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INTRODUCTION 

Let r < k be positive integers,, By a composition of k into r parts 
(an r-composition of k) we mean an ordered sequence of r positive integers 
(called the parts of the composition) where sum is k, i. e. , 

(1) ai + a2 + • • • + a r = k . 

The length of the part a. in (1) is a., i = l s
 S8e , re We call k integers 

(2) X l < x2 < . . . < x k 

chosen from { l , 2, • • • , n} a k-combination (choice) from n. A part of (2) 
is a sequence of consecutive integers not contained in a longer sequence of 
consecutive integers. The length of such a part is the number of integers 
contained in it. For example, the 6-combination 2, 3, 4, 6, 8, 9 from n > 
9 consists of 3 parts (2, 3, 4), (6), and (8, 9) of lengths 3, 1, and 2, 
respectively. 

A great deal of literature exists on restricted compositions and may be 
found in most standard texts, for example [7]. However, there does not 
seem to be much literature on restricted combinations, in particular on the 
notion of parts with respect to combinations. The notion of parts has been 
used in [2] and [6] (in disguised form) as preliminaries to solve certain 
permutation problems. A treatment of restricted combinations in itself 
seems worthwhile for the following reasons. Firs t , as noted in paragraph 4, 
the study of certain occupancy problems (like objects into unlike cells) is 
shown to follow immediately from the study of restricted combinations. Al-
though, of course, many occupancy problem results are well known, many of 
the results obtained in paragraphs land 2 by elementary combinatorial methods 
are believed new and might not otherwise be readily obtained. In particular, 
they are relevant to the development of tests of randomness in two-dimensional 
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arrays. Also, restricted combinations are useful in dealing with certain r e -
stricted sequences of Bernoulli t r ials . In paragraph 1, the simple connec-
tion between restricted compositions and restricted combinations is given. 
Although the results contained herein are perhaps of a technical and special-
ized nature, the approach is completely elementary. 

Throughout this note, we take 

0 < k < n / n \ ) (n - k)Sk! 
W " I 0 otherwise 

1. 
2. 
3. 
4. 
5. 
6. 

C(k,r) , 
C(k,r; w) , 
Ce(k,r) , 
C (k,r; w), 

e C0(k,r) , 
C0(k,r; w), 

1. Consider the following six symbols, each denoting the number of com-
positions of k into r parts with further restrictions where indicated. 

List 1 
no other restrictions. 
each part < w. 
each part of even length. 
each part of even length and each part < w (even). 
each part of odd length. 
each part of odd length and each part < w (odd). 

Expressions for the above numbers are well known and may be obtained 
by combinatorial arguments or by considering the appropriate enumerator 
generating function in esich case, as described by Riordan [7, p. 124]. 

Corresponding to the 6 restricted combination symbols given in List 1, 
we have the following six restricted combination symbols, each denoting the 
number of k-combinations from n with exactly r parts and with further r e -
strictions as indicated, 

List 2 

1. g(n,k; r) , no further restrictions. 
2. g(n,k; r,w) ? each part < w. 
3. g (n,k; r) , each part of even length. 

4. g (n,k; r,w), each part of even length and each part < w (even). 

5. go(n,k; r) , each part of odd length. 

6. g0(n,k; r,w), each part of odd length and each part < w (odd). 
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Denote by C the restricted composition symbol in the i row of List 
1, and g the i restricted combination symbol of List 2. Then 

i _ / n - k + l \ i . 
I r J C ? i = 1, •••, 6 . (3) g 

To establish (3), note that a k-combination from n can be represented by 
n - k symbols 0 and k symbols 1 arranged along a straight line* the 
symbol 0 representing an integer not chosen and a symbol 1 representing 
an integer chosen. Now place n - k symbols 0 along a straight line form-
ing n - k + 1 cells including one before the first zero and one after the last. 
Choose r of these cells in 

(--r1) 
ways. Now distribute the k symbols 1 into these cells with none empty in 
C ways. The result follows,, 

In fact? corresponding to a specified r-composition of k with r parts 
we have 

k-combinations of n consisting of r parts with the same specifications and 
clearly 

(4) g(n9k; b l 9 b 2 9 — ? b u ) = | n " £ + M C(k; bl9b29°* • 9bu) , 

where g(n9k; b l 9 b2s • • • , b u ) denotes the number of k-combinations from n, 
C(k; b l 9 b2s • * • , b u ) denotes the number of compositions of k9 each con-
sisting of exactly bi parts of length i, i = l , 2, • • • • ,n with 

Eibi = 
i=l 
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A succession of a k-combination (2) is a pair x., x. - with x. - - x. = 
1. It is easy to see that a k-combination from n contains exactly s succes-
sions if and only if it contains exactly k - s parts. Hence, instead of de-
scribing the restricted choices by their par ts , we may use succession con-
ditions. The numbers 

and g(n,k; k - s) are used in [2] and [6], The numbers 

5 2 g1' i = 1, •••, 6 
r=l 

give the number of combinations with the same restrictions as on the com-
binations counted in g , i = 1, • • • , 6, 
being specified. Of course, the numbers 
binations counted in g , i = 1, ••• , 6, but with the number of parts not 

E*1 
r=l 

may also be found by considering the appropriate generating function. 
Recurrence relations and expressions for g(n,k; r) and g(n,k; r,w) 

may be found in [2] and [3]. We consider now some special restricted 
combinations. 

The number of k-combinations from n, all parts even and < w, i s , for 
k,w even, 

ge(n,k; w) = ] T ge(n,k; r,w) = ^ fn
 r ' * ' * jCe(k,r; w) 

r=l r=l 
(5) 

E y - v i / n - k + t - i X / n - k + lA , k - i w 
^y n - k ){ i j ' t = - 2 -

i=0 
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The number ge(n5k; w) is also the coefficient of x in the expression 
(1 4- x2 + x4 4 . . . + x w ) . Taking w sufficiently large in (5), the num-
ber of k-combinations from n with all parts even is* for k even 

(6) 

and 

ge(n5k) = fn
 k/2 J with g e

( n ? 0 ) = ls 

(7) ge(n) -S(";r) 
r=0 

is the number of choices from n with all parts even. [Se(n) ~~ Fn+1-I 

In the case of combinations with odd parts only9 we have for w > 3 and 
w odd, 

g0(n?k; w) = ] P g0(n?k; r,w) 
r=l 

(8) 

= EEwt)(::!)("-r'). 
r=l i=0 

where r = k (mod 2) and 

f - ^ + r - i(w + 1) 
1 ' 2 

The enumerator generating function of go(n?k; w) is 

n-k+1 
Q W v 

(1 + X + X3 4- . . . 4 X ) 

f 
(9) g0(n,k;k) = I* ~l + 1: 
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is the number of k-combinations from n, no two consecutive, the lemma of 
Kaplansky [5], Taking w sufficiently large in (8), the number of k-choices 
from n, all parts odd, is 

(10) g„(n,k) = £ ( " " I ~ ^ ( V ^ 1 ) ' So(n,9) = 1 . 

and the number of choices from n with all parts odd is 

(ID gb(W = 2 go(n>k) . 
k=0 

2. We also obtain the following relations. For n > w + 3, 

ge(n,k; w) = g0(n - l ,k; w) + ge(n - 2,k - 2; w) 
(12) 

- g (n - w - 3, k - w - 2; w) . 

For, if a k-ehoice from n with all parts even and _< w (even): 
(i) does not contain n, then it is a k-choice from n - 1 with all parts 

even and < w, aind there are g (n - 1), k; w) of these: 
(ii) does contain n, then it must contain n - 1. Deleting the n - 1 and 

n we have a (k~2)-choice from n - 2 (with all parts even a n d ^ w 
(even)) which does not contain all of n - w - 1 , n - w , e * 9 » n - 2 , 
and there are g (n - 2, k - 2; w) - g (n - w - 3, k - w - 2; w) of e e 
these. 

Of course, 

k = w + 2 = n 

(13) ge(n9k; w) = j ge(n,k) k < w + 2 = n 

g (n, k) k < w + 1 , 
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and hence, from (12) and (13), 

(14) ge(n,k) = ge(n - l fk) + ge(n - 2, k-- 2) . 

The latter is also easily obtained by observing that a k-combination of n 
with all parts even either does not contain n or does contain n and neces-
sarily n - 1, 

In the case n = w + 3 and k = w + 2, (12) becomes (using (7) ), 

g (w + 3, w + 2; w) = w/2 . 

