r r o w which points to the endpoint of the next long t r a n s -

v e r s a l . 

The following notational device i s convenient: If X, Y, Z r e p r e s e n t 

m e m b e r s of fA, B , C , D , E , F } and if m , n , k a r e na tura l n u m b e r s , 

then TTX —**Y M means that: the gummed s ide of s t r i p X i s glued onto the 

ungummed side of s t r i p Y so that the t r a n s -

v e r s a l m a r k e d fT—X —• " coincides with the 

t r a n s v e r s a l ma rked M—Y —• " and the a r -
n 

rows point in the s a m e di rec t ion . 
lfX **~*-Y M means that: the gummed side of s t r i p X i s glued onto 

the ungummed side of s t r i p Y so that the 

t r a n s v e r s a l m a r k e d M—X - V r coincides 
m 

with the t r a n s v e r s a l m a r k e d n— Y —-• " and 
n 

the a r r o w s point in opposite d i rec t ions . 

" X m - * . Y n - - > Z k " m e a n s that: X m — Y n and Y n - + Z k . 

Using this notational dev ice , the dodecahedron i s a s sembled a s follows: 

E7 

Dr 

CT 

Br 

- » A e 

- E 6 

-^Dg 

- c 8 

II. A 5 *-* D8 

B5<-- E 8 

C 5 w A8 

D5 ~ B8 

A7 —>Bg E 5 * - » C 8 

III. The F s t r i p m a y now be woven in and out so that 

D 9 - > F 2 

F 3 - > B 4 

E 9 — F 4 

F 5 - C 4 

A9 - » F 6 

F 7 -»D 4 

B9 —»F8 

Fg - » E 4 

C 9 - * F 1 0 
F 1 I - ^ F 1 ^ A 4 
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IV. A3<~+ C10 V. An -> A4 - > E 2 

B3 <->D10 B i i - * Bi - * A 2 

C3 «—»E10 On — Ci - - B 2 

D3 <-> A10 Du —>Dj — C2 

E3 «—* B10 E1A —* Et —• D2 

This dodecahedron is also formed from exactly six bands, but each 
band contains 20 triangles (not counting the overlapping tabs) from T(TT/5). 

Comparing the two completed polyhedra, one will note many similarities and 
differences. The first and most obvious difference is that the one has some 
holes in it and that i tappears to be "woven together." A most effective model 
of the second dodecahedron may be made if six different colored strips are 
used in its construction. In fact, it is not even necessary to use glue, for 
one can hold the various strips together as indicated by the instructions, 
with 30 paper clips. Then, when the dodecahedron is finished, all of the 
paper clips, except those six which hold three thicknesses of tape together, 
may be removed. 

If the places where bands overlap themselves are discounted, all of the 
edges of the second dodecahedron are crossed by exactly two bands. If one 
imagines the arrows on this dodecahedron to be roads on which travel is per-
mitted only in the direction of the arrows, it can be seen that, if one leaves 
the pentagonal cycle Ai iBi iCuDi iEu , all roads lead to the cycle 

D9F3E9F5A9F7B9F9C9F1 1 

and, leaving that cycle, all roads lead to the cycle A7B7C7D7E7, from which 
there is no escape. 

Many other polyhedra may be constructed with paper strips. If the 
reader wishes to try devising some paper tape constructions for other poly-
hedra, the following references may be useful. 
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[Continued from page 135. ] 
SPECIAL ADVANCED PROBLEM 

H-182S Proposed by Paul Erdos, University of Colorado, Boulder, Colorado. 
Prove that there is a sequence of integers nj < n2 < • • • satisfying 

o-(nk) or(cr(nk)) 
——^00 a n d T — r - — • * - l , 

\ a ( \ ) 

where 

w = d l d 

(the sum of the integer divisors of n.) 
[From Conference on NUMBER THEORY, March 24-27, Washington State 

University, Pullman, Washington. ] 
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A. P. H1LLMAIM 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

B-208 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

L e t 

F 0 = 0 , F l = 1, F n + 2 = F n + 1 + F n , L0 = 2, L l = 1, L n + 2 = L n + 1 + L n . 

Prove both of the following and generalize: 

(a) F 'n + 2 = 3F^ + 1 - F*n - 2 ( - l ) n 

•(b) I ^ + 2 = 3L* n + 1 - L ^ + 10(-l)n . 