This is easily verified directly by observing that the (w + 3)-choices from 
1, 2S

 B •e , w + 3 with all parts even and <w (even) are obtained by removing 
from 1, 2 9 • • • ? w + 3 one of the w/2 integers 39 5, • • • , w + 1* 

Let g (n; w) denote the total number of combinations from n with all 
parts even and <w (even), Then 

(15) ge(n; w) = ^ ge(n9k; w) . 
k=0 

Using (12) and summing over k we have 

!

g (n - 1; w) + g (n - 2; w) - g (n - w - 3; w), n > w + 3 
g^(n - 1; w) + ge(n - 2; w) - 1, n = w + 2 . 

Putting n < w + 1 in (16) or summing over all k in (14) we obtain 

(17) ge(n) = ge(n - 1) + ge(n - 2), ge(0) = ge(l) = 1 . 

The numbers g (n) are Fibonacci numbers* The Fibonacci numbers 
arise in other cases of restricted combinations. For example, if f(n) de-
notes the number of combinations from n, no two consecutive, and T(n) 
denotes the number of combinations from n with odd elements in odd posi-
tion and even elements in even position, then [7 , p. 17. problem 15]9 
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ge(n) = f(n - 1) = T(n - 1), n > 0 . 

Also, by considering those combinations which do not contain n, those 
combinations which contain n, n - 1 but not n - 2, those containing n, 
n - 1, n - 2 , n - 3 but not n - 4, ' • • , etc. , we obtain for n > k > w, 
w even, the relation 

w/2 
(18) ge(n,k; w) = ^jT ge(n - 2r - 1, k - 2r; w) . 

r=0 

In the case of odd par t s , a relation comparable to (10) is not readily ob-
tainable. However, for n > k > w, w odd, we have 

w+1/2 
(19) g0(n, k; w) = g0(n - 1, k; w) + ^ g0(n - 2r , k - 2r + 1; w) . 

r=l 

The first term on the right side counts those choices not containing n, the 
second term those choices containing n but not n - 1, the third term those 
choices containing n, n - 1, n - 2 but not n - 3 , • • • , etc. , the last term 
those choices containing n, n - 1 , • • • , n - w + 1 but not n - w. 

Denote by g0(n; w) the number of combinations from n with all parts 
odd and <w (odd). Then, for n > w (odd), summing (19) over k yields 

w+1/2 
(20) g0(n; w) = g0(n - 1; w) + ^ g0(n - 2r; w) . 

r=l 

Taking w sufficiently large in (19), we have for n > k, 

(21) g0(n,k) = g0(n - l ,k) + ] T g0(n - 2r , k - 2r + 1) 
r=l 
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g0(k*k) = 
0 if k = Q9 29 49 6, 

1 if k = 1, 39 5, 79 

F o r example 5 

g 0 (2 f l ) = g 0 ( l , l ) + g0(0s0) = 1 + 1 = 2 

Using (21) 9 it i s eas i ly seen that 
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(22) g0(n) 

g0(n - 1) + g0(n - 2) + g0(n - 4) + g0(n - 6) + . . . + g0(l) + 1 
n /2 for n odd and n > 39 

g0(n - 1) + J 3 go(n ~ 2 r ) f o r n even, 
r = l 

with g0(0) = 1 and g0(l) = 28 

3. In a k-combinat ion from { l , • •• , n} if we cons ider 1 and n as adja-

c e n t then we obtain " c i r c u l a r " k-combinat ions from n8 F o r example , the 

se t { l , 2 , 6, 8, 99 12} is a c i r c u l a r 6-combination from 12 consis t ing the 

3 p a r t s { l2 9 1, 2 / , ( 6} 9 (8 9 9} of length 39 1, and 2 , respec t ive ly . C o r r e s -

ponding to the 6 symbols of L i s t 29 we obtain 6 c i r c u l a r k-combinat ion s y m -

bols denoted by h , i = 1, * • * , 69 Then 

(23) n i = n / n - k \ i 
n - k V r J 9 0 < k < n 

This i s eas i ly es tab l i shed by noting the proof for 

h(n (n9 k; r 9 w) = ^ - ^ ^ n " k j C ( k 9 r ; w) 

in [ 3 ] . The special c a se of r = k and i = 1 in (23) gives 
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the number of k-combinations, no two consecutive, of {l , • •• , n} arranged 
in a circle, the lemma of Kaplansky [5]. The numbers 

[n/2] 
H(n) = ^ h(n,k; k) , 

k=0 

with h(n,0; 0) = 1, have the relation 

H(n) = H(n - 1) + H(n - 2) 

for n > 4 with H(2) = 3 and H(3) = 4. [H(n) = L , the Lucas numbers. ] 
The relation between g. and h. i s , of course, given by 

= ( n - k ) ( n - k + l) i = 1 . - . . . 6 , n - k > r . 
&i n(n - k + 1 - r) i 

4. In examining the proof of (3), it is clear that each of the numbers g. 
and 

^ g . , i = l f . . . f 6 , 
r=l 

may be interpreted as the number of ways of putting loke objects into n - k 
1 unlike cells subject to corresponding conditions. Putting n = m + k - 1 
we are then placing k like objects into m unlike cells with the correspond-
ing conditions. For example, g(m + k - 1, k; r) is the number of ways of 
doing this such that exactly r of the m cells are occupied while 

B(m, k; w) = ^ J ge(m + k - 1, k; r , w) 
r=l 

is the number where any occupied cell contains an even number, not greater 
than w, of the like objects. Using (18), 
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w/2 
B(m9 k; w) = ^ B(m - 1, k - 2r; w) , 

r=0 

w even. In particular, 

g(m + k - 1, k; m) = 

and 

r=l r=l 

are the well known occupancy formulae [Riordan, 7, p. 92 and p, 102, Prob-
lem 8 ] , the first having none of the m cells empty and the second having no 
restriction on the distributions of the k objects* Also, the numbers 

g(m + k - 1, k; r) and Y j g(m + k - 1, k; r , w) 
r=l 

are treated as occupancy problems by Riordan [7, pp* 102-104, Problems 9, 
13, and 14]. 

The restricted combinations also have applications to certain ballot and 
random walk problems. For example, in an election between two candidates, 
the probability that a certain candidate leads after n votes but does not ob-
tain more than u > 0 runs of votes nor a run of votes of length greater than 
w is equal to 

u 

i C J C g^n? k; r*w* 
r=lk=fn+2/2] 

( m - l ) 

2n 
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Finally, by noting that for w > 1, 

EteXJO-fc)-0*-(24) > : m m - - - L W \= C ( k ) a w ; w ) . 

the sum taken over all solutions (a-j, e • • , a ., ), 
1 w-1 

a. > 0, of a-. + a2 + •e • + a - = k - a 
w- i w 

many of the expressions in [1] are simplified. In particular for w = k (24) 
becomes 

(5)(2)-fe)-ofc^-(4"-10-
Upon change of variables and some elementary manipulation, (25) becomes 
Theorem 16 of [4] , 

/ n - l \ Y ^ rl 
\ r - l) LJ b i tba l—b n ! 

bi .+ 2b2 + 3b3 + • • • + nb = n 
bi + b2 + e • • + b = r , b. > 0 1 * n 3 I 

for all natural numbers n and r . 
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WHY FIBONACCI SEQUENCE FOR PALM LEAF SPIRALS ? 
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On account of their very large, prominently-stalked leaves, palms are 
ideal material to study phyllotaxis, which means the arrangement of leaves 
on the trunk. The leaves of palms are produced one after another, and their 
arrangement is termed alternate, which is the case with the majority of 
plants that display spiral phyllotaxis. That is* two consecutive leaves are 
placed on the stem at different heights with an angular deflection of less than 
180®. Some other plants like most grasses subtend an angle of 180° between 
two consecutive leaves, and this arrangement is known as distichous of 1/2 
phyllotaxis, as two leaves are produced in one complete rotation Even a 
rare palm (Wallichia disticha) shows this peculiarity,, In alternate phyllotaxis, 
some plants will have five leaves produced before completing two complete 
revolutions. This system is referred to as 2/5 phyllotaxis* Also, other 
plants may show 3/8, 5/13, 8/21, 13/34, 21/55, ***, or 2 /3 , 3/5, 5/8, 
8/13, 13/21, 21/34, 34/55, and so on phyllotaxis. The numerators or the 
denominators of this ser ies , when considered alone, form the successive 
stages of the Fibonacci sequence. It is known [1-5] that the Fibonacci phyl-
lotaxis gives optimum illumination to the photo synthetic surface of plants 
since the leaves overlap least. 

2, VARYING NUMBERS OF LEAF SPIRALS IN PADS 
Different species of palms display different numbers of leaf spirals, and 

the numbers always match with Fibonacci numbers. For example, in the 
arecanut palm (Areca catechu) (Fig. 1), or the ornamental Ptychosperma 
macarthurii palm, only a single foliar spiral is discernible, while in the 
sugar palm (Arenga saccharifern) (Fig. 2), or Arenga pinnata, two spirals 
each are visible. In the palmyra palm (Borassus flabellifer) (Fig. 3), or 
Corypha elata, as well as a number of other species of palms, three clear 
spirals are visible. The coconut palm (Cacos nucifera) as well as Copernicia 
spirals (Fig. 4) have five spirals, while the African oil palm (Elaeis guineensis) 
(Fig. 5) bears eight spirals. The wild date palm (Phoenix sylvestris) and a 
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ARECA CATECHU(1) ARENGA PINNATA(d) BORASSUS FLABELLIFER(3) 
Figure 1 Figure 2 Figure 3 

COPERNIC/A SP(5) ELAEIS GUINEENSIS(B) PHOENIX CANAR/EN$/S(13) 
Figure 4 Figure 5 Figure 6 
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few other species of palms also show eight spirals. On the stout trunks of 
the Canary Island palm (Phoenix canariensis) (Fig. 6), thirteen spirals can. 
be observed. Also in some of these plams, twenty-one spirals can be made 
out. It is surprising that all the above-mentioned numbers (1, 2, 3, 5, 8, 13 
and 21) happen to be Fibonacci numbers. Palms bearing 4, 6, 7, 9, 10, 11 
or 12 obvious leaf spirals are not known. 

3. FIBONACCI NUMBERS IN VERTICAL PALMS 

In some exceptional palms, the arrangement of leaves does not show any 
spiral mechanism. Instead, the leaves are arranged one vertically above 
another along two or more rows. As mentioned, in Wallichia disticha, there 
are two vertical rows of leaves and the angle between any two consecutive 
leaves is 180°. In Madagascar1 s three-sided palm, Neodypsis decaryi, the 
leaves fall along three vertical rows, and the successive leaves are formed 
at a constant angular deflection of 120° (narrow angle). In the case of most 
individuals of Syagrus treubiana, five impressive vertical rows of persisting 
leaf bases can be seen. The angular deflection between any two successive 
leaves is 135°. Also, it is possible to observe on some trunks of the Canarjr 
Island palm, leaf scars that match with thirteen vertical rows, the angular 
deflection between their successive leaves will be 138.5°. If a palm showing 
twenty-one vertical rows of leaves can be detected, the angular deflection be-
tween two consecutive leaves will be 137.14°. Incidentally, the number of 
vertical rows of leaves in the above-mentioned palms also turn out to be all 
Fibonacci numbers. If the figures of the above angular deflections (180, 
120, 144, 135, 138.5, 137.14, ) are examined, one finds that the alternate 
numbers turn out to be more than 137.5° and the others l ess , and the differ-
ence between two numbers progressively gets narrower. This narrow angle 
makes with the remaining angle (222.5°) to complete one full circle, a pro-
portion of 0.618, which is the golden proportion. This phenomenon exactly 
demonstrates one of the specific properties of the Fibonacci Sequence. That 
i s , the proportion between any two consecutive Fibonacci numbers is alter-
nately more (or less) than the golden proportion. If the values 137.14, 138.5, 
135, 144, 120 and 180 are subtracted by the golden proportion angle of 137.5, 
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we get -0.36, 1.0, -2.5, 6.5, -17.5, 42.5, which when multiplied by 2 gives 
values approximating to alternate Fibonacci numbers. 

The number of green leaves a palm bears at a time generally indicates 
the number of foliar spirals exhibited by the species. Palm species having 
fewer green leaves manifest smaller numbers of foliar spirals , and those 
bearing larger numbers of leaves show greater numbers of spirals. This 
situation can be easily explained by the help of the schematic representation 
of a palm crown shown in Fig. 7. There is also an indication that the mean 
number of gren leaves of a palm is more or less a Fibonacci number. 

4, MAKING A PALM CROWN 

The centralmost point in the schematic crown (Fig. 7) represents the 
serial view of a palm trunk, and the radial l ines, its leaves. The outermost 
leaf which is the oldest, is numbered 1. Leaf No. 2 is drawn at an arbitrary 
angular deflection of 137.5° to the left of leaf No. 1. Since leaf No. 2 is near-
e r to leaf No. 1 by the left-hand side of an observer looking from the tip of 
leaf No. 1, this crown maybe regarded as representing a left-spiralled palm. 
Similarly, leaf No. 3 is nearer to leaf No. 2 by the left, and the subsequent 
leaves are also similarly located. In another palm, leaf No. 2 can as well 
be nearer to leaf No. 1 by the right, in which case the diagram will represent 
a right-spiralled crown. The two types of individuals for any species of palms 
are distributed more or less equally in any locality, although for the coconut, 
there is an excess of one kind of individual in the Northern hemisphere, while 
the Southern hemisphere has more of the other kind, the hemispherical dif-
ference being significant statistically [6], 

The younger leaves are represented progressively by shorter radial 
lines, and leaf No. 90 is the youngest visible leaf in this crown. The tips 
of all these leaves are connected by a line which forms a clockwise (left-
handed) coil, and this will represent the only visible spiral in some palms 
such as the areca. In a palm showing two foliar spirals, one spiral will 
comprise leaves 1, 3, 5, 7, 9, and so on, while the second spiral will com-
prise all the even-numbered leaves. It is to be noticed that both the spirals 
move counter-clockwise. In a palm bearing three clearly visible spirals, 
the following leaves constitute the three spirals. Spiral one will connect 
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BQ & tyf 3i^ f 

3 77 ' J* • l J>5 & V ' • 77 * ' ^ 

SPIRALS 

Figure 7 
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leaves 1, 4, 7, 10, 13, and so on. The second spiral will have leaves 2 , 5 , 
8, 11, 14, and so on, while the third spiral will comprise leaves 3, 6, 9, 12, 
15, and so on. All the three spirals run clockwise as opposed to the direc-
tion of the two spirals. No palm shows four clear spirals. This is in part 
due to the fact that leaves 1 and 5 which should form the two consecutive 
leaves of one of the four spirals , are located almost opposite each other. 
In a five-spiralled crown, leaves 1, 6, 11, 21, and so on, constitute one of 
the spirals, the other four starting with leaves 2 , 3 , 4 , and 5, respectively. 
All the five spirals clearly move counter-clockwise which is opposite to the 
direction of the three spirals. In a palm with eight spirals , leaves 1, 9, 17, 
25, 33, and so on, will form one of the spirals (shown in bold broken line) 
and the remaining spirals commence from leaves 2? 3, 4, 5, 6, 7 and 8. 
The eight spirals move opposite to the five spirals. In a like manner, if 
the diagram is to represent a thirteen-spiralled palm (one spiral comprising 
leaves 1, 14, 27, 40, 53, 66, e tc . ) , the spirals will move opposite to the 
eight spirals , and similarly, the twenty-one spirals (shown in dots) move 
slantingly opposite to the thirteen spirals. Thus, in this diagram, the more 
obvious numbers of foliar spirals synchronize with Fibonacci numbers. 
Foliar spirals representing numbers 1, 3, 8, 21 move clockwise and the 
others counter-clockwise. This situation is in conformity with some proper-
ties of the Fibonacci Sequence. 

In a palm crown having four or five leaves, only the single spiral is d is -
cernible,' and two spirals may be clear if the leaf number goes up to seven 
or eight. Three spirals may be made out in a crown having ten to twelve 
leaves, and five spirals in a crown having about twenty leaves. Therefore, 
as the number of green leaves in a crown increases (a situation which nor-
mally necessitates a proportional increase in the girth of the trunk), higher 
orders of foliar spirals are displayed. Moreover, from a crown showing, 
say, eight spirals , those representing the two neighboring Fibonacci num-
bers (5 and 13) could also be made out. The leaf bases ontheElaeis guineensis 
trunk (Fig. 5) and the leaf scars on the stem of Phoenix canariensis (Fig. 6) 
bear testimony to this. 