B-209 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Do the analogue of B-208 for the Pel l sequence defined by 

P 0 = 0 , P l = 1, P n + 2 = 2 P n + 1 + P n , and Qn = P n + P ^ . 

B-210 Proposed by Guy A. R. Guil/otte, Montreal, Quebec, Canada. 

Let Fi = F2 = 1 and F f t + 2 = F n + 1 + F n - Prove that S > 803/240, 
where 

217 
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^ i F2 F3 

B-211 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

th Let F be the n term in the Fibonacci sequence 1, 1, 2, 3, 5, 
Solve the recurrence 

D _L1 = 2D + F 0 ^ n+1 n 2n+l 

subject to the initial conditions Dj = 1 and D2 = 3. 

B-212 Proposed by Tomas Djerverson, Albrook College, Tigertown on the Rio. 

Give examples of interesting functions f and g such that 

f(m,n) = g(m + n) - g(m) - g(n) . 

(One example is f(m?n) = mn and g(n) = (^ J = n(n - l ) /2 . ) 

B-213 Proposed by L Cariitz, Duke University, Durham, North Carolina. 

Given n points on a straight line, find the number of subsets (including 
the empty set) of the n points in which consecutive points are not allowed. 
Also find the corresponding number when the points are on a circle. 

SOLUTIONS 

A SIXTY-ORDER FIBONACCI-LUCAS IDENTITY 

B-190 A repeat of B-186 with a typographical error corrected. 

Let L be the n Lucas number and show that n 

L5n/Ln = fL2n " ^ " ^ V + ^2< ' 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Since L r and 5n 
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{ [ L 2 n - 3 ( - l ) n ] 2
 + ( - l ) n 2 5 F ^ L n 

satisfy the same sixth-order linear homogeneous recurrence, the result is 
proved by verifying it for n = -2 , - 1 , 0, 1, 2, and 3 (and then relying on 
mathematical induction). 

Also solved by W. C. Barley, Wray G. Brady, Warren Cheves, Herta T. Freitag, Jo Carol Gordon, 
John A. Hitchcock, Edgar Karst, Bob Topley, Andrew Wyatt, Rev. Robert Zuparko, and the Proposer. 

THE HUNTER UNVEILED 

B-191 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

In this alphametic, each letter represents a particular but different 
digit, all ten digits being represented here. It must only be that well-known 
mathematical teaser from Toronto, J. A. H. Hunter, but what is the value 
of HUNTER? 

MR 
H U N T E R 

MADE 
A_ 

T E A S E R 

Solution by David Zeitlin, Minneapolis, Minnesota. 

The value of HUNTER is 198207, where the unique solution is given by 

57 
198207 

5340 
_ 3 
203607 

We note that 
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(1) 2R + E + A = 10Cj + R , 

(2) C1 + M + E + D = 10C2 + E , 

(3) C2 + T + A = 10 C3 + S , 

(4) C3 + N + M = 10C4 + A , 

(5) C4 + U = 10C5 + E , 
and 
(6) C5 + H = T, 

where C., i = 1, 2, • • • , 5, are carry-overs from the i column. Since 
C5 = 1, we find from (5) that C4 = 1, with U = 9 and E = 0; and thus, 
from (1), that Ct = 1. From (2), C2 = 1, and from (3), C3 = 0 or 1„ 
All cases for C3 = 1 are non-solutions. For C3 = 0, the single solution 
is obtained when 

(A,DfE,H,M,NfR,S,T,U) = (3 ,4 ,0 ,1 ,5 ,8 ,7 ,6 ,2 ,9) . 

Also solved by W. C. Barley, Wray G. Brady, Albert Gommel, Jo Carol Gordon, J. A. H. Hunter, 
Edgar Karst, John W. Milsom, C. B. A. Peck, Darla Perry, Azriel Rosenfeld, and the Proposer. 

A FOURTH-ORDER F-L IDENTITY 

B-192 Proposed by Warren Cheves, Littleton, North Carolina. 

Prove that F 3 n = L Q F 2 n - ( - l ) n F n . 

Solution by Herta T. Freitag, Hollins, Virginia. 