The angular deflection of 137.5° has been chosen arbitrarily because this 
would provide no two leaves in the diagram exactly superimposing each other 
till the 145th leaf. No palm is likely to have one hundred functional leaves 
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at a time, and so, this angular deflection gives the leaves scope for maximum 
exposure to sunlight 

From observations made on afew species of palms having large numbers 
of leaves s the smaller angle subtended by any two consecutive leaves has been 
found to be 137.5° which makes a 0.618 proportion with the larger angle of 
222,5°. The proportion between any two consecutive Fibonacci numbers 
(excepting the few smaller ones) also turns out to be 0,618. However9 it is 
difficult to explain why most palms conform to this rule of golden proportion 
in the provision of the angular deflection between consecutive leaves. Obvious-
ly, it is genetically controlled. In Nature, small variations are noticed in 
the deflection between leaves in some palms, and sometimes within a palm 
at different heights,, The foliar spirals of a tree at different heights tend to 
move along varied curves which is caused by the varying lengths of the inter-
nodes between leaves as well as the changes in the thicknesses of the stem. 
However, the numbers of these spirals are constant for a species, 

5. FURTHER PECULIARITIES 

If the schematic crown (Fig. 7) is examined critically, one will find that 
one of the five spirals connecting leaves 1, 6, 11, 16, • ** , and one of the 
eight spirals connecting leaves 1, 9, 18, 25, ° ° ° meet first at leaf No. 41 , 
i .e . , after forty leaves, and again at regular intervals of forty leaves. 
Similarly, if spirals of stages No. 1 (connecting leaves 1, 2, 3, 4, • •• ) and 
2 (connecting leaves 1, 3, 5, 7, • • •) are considered, they will meet first at 
leaf No. 3; likewise, spirals stages Nos. 2 and 3 meet at leaf 7; spirals 3 
and 5 meet at leaf 16; spirals 8 and 13 at leaf 105, and so on. Each of the 
numbers of the above-mentioned leaves minus the first one gives the product 
of the two spirals and they are always Fibonacci numbers. This situation is 
applicable not only between leaf spirals representing consecutive stages, but 
also to any two different spirals. For example, the spirals Nos. 3 and 8 
meet first at leaf 25 (i.e. , after 24 leaves), while spirals Nos. 3 and 13 
which meet at leaf 40 (i. e. , after 39 leaves). Therefore, these numbers are 
always the products of any set of two Fibonacci numbers. 

The 1/3, 2/5, 3/8, 5/13, 8/21, e " phyllotaxis mentioned earlier can 
be clearly made out from the drawing. After leaf No. 1, three leaves are 
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formed by the time the spiral has completed one full revolution (and a little 
more); five leaves are formed in two revolutions (a little less); eight leaves 
are formed after three revolutions; twenty-one leaves are formed after eight 
revolutions, and so on. It is also clear from the figure that the figures 1/3, 
2 /5 , 8/21, ••• are not absolute figures since the specified numbers of leaves 
cover a little more or a little less distance than what they actually stand for. 
This is again in accordance with the mathematical properties of Fibonacci 
numbers. 

I thank Mr. S. K. Be, our Artist, for making the drawings. 
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PELL IDENTITIES 
A. F. HORADAIVI 

University of New England, Armidale, Australia 

1. INTRODUCTION 

Recent issues of this Journal have contained several interesting special 
results involving Pell numbers* Allowing for extension to the usual Pell num-
bers to negative subscripts, we define the Pell numbers by the Pell sequence 
{pj thus: 

(p \ . ' " P -4 P -3 P-2 P- i PO Pi P2 P3 P4 P5
 e« 

1 ; ••• -12 5 -2 1 0 1 2 5 12 29 . 

in which 

(2) Po = 0, P l = 1, P n + 2 = 2 P n + 1 + P n 

and 

(2?) P = ( - l ) n + 1 P . 
v ' -n n 

The purpose of this article is to urge a greater use of the properties of 
the generalized recurrence sequence ( w (a,b; psq)}9 discussed by the author 
in a series of papers [2] , [3] , and [4]„ The Pell sequence is but a special 
case of the generalized sequence. 

2S THE SEQUENCE {Wn(a9b; p?q)} 

Our generalized sequence {Wn(a5b; p9q)} is defined [2] as 

• • • W_i 5 W 0 5 W i 5 W2, W3 , W4 • • • 

(3) {Wj: 
. . . R™L_. j a 9 b jpb-qa 9 p2b-pqa-qb ,• • • 

245 
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in which 

(4) W0 = a, Wi = b, Wn + 2 = pWn + 1 - qWn , 

where a, bs p , q are arbitrary integers at our disposal. 
The Pell sequence is the special case for which 

(5) a = 09 b = 1, p = 2, q = - 1 , 

i . e . , P n = Wn(0, 1; 2 - 1). 
From the general term W [2] , namely, 

(6) W = ^ - ^ - aa + 2 £ ^ b ^ 
n a - p a - p H ' 

where 

(7) 
!

a = (p 

d = (p 

+ d)/2, P = (p - d)/2 

- 4q)] 2 ^ i V 2 

We have, for the Pell sequence, using (5), 

d = 2 3 / 2 

(8) { a = 1 + <s/2 
/S = 1 - N/2 

so that ? from (5), (6) and (8), the n term of the Pell sequence is 

*. - " + %,i(i - ^ 

A generating function for ( w }, namely [4] , 
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(10) a + (b - pa)x = £>nxn 

1 - pz + qx2 

n=0 

becomes, using (5) for {p }s 
n^ 

(11) X = E W n X n 

1 - 2x - x4
 A 

n=0 

n=0 

Associated with {w } is [2] the characteristic number 

(12) e = pab - qa2 - b2 

with Pell value 

(13) ep = -1 

by (5). 
Another special case of subsequent interest to us in (32) is the sequence 

(Un(p,q)} defined by 

(14) U0 = 0, UA = 1, U + 2 = P U - qU n , 

i . e . , 

for which 

Un(p9q) = Wn(09 1; p,q) , 

(15) e n = -1 
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and 

(16) U = -q~ n U . 
-n ^ n 

Result (16) was noted long ago by Lucas [6] , p. 308, to whom much of the 
knowledge of sequences like { u (p,q)} is due. Obviously, by (5) and (14),, 

(17) P n = Un(2, -1) . 

3. PELL IDENTITIES 

Specific Pell identities to which we refer are: 

(18) 
[(k-l)/2] 

r=0 

k 
(19) P2k = Z(rK*: r 

r=l 

(20) PQ . = p2 + p2 
2n+l n n+1 

(21) P 0 ^ + PQ = 2P2 - 2P2 - (- l )n 

2n+l 2n n+1 n 

(22) (- l)nP P. = P _,_ P . - P P , . . 
a b n+a n+b n n+a+b 

These identities occur as Problems B-161 [5] , B-161 [5] , B-136 ,[7], B-137 
[ 7 ] , and B-155 [8] , respectively. 

Identity (18) follows readily from formula (3.20) of [2]: 

[n/2] 

(23) j=0 [(n-l)/2] 

+ (2b-Pa) Y: Lf^y-v-w 
j=0 
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on using (5) and (8). 

Identity (19) follows from formula (3.19) of [ 2 ] : 

on using (5) and recognizing that 

r=0 r=l 

Employing the formula (3.14) of [2] and replacing U n there in (and sub-

sequently as required) by U - in accordance with (14) to get 

(26) W ^ = W U .,_- - qW - U , 
n+r r n+1 ^ r - 1 n 

we put r = n + 1, and identi ty (20) follows immedia te ly with the aid of (5) 

and (17). 

F u r t h e r m o r e s (20) may s imply be obtained from formula (4.5) of [2 ] : 

(27) W , W = W2 + e q n " r U 2 

n+r n - r n ^ r 

on choosing r = n + 1 and uti l izing (1), (5), (13) and (17). (P_4 = P 4 = 1.) 

An immedia te consequence of (26) i s , by (5) and (17), the r e su l t 

(28) P , = P P , 1 + P - P 
x 7 n+r r n+1 r - 1 n 

Setting r = n in (28), we deduce that 

<29> P2n = Pn^l^n-l)' 

F r o m (27), with r = 1 and using (5), (13) and (17) (P4 = 1), we have 

(30) P . P , - P 2 = ( - l ) n . 
n+1 n - 1 n 
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Now, to prove identity (21), m e r e l y add (20) and (29). Then 

P 2 n + 1 + P 2 n = PU + <Pn+l P n - 1 " <-«*> + P n < 2 P n + l " 2 P n > 

= P n + 1 + ] W P n + l " 2Pn> " <-«* + P n ( 2 P n + l " 2 V 
= 2(P2 - - P2 ) - ( - l ) n 

v n+1 n -

on using (2) twice , and (30). 

Next, cons ider formula (4.18) of [ 2 ] : 

(31) W W L _,_. - W W ,, = e q n " r U U ,, . 
n - r n+r+t n n+t ^ r r+t 

Put r = - a , b = r + t , t = a + b in (31). Using (2!), (5), (13), and 
(17), we obse rve that identity (22) evolves without difficulty. 

4. CONCLUDING COMMENTS 

I. P rob l em B-174, proposed by Zeit l in [10] from the solution to P rob l em 
B-155 [ 8 ] , namely , to show that 

(32) U J . U _ L U - U U J _ _ I . K = q n U U, , 
n+a n+b n n+a+b a b 

is proved for identi ty (22) from (31) on using (14), (15), and (16). 
II. Discuss ing briefly the sequence { T } for which 

(33) 

where 

(34) 

T = 
n 

r - 1 + \/5 
2 s = 1 - N/5 

and A , B depend on initial condi t ions , B r o . Brousseau [1] a s k s , and 
a n s w e r s , the quest ions: 
(i) Which sequences have a l imit ing ra t io T / T - ? 

(ii) Which sequences do not have a l imit ing r a t i o ? 
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(iii) On what does the l imi t ing ra t io depend? 

He finds that 

(35) l im 
n - 1 

= r 

Th is acco rds with our m o r e genera l r e su l t (3,1) of r2 ] : 

(36) l im 
W 

W n - 1 . 

a if | j 8 | < 1 
P if \a\ < 1 s 

where <x9p a r e defined in (7). Resul t (36) probably a n s w e r s 

Bro* B r o u s s e a u f s que r i e s (i), (ii)? (iii) f rom a sl ightly different 

point of view. 

C lea r ly , the p a r t i c u l a r sequence he quo tes , namely , the one defined by 

(37) Ti = 5, T2 = 9, T l 0 = 3T _,, - 4T 1 * L 9 n+2 n+1 n 

i. e* ? our { w (5,9; 3 , 4 ) } , cannot converge to a r ea l l imi t , s ince by (7), 

(38) a = (3 + i<s/7)/2 
j3 = (3 - 1 N / 7 ) / 2 

which a r e both complex n u m b e r s . 

JUL Corresponding to the specifically s ta ted Pe l l ident i t ies (18)-(22), and to 

the incidental Pe l l ident i t ies (28)-(30), one m a y wr i t e down ident i t ies for the 

jF ibonacc i sequence ( F } = { w (0, 1; 1, -1)} 

(39) J Lucas sequence {L } = ( W n ( 2 , 1; 1, -1)} . 

tGenera l i zed sequence ( H (s ,r)} = { w (s , r; 1, -1)} 

R e a d e r s a r e invited to explore these p leasant mathemat ica l pas tures* R e -

ve r s ing our previous p rocedure of using the { W } sequence to obtain special 
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(Pell) iden t i t i es , one could be motivated to d i scover genera l ized W ident i t ies 

commencing with only a s imple r e c u r r e n c e - r e l a t i o n resu l t . 

Cons ide r , for example , the re la t ionship 

(40) F 2 + F 2 = 2(F2 + F 2 ) . 
n n+3 n+1 n+2 

an aes thet ica l ly a t t rac t ive r e su l t known in embryonic fo rm, at l e a s t , In 1929 

when it was desc r ibed in a philosophical a r t i c l e by DVArcy Thompson [9] as 
TTanother of the many cur ious p r o p e r t i e s " of ( F }- Readi ly , we have 

(41) L2 + L2 = 2(L2 + L2 ) 
n n+3 n+1 n+2 

(42) H2 + H2 = 2(H2 + H2 ) . 
n n+3 n+1 n+2 

Not unexpectedly, the r e s u l t s (40)-(42) a r e alike simply because we have 

p = 1, q = - 1 for each of the sequences concerned. But what , we a sk , will 

happen in the case of the Pe l l sequence , for which p = 2 , q = - 1 ? 

Proceed ing to the genera l ized s i tuat ion, we find 

(43) W^ + w2n + 3 = q"2 ( p V + D W 2 ^ + (p2 + q4)W2n+1 

P e l P s sequence r educes (43) to 

(44) P2 + P2 = 5(P2
J_1 + P 2 ) . 

n n+3 n+1 n+2 

IV. By now, the m e s s a g e of this a r t i c l e should be ev iden t Simply, it i s 

th i s : 

While the d i scovery of individual p rope r t i e s of a pa r t i cu l a r sequence , 

e legant though they m a y be , i s a satisfying exper i ence , I believe that a m o r e 

fruitful mathemat ica l e n t e r p r i s e i s an investigation of the p r o p e r t i e s of the 

genera l ized sequence { w }. In this way, o therwise hidden re la t ionships 

a r e brought to light. To th is object ive, I commend the r e a d e r , 

[Continued on page 263. ] 
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INTRODUCTION 

The Aroids (family Araceae) are a group of attractive ornamental plants 
which include the very familiar Aglacnemas, Alocasias, Anthuriums, Arums, 
Caladiums, Colocasias, Dieffenbachias, Monsteras, Philodendrons, Scinda-
psuses and Spathyphyllums. The numerous species and varieties of some of 
them bearing leaves of different sizes, shapes and colors, and a most a t t rac-
tive fleshy spathe (cover) that surrounds the cylindrical inflorescence (flower 
bunch) spoken of as the spadix, are popular throughout the world,. The spadix 
stands distinctive against the background of the hoodlike spathe. The fleshy 
cylindrical column of the spadix bears a multitude of stalkless flowers. 
Usually there are three kinds of flowers in a spadix — the females which 
occupy the lowest portion, the males the topmost region and the bisexual 
flowers located between the males and females. One would hardly believe 
that these flowers are packed in a mathematical pattern. 

In most Aroids, clear spirals are discernible on the arrangement of the 
flowers. The numbers of these spirals generally synchronize with Fibonacci 
Numbers. But in some species they do not. Observations were made on a 
number of spadices each of 20 species of Aroids at the Royal A gri-Horticultural 
Society's garden at Calcutta in 1970, and the numbers of spirals in each of 
them recorded. In each inflorescence which follows the Fibonacci system 
positively and where the flowers are arranged in spirals, one can trace out 
the spirals running clockwise as well as counter-clockwise. The spirals in 
a spadix numerically always happen to be two consecutive Fibonacci numbers. 
According to the size of the inflorescence, the numbers of spirals generally 
vary, the thinner ones having smaller numbers. Moreover, in a species 
where the numbers of spirals are , say, 5 and 8, some individuals have the 
five spirals moving clockwise (and the eight spirals , counter-clockwise). In 
other individuals of the same species, the reverse is the situation, which is 

253 
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like the left- and right-handedness reported for the coconut and other palms 
(Davis, 1971). 

PRESENTATION OF DATA 
A number of spadices from six Anthurium species were examined. In 

addition to recording the numbers of spirals veering to the left and to the 
right9 the total length of the spadix and its maximum thickness were also 
measured. The spadix of Anthurium is slender, elongated and uniform bear-
ing only bisexual flowers (Fig. 1). Data on Anthurium macrolobium are p re -
sented in Table 1. 

Table 1 
Data on 20 Spadices of Anthurium Macrolobium 

No. 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 
11 

12 
13 

14 

15 
16 

17 
18 

19 

20 

Spira ls 
Left Right 

5 

5 

8 

8 

5 

5 

5 

8 

5 

5 

8 

8 
8 

5 

5 

8 

5 
8 

5 

5 

8 

8 

5 

5 

8 

8 

8 
5 

8 

8 
5 

5 
5 

8 

8 

5 

8 
5 

8 

8 

Length 
(cm) 

18.4 

15.4 

11.8 

11.1 
14.1 

12.1 

9.9 
15.0 

12.2 

13.6 

12.1 

15.3 

11.8 

16.2 

12.7 

14.1 

11.5 
11.9 

12.8 

14.8 
266.8 

D iame te r 1 
(cm) 

1.2 

1.3 
1.2 

0.9 

1.2 
1.0 

1.1 
0.9 

0.9 

1.1 
0.8 

1.0 

0.8 

1.3 

1.1 

1.2 
1.0 
0.9 

0.8 

1.2 

20.9 

L 5 and. R 8 = 12 
L 8 and R 5 = 8 
Length of spadix = 13.34 cm 
Maximum thickness = 1.05 cm 
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I L_ j | 

4 cm. 

Anthurium 
clarinervum 

B 

Anthurium 
macrolobium 

i 
>i 

c 1 
m 

D\\| E 

Anthurium Anthurium Anthurium 
uip ornatum polyrrMzum 

Fig. 1 Spadices of Five Species of Anthurium 
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Without an exception, all the spadices of Anthurium macrolobium bear 
floral spirals synchronizing the Fibonacci numbers 8 and 5, and they happen 
to be two consecutive stages in the sequence. The number of spadices having 
5 left-veering spirals is higher than those with 8 left-veering spirals, but the 
difference is not statistically significant 

The summarized data on the spadices of Anthurium clarinervum are 
given below. 