One needs to show that 

3n 03n / n , J I W 2n 02n, , -vn, n ji, a - p = (a + ft )(a - p ) - (-1) (a - pr ) , 

where a and p are (1 ± 's/5)/2. 
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This, however, is immediately seen by using the relationship a/3 = - 1 , 
and simplifying. 

Also solved by W. C. Barley, Wray G. Brady, Mike Franusich, Jo Carol Gordon, John A. Hitchcock, 
Stu Hohbs, Edgar Karst, John Kegel, Scott King, John W. Milsom, C. B. A. Peck, Darla Perry, Patricia 
Shay, Don C. Stevens, Boh Tepley, Andrew Wyatt, David Zeitlin, Rev. Robert Zuparko, and the 
Proposer. 

ANOTHER F - L IDENTITY 

B-193 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that L , ± L is 5F F or L L 9 depending on the choice 
n+p n-p p n p n ^ & 

of sign on whether p is even or odd. 

Solution by John Kegel, Fort Lauderdale, Florida. 

I t is a well-known fact that 

n un 
(1) F = 2 _ l b 
w n a - b 

and 

(2) LM = a11 + b n , 

where 

n 

a = | ( 1 + N/5) 

and 

b = | (1 - N/5) , 

which also gives 
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(3) ab = -1 

and 

(3») (a - b)2 = 5 . 

Now 

p + bp)(an + bn) 

= a n + p
+ b n + p + a p b n

 + b p a n 

L L = (ay + bF)(a" + b") p n 

= L + (ab)p(an-p + b n " p ) n+p 

Thus 

(4) L L = L _,_ + (-1)PL 
p n n+p n-p 

Likewise, 

5F F 
P n \ a - b / \ a - b / 

— 5 — (an + p + b n + p - a p b n - a n b p ) 
(a - b)2 

! tLn+p " <apbp)(an~p + b n " p ) ] ; 

Thus 

(5) 5 F F = L - (-DPL 
p n n+p n-p 

Hence (4) and (5) give 

(6) L , ± L = 5 F F or L L (p odd or even) 
n+p n-p p n p n ^ 
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and the proof is complete, 

Also solved by W. C. Barley, Wray G. Brady, Herta T. Freitag, Jo Carol Gordon, David Zeitlin, and 
the Proposer. 

SECOND ORDER IN n, FIFTH IN k 

B-194 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. (Corrected 
Statement). 

Show that 

L
n + 4 k - L n = 5 F k [ F n + 3 k + ( - 1 ) k F n + k ] -

Solution by C. B. A. Peck, State College, Pennsylvania. 

From results of Brother Alfred (Fibonacci Quarterly, VoL 1, No. 4, 
p. 55), or H. H. Ferns (Fibonacci Quarterly, VoL VII, No. 1, p. 1), we 
have 

5F F = IX _, - (-1)VL 1 . 
U V L U+V U - V J 

Replace v by k and u successively by n + 3k and n + k. Multiply the 
second of these identities by (-1) and add to the first; this gives the (cor-
rected) desired result. 

7Also solved and corrected by Wray G. Brady, Herta T. Freitag, John Kegel, David Zeitlin, and the 
Proposer. The error in the statement was also noted by W. C. Barley. 

GENERALIZED FIBONOMIALS 

B-195 Proposed by David Zeitlin, Minneapolis, Minnesota. 

Let JH denote W^'" L
n_r+i/LiL2 '" 8 L r - Show that 
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Solution by A. K. Gupta, University of Arizona, Tuscon, Arizona. 

From formula (2) (on p. 447 of Fibonacci Quarterly, Vol. 8, No. 4) of 
the P ropose r s solution to B-176, we have 

(A, 2H» = H 1 H ! H | ° * 2 ] - 2 [ ° J 1 ] + [ ° | , 

where H satisfies 

Hn+2 = Hn+1 + H n 

and 

f n ] = H H • • • H ^ M Ho • • • H . LrJ n n-1 n - r + 1 / 1 L r 

The desired result is obtained from (A) for H + L 
n 

and 

HtHgHs = LiL 2 L 3 = 2-1-3 = 6 . 

Also solved by W. C. Barley, may G. Brady, Warren Cheves, Herta T. Freitag, John Kegel, John W. 
Milsom, and the Proposer. 