Data on Anthurium clarinervum 
Left 8 and Bight 13 = 5 
Left 13 and Right 8 = 2 
Left 8 and Right 5 = 1 
Length of spadix = 14.2 cm 
Maximum thickness = 0.6 cm 

While a great majority of the spadices in the above species showed 13 
and 8 spirals , one manifested the next lower numbers, i. e. , 8 and 5. 

In Anthurium ornatum9 all the spadices examined showed 13 and 8 spirals 
as per data shown below. 

Data on Anthurium ornatum 
Left 8 and Right 13 = 8 
Left 13 and Right 8 = 4 
Others = Nil 
Length of spadix = 9.43 cm 
Maximum thickness = 0.89 cm 

In Anthurium polyrrhizum and Anthurium andraeanum rubrum, the num-
bers of floral spirals are fixed at 13 and 8 and no exception was met with as 
the data in Table 2 show. 

Table 2 
Number of Spadices for Anthurium polyrrhizum and andraeanum rubrum 

Spiral numbers 

L 8 and R 13 
L 13 and R 8 
Others 
Length of Spadix 
Maximum Thickness 

Number 
polyrrhizum 

6 
3 

Nil 
7.43 cm 
0.71 cm 

of Spadices 1 
andraeanum rubrum 

6 
4 

Nil 
7.52 cm 
0.73 cm 
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Anthurium eras sine rvum is a species having a larger spadix, and accor-
dingly, it shows still higher numbers of floral spirals, i.e., 13 and 21 as per 
data shown below. 

Data on Anthurium crassinervum 
Left 13 and Right 2 1 = 8 
Left 21 and Right 13 = 6 
Left 11 and Right 18 = 1 (Lucas) 
Length of spadix = 15*04 cm 
Maximum thickness = 1.39 cm 

The aberrant spadix bears spiral numbers short of 2 (left) and 3 (right) 
to match the r e s t Incidentally, these are also Fibonacci numbers. 

Schizocasia poteia, with an exception of one spadix, shows 13 and 8 floral 
spirals. 

^ Spathyphyllum spadix also conforms more or less to the Fibonacci sys-
tem by displaying 8 and 5 floral spirals in a great majority of the spadices 
as per data given below. 

Data on Spathyphyllum Spadices 
Left 8 and Right 5 = 1 0 
Left 5 and Right 8 = 3 
Left 6 and Right 5 = 1 
Left 6 and Right 7 = 1 
Left 6 and Right 8 = 1 
Length of spadix = 7.66 cm 
Maximum thickness = 0.76 cm 

Out of the total 16 spadices examined, three did not conform to the Fib-
onacci system, even though in two of them, the right-veering spirals number-
ing 5 and 8 show their affinity to the Fibonacci system. 

The four species of Dieffenbachia whose spadices were examined (Dieffen-
bachia picta viridis, Dieffenbachia picta, Dieffenbachia dagneus, and an un-
identified species) have their female flowers, which are much larger and 
sparser , are borne only on one side of the flattened spadix, the opposite side 
being fused with the spathe. However, it was possible to make out 5 and 3 
spirals out of the arrangement of these female flowers. Six of the 9 spadices 
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of Diffenbachia dagneus had five left-moving spirals and three right-moving 
ones. In the rest , a reverse order was noticed. 

In the species of Dieffenbachia studied, only very few bisexual flowers 
were present, and this region of the column is considerably barren. The 
upper region consisting of the closely packed male flowers is quite prominent. 
Although regular spiral arrangement could be made out on these flowers, 
the numbers of spirals were not always Fibonacci numbers. Moreover, in 
many of them the numbers moving to the left and to the right were similar. 
The data on 18 spadices of Dieffenbachia picta viridis are shown below. 

Data on Dieffenbachia picta viridis 
Left 8 and Right 8 = 15 
Left 8 and Right 7 = 2 
Left 7 and Right 8 = 1 
Length of spadix = 12.39 cm 

Similar data for Dieffenbachia picta given below relating to 17 spadices 
show a greater variation. 

Data on Dieffenbachia picta 

Left 7 and Right 7 = 1 
Left 6 and Right 6 = 3 
Left 3 and Right 4 = 1 
Left 5 and Right 6 = 5 
Left 6 and Right 5 = 6 
Left 7 and Right 6 = 1 

In some species like Aglaonema commutation and Arisaema ringens, a 
number of spadices each were examined. But it was very difficult to make 
out regular spirals in them. 

In another unidentified species of Aglaonema, the following data were 
obtained from 13 spadices. Similar data on Syngonium spadices which close-
ly resembles Aglaonema spadices are also shown in Table 3 with those for 
Aglaonema. 
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Table 3 
Data for Aglaonema Spadices and Syngonium Spadices 

259 

Spiral n u m b e r s 
L 5 and R 5 

L 5 and R 6 
L 5 and R 7 

L 5 and R 8 
L 6 and R 5 

L 6 andR 6 

L 7 and R 5 

L 7 and R 6 

L 7 and R 7 

Length of spadi 

A 

Total 

LX 

Maximum th ickness 

^laonema Spadices 
9 

1 

Nil 
1 

1 
Nil 

1 

Nil 

Nil 

13 

2,96 cm 

0.7 c m 

Syngonium Spadices" 

5 

4 

1 

Nil 
2 

5 

Nil 
1 

— 
20 

3.26 cm 

1.83 cm 

The varying patterns in the number of floral spirals in an Alocasia spa-
dix and in Alocasia indica mettalica are given in Table 4. 

Table 4 
Data on Two Alocasia Spadices 

1 Alocas i a Spadix 

L 5 and R 5 

L 6 and R 6 

L 7 and R 7 

L 5 and R 6 

L 6 and R 7 
L 6 and R 8 

L 7 a n d R - 6 

L 7 and R 8 

L 8 and R 7 

Total 
I Length of spadix 

I Maximum thickness 

= 1 

= 4 
= 4 

= 1 

= 2 

= 1 

= 3 

= 1 

= 1 

18 
= 3.08 

= 1.76 cm 

"Alocasia indica me t t a l i ca | 

L 9 and R 9 

L 11 and R 11 

L 9 and R 8 

L 9 and R 10 

L 10 and R 11 

L 11 and R 9 

L 12 and R 11 

Total 

Length of spadix 

Maximum th ickness 

= 2 

= 1 

= 1 

= 1 

CO
 

TH 

II 
II 

= — 
10 

= 17.65 c m 

= 0.98 cm 1 



260 FIBONACCI SYSTEM IN AROIDS [May 
A species of Caladium also showed irregularities by exhibiting 9 to 12 

spirals 5 none of them synchronizing a Fibonacci number. 
Given below are data on Philodendron spirals relating to 15 spadices. 

Data on Philodendron spirals 
L 12 and R 12 = 2 
L 13 and R 13 = 7 
L 15 and R 15 = 1 
L 12 and R 13 = 1 
L 14 and R 13 = 2 
L 14 and R 15 = 1 
L 15 and R 14 = 1 

Length of spadix = 12,88 cm 
Maximum thickness = 2.89 cm 

In this species? a majority of the spadices possess equal numbers of 
floral spirals running clockwise and counter-clockwise. Also in many spa-
dices , the number of spirals do not synchronize Fibonacci numbers. 

DISCUSSION 

To the list of pine cones (Brousseau, 1968), palms (Davis, 1971), sun-
flowers and the very many situations in pi ants arising out of alternate arrange-
ment of leaves , may be included the Aroids so far as their affinity to the 
Fibonacci sequence is concerned. 

Among the aroids, the several species of Anthurium show, without an 
exception, floral spirals whose numbers synchronize the Fibonacci numbers. 
This is due to the fact that any two consecutive flowers subtend between them 
an angular deflection which make with the remaining angle to complete one 
full revolution, the familiar golden ratio. At the tip of these spadices, the 
flowers end in smaller numbers of spirals. From the very last flower which 
can be easily made out in these cases, its nearness to the just preceding one 
can be made out. All the five spadices in Fig. 1 show this arrangement. 
Moreover, these compact flower-bunches although taper smoothly, there is 
no irregularity of any sort in any region. On the other hand, the five spadices 
shown in Fig. 2 are uneven, the last one (Monstera deliciosa) being an excep-
tion. By careful observation of the female flowers, spiral numbers which 
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Figs 2 Spadices of Dieffenbachia picta viridis 

synchronize Fibonacci numbers can be made out. The bisexual flowers dis-
tributed in the narrow region are devoid of any obvious spirals., Moreover5 

at this region, the spadix remains considerably narrow* It is at this region, 
presumably, the angle between consecutive flowers undergo a change, As a 
result 5 the male flowers at the upper region either do not fall in regular 
spirals , or the spirals do not conform to Fibonacci numbers* In the same 
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species, different spadices show much differing numbers of spirals. A bet-
ter understanding of the phyllotaxis in these species may be essential to 
study the cause of such a variation. 

Pineapples as well as the male and female reproductive bodies (cones) 
of many species of Cycas show clear spirals in the arrangement of the indi-
vidual fruits and generative leaves respectively, and these numbers are 
always Fibonacci numbers. In small pineapples (Fig. 3), 3 and 5 spirals 
are visible. As in Aroids and palms, the 3 spirals in a pineapple may veer 
clockwise or counter-clockwise. In a larger variety, there are 5 and 8 
spirals , and in still larger pineapples, there are 8 and 13 spirals. In some 
exceptionally larger ones, even 13 and 21 spirals can be made out. 

Among Cycas, too, there are species which show 3 and 5 spirals and 
the numbers in some other species may go up to 13 and 21 as in the male 
cone of Cycas circinalis seen in Fig. 4. 

Fig. 3 Pineapples showing 3 and Fig. 4 Cones of Cycas circinalis 
5 spirals showing 3 and 5 spirals 



1971] FIBONACCI SYSTEM IN AROIDS 263 

We thank Mr. S. K. De, artist of the Indian Statistical Institute, for the 
drawings. 
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INTRODUCTION 

1. In this paper, we will derive a number of identities for the general-
ized Fibonacci sequence {H } of Horadam [ 4 ] defined by the second-order 
recurrence relation 

(1.1) H 2
 = H - + H (n an integer, unrestricted) , 

with initial values 

(1.2) H0 = q and Hi = p , 

by the use of generalized (square) Fibonacci matricesa 

2. A generalized Fibonacci matrix is a matrix whose elements are gen-
eralized Fibonacci numbers. 

3. The technique adopted is basically paralleling that due to Hoggatt and 
Bicknell [1] , [2] , and [3] , where we establish numerous identities by exam-
ining the lambda functions or the characteristic equations of certain general-
ized Fibonacci matrices* 

4. If we were to proceed as in Hoggatt and Bicknell [1] by selecting the 
2-by-2 matrix defined by 

(4.i» *-[r* a • 
which becomes the Q matrix of [1] when q = 0 and p = 1, and where 

*Part of the substance of an M. Sc. thesis presented to the University of New 
England in 1968. 
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|Aj = -d where d 

SOME PROPERTIES OF CERTAIN 
GENERALIZED FIBONACCI MATRICES 265 

p2 - pq - q2 (which is the e of [4]), we would find that 
we would be unable to obtain a compact expression for the matrix A . 

5. Instead, we commence our investigations by starting with the gener-
alized Fibonacci matrix defined by 

(5.1) An = 
H, n+1 
HL 

H 

H n-1 

where 

(5.2) 
A n | = H n + l H n - l " H n 

= ( - 1 ) % 

Then the matrix A defined by (4.1) is a special case of A when n = 1. 
The matrix A becomes the matrix Q of [1] when q = 0 and p = 1. 
This approach is used throughout this paper where 9 by changing the powers 
of various characteristic equations to suffixes, we are able to develop num-
erous easily verified identities. 

THE LAMBDA FUNCTION 

6. We adopt the definition of the lambda function X(M) of the matrix M 
used by Hoggatt and Bicknell [1] where, if a.. is the i - j 
then 

.th element in M, 

(6.1) A(M) = |a l j + l - | a . . | 

7. Thus, for the Fibonacci matrix A defined by (5.1), we have 

(7.1) A(An) 
Hn+1 + 1 

H + 1 
n 

Hn + 1 

H n - 1 + X 

= H n-3 

on simplification. 
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Hence, from (7.1) and the easily verified identity (1) of [1] , viz: 

(7.2) 

we have 

| a i j + k | = Kjl + k A < M > ' 

(7.3) 
H n + l + k Hn + k 

Hn + k Hn-l+ k 

I A. | + kHn_3 

8e For a 3-by-3 matrix5 the associated lambda function may be found 
more conveniently by the application of a theorem of [1] , where, for the 
matrix 

M = 
a b c 
d e f 
g h j J 

(8.1) X(M) 
1 
1 
1 

lb 
e 
h 

c 
f 

3 

+ 
1 
1 
1 

c 
f 

3 

+ 
a b 1 
d e l 
g h 1 

or 

(8.2) A(M) = 
a + e - (b + d) b + f - (c + e) 
d + h - (g + e) e + j - (h + f) 

For example 9 consider the generalized Fibonacci matrix E, where 

(8.3) E -

H 2p H, 2p+l H m 
H2p+1 H2p+2 H 

m 
H, H, H 2p+2 2p+3 m 

so that 
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E = H m [ H 2 p + l H 2 p + 3 H2p+2 H 2 p H 2 p + 3 + H 2 p + l H 2 p + 2 

{SA) = H m [ H 2 p + l H 2 p + 2 

= ( - l ) 2 ( P + 1 ) d H 

+ H 2p H 2p+2 " 

H 2 p H 2 p + 3 ] 

H2 1 t l 2 p + l J 

m 
= d H 

m 

on us ing (12) of Horadam [4] where n = 2p + 1, r = 0, and s = 1. 

One m a y evaluate A(E) by the use of (8.1) and a few s imple column ope r -

at ions , whence 

(8.5) X(E) = d 

The m a t r i x E defined by (8.3) r educes to the m a t r i x U of [1] , 

9. If we le t k = H ^ in (7.2), we have 

(9,1) 

IE + H J = | E | + H - • d 
I m - 1 ' f m - 1 

= d H + dH 
m m - 1 

= d H m+1 

Similar ly , , if we put k = H in (7.2), then we have 

(9.2) 
A + H = n n 

H ^ + H 
n+1 n 

2H 

2 H 

H - + H i n - 1 n 
A a | + W 

so tha t , by (5.2). and (7.1), 

(9.3) 
Hn+2 

2 H n 

2H 

H 'n+1 

= (- l )"d + H n H n _ 3 

f rom which we have 
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(9.4) 
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4 H n " H n + 2 H n + l H H Q + ( - l ) n + 1 d n n - 3 

10. F r o m P a r a g r a p h s 6 to 9, we can see that i t Is poss ib le to der ive 

many ident i t ies for the genera l ized Fibonacci sequence { H } by the use of 

genera l ized Fibonacci m a t r i c e s and the lambda function, 

CHARACTERISTIC EQUATIONS 

11, A s a special ca se of the genera l ized Fibonacci m a t r i x 

(11.1) 

when n = 1, we have the m a t r i x W (say) w h e r e , on calculat ion, we have 

w = 
n 

"H 2 , 
n-1 

2H -H n-1 n 

H2 

L n 

H -H n-1 n 

H2 - H -H n+1 n-1 n 

H H J_1 
n n+1 

H2 1 n 

n n+1 

n+1 J 

W = Wj = 

cl PQ p 

2pq (p + q)2 - pq 2p(p + q) 

P* p(p + q) (p + q)2 

whence 

(11.2) | W | = -d3 

Since the Cayley-Hamil ton theorem s ta t e s that eve ry square m a t r i x sa t i s f ies 

i t s own c h a r a c t e r i s t i c equation, namely , 

|W - All = X3 - hA2 - dhA + d3 = 0 , 

W sa t i s f ies the equation 

(11.3) W3 - hW2 - dhW + d3I = 0 

where h = 2p2 + 3pq + 3q2. 
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Hence , from (11.3), we have , on multiplying throughout by W*1 

(iiB4) w11*3 - hw11*2 - dhw11*1 + a V 1 = o . 

Now, from the re la t ions 

H 2 - 2H2 - 2H2
 ( 1 + H2 = 0 n+3 n+2 n+1 n 

H JH _,, - 2H J Q H ^ - 2 H ± 1 H ± 0 + H H ± 1 = 0 
(11 5) \ n n n n n 

H2 , - H _,_QH ^ - 2H2 + 2H _,,H ^ - 2H2 + 2 H H ± 1 n+4 n+2 n+3 n+3 n+1 n+2 n+2 n n+1 

+ H2 , - H -H = 0 n+1 n - 1 n 

and so on, we can form the m a t r i c e s W o, W ~s and W - , which will 
sat isfy the r e c u r r e n c e re la t ion 

(11.6) W ^Q - 2W '- 2W _,_- + W = 0 
N ' n+3 n+2 n+1 n 

adapted from Eq. (11.4) by analogy with the special case for the o rd ina ry F i b -

onacci sequence { F } for which p = 1, q = 0, h = 2 , d = 1. 

As a specia l ca se of (11.6) for n = 0, we m a y r e - w r i t e 

(11.7) W3 - 2W2 - 2Wi + W0 = 0 

in the equivalent fo rm 

(11.8) W3 + 3W2 + 3Wi + W0 = 5W2 + 5Wt = 5(W2 + W4) , 

from which, in gene ra l , i t can be shown that 

<"••> (2v %^+ (2v % « + - + ( £ : 0 w - • 5"<w»-i - w»>-
On equating those e lements in the f i r s t row and th i rd column, and after us ing 

(9) of Horadam [ 4 ] , we can deduce the r e su l t 
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2n+l 
(11.10) 

= 5°[(2P - Q>H2II+1 - d r 2 n + l ] 

12. We can find a number of Identi t ies for the genera l ized Fibonacci 

sequence {H } by proceeding as in Hoggatt and Bicknell [3] a s follows. 

Cons ider the genera l ized Fibonacci m a t r i x defined by 

(12.1) J = n 
H, 2n+2 H, 2n 

-H, 2n -H, 2n-2 

where f a s a special c a se of (12.1) , we have the m a t r i x 

j = j , = 
3p + 2q p + q 

-p - q -q 

for n = 1. Since J sa t i s f ies i t s own c h a r a c t e r i s t i c equation 

(12.2) J2 - (3p + q)J + dl = 0 , 

we can show that 

(12.3) (J + H2I)2 = H 5 J + H 0 H 4 I 

Th is l eads to the equations 

(12.4) 

and 

J m ( J + H 2 I ) 2 n = J m ( H 5 J + H 0 H 4 I ) n 

(12.5) 
2n 

k=0 X 7 

2n-k Tk+m J m ( H 5 J + H 0 H 4 I ) n 
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F r o m the eas i ly verif ied m a t r i x equation 

271 

(12.6) J2 = 3 J t + J 0 = 0 

obtained from observat ion of Eq. (12.2), we have the r e a r r a n g e d equation 

(12.7) J2 + 2Jj_ + JQ - 5Jj_ 

In genera l 9 i t can be shown that the J - m a t r i c e s satisfy the equation 

(12.8) (2onK + ( 2 r ) w " •(£) Jo = 5 n J 

whence 

(12.9) 
2 n / \ 

k=0 
J k = 5 n j n 

Hence ? on equating those e lements in the f i r s t row and second column, we have 

(12.10) 
2n 

E (?) 
k=0 

H 2 k ~ 5 H 2 n 

13. If we now cons ide r the s ame auxi l ia ry m a t r i x S a s in [ 3 ] , viz: 

(13.1) L-i -iJ ' 

we have , on calculation: 

(13.2) J n S 

1 I 2n+3 H 2n+1 

~"H2n+l ~"H2n-l 



272 SOME PROPERTIES OF CERTAIN [May 

By proceeding as in Paragraph 12, we can similarly establish the summation 

Zn 
(i3.3) > ; ( T ; ] J ^ S = s n j n s , 

k=0 

from which we deduce the result 

2n 

E (2
k

n)H2 (13.4) 2 - i t j H 2 k + l = 5nH2n+l 
k=0 

Similarly, we can generalize the equation 

(13.5) J3 + 3J2 + 3Jt + J0 = 5(J2 + Jj) 

so that 

2n+l 

(13.6) £ 2 \ + 1 k = A U + J n ] • 
k=0 

from which we deduce that 

2n+l 

<13'7> E ( 2 n k + 1 W = 5n [ H2n+2 + H2J 
k=0 7 

Again, we have the summation 

2n+l 

(13-8) £ ( 2 n
k

+ 1 V k S = 5 n [ J n + l S + J n S ] 
k=0 X ' 

from which we have 
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2n+l 

(13.9) £ ( 2 Y %k+l = 5n[H2n+3 + H2n+1] . 
k=0 

Final ly? s ince we may r e - w r i t e (12.6) in the form 

(13.10) J2 - 2J4 + J0 = J t , 

we have , in gene ra l , that 

2n 

Z(-«k(?> (13.11) ^ ^ i k j J k " J n • 
k=0 

so tha t , a s before , we have the summat ion 

2n 

E <-«*(?> (13.12) > . ( - i r ^ ] H 2 k = H 2 n 

k=0 

Simi la r ly , from the summation 

211 / \ 
(13.13) £ ( - ^ ( ' k j J k 8 - J n S 

k=0 

we deduce the result 

2n 

(13.14) 2 - < " « U J H 2k + l = H2n+l ' 
k=0 
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FURTHER SUMMATION IDENTITIES 

[May 

14. As in [3] 5 we can continue to es tabl i sh fur ther ident i t ies for the 

genera l ized Fibonacci sequence ( H } by let t ing 

(14.1) 

G S0 n u 

G Si 
n * 

GnS2 

GnS3 = 

H4n+4 

_ - H 4 n 

H4n+5 

1 _ H4n+l 

H4n+6 

_ H4n+2 

H4n+7 

"H4n+3 

H 4 n l 

"H4n-4 J 

H4n+11 

-H4n-3 J 

H4n+2 

_ H 4 n - 2 

H4n+3 

_ H 4 n - l 

where So 

Si 

s2 

s3 

" 3 

0 

5 

•[-I 

• f 

0 

3 

1 
1 

2 

-1 

so that we have 

<L4.2) G = % 
n 3 

H4n+4 

" H 4 n 

H 4n 

-H 4n-4 

As a special case of (14.2) we have , for n = 1, the ma t r i x G which sa t i s -
fies i t s c h a r a c t e r i s t i c equation (G - Alj = 0, so that 

(14.3) G2 - (7p + 4q)G + d l = 0 

We can eas i ly verify the m a t r i x equation 

(14.4) G2 - 7Gi + G0 = 0 , 

so that9 in general* we have 
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2n 

(u.5, £ W ) ) ( f ) G . . 5«Gn. 

Multiplying on the right by the auxiliary matrix S (s = 0, 1, 2, 3) and 
s 

equating the elements in the first row and second column gives 

2n 

4n+s 

/ in 

( 1 4 ' 6 ) E ( ™ 1 ) J ( j n ) H 4 j + s = ̂ 4 
j=o 7 

Further, the matrix equation 

(14.7) G3 - 3G2 + 3Gt - G0 = 5(G2 - Gt) , 

may be generalized so that we have 

2n+l 

(14.8) £ (-»i+1(2»;% = f[Gn+1-Oa] • 

On postmultiplying by S , we have, therefore: 
s 

2n+l 
U4.9, £ M , J + 1 ( 2 » - >) H 4 ] + s . * [ H 4 ( n + 1 ) + s - H ^ , 

J-o v 

A gain, Eq® (14.4) is equivalent to 

(14.10) G2 + 2Gt + G0 = 32 Gt , 

which may be generalized to give 

2n 

(14.11) ) J I TIG, = 32nGn Z-f I j J j 
j=0 



276 
SOME PROPERTIES OF CERTAIN 

GENERALIZED FIBONACCI MATRICES May 1971 

Postmult iplying by S leads to the identity 
s 

2n 

S imi la r ly , the m a t r i x equation 

(14.13) G3 + 3G2 + 3Gi + G0 = 32(G2 + G t ) , 

can be genera l ized , so that we have 

2n+l 

(14.M) EfV^V^^l^nl • 
j=0 

from which, on postmultiplying by S , we have the final identity 
s 

2n+l 

^ • 1 5 > E ( ^ 3+ "Kn+s = 3 2 n [ H 4 ( n + l ) + s + * W • 
j=0 
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ABOUT THE LINEAR SEQUENCE OF INTEGERS SUCH THAT 
EACH TERM IS THE SUM OF THE TWO PRECEDING 

ANDREGOUGENHEIM 
30 Boulevard Fiatidtin, Paris, France 

1. The sequences of integers such that each term Is equal to the sum of 
both preceding are infinite in number. Two of these have been especially in-
vestigated: the Fibonacci sequence, conceived at the beginning of the 13th 
Century by the mathematician Leonardo of Pisa, better known as Fibonacci, 
the Lucas sequence pointed out at the end of the last century by the French 
mathematician Lucas and named for him. Both sequences gave rise to many 
works which showed manifold properties of these sequences and conduced to 
strides in the numbers theory. 

The present research work doesnft mean to go back on these questions, 
but it tends to make known how the use of the hyperbolic functions make much 
easier general feature works on the linear sequences defined at the beginning 
of the present paper, and from which Fibonacci and Lucas sequences are 
only special cases . 1 The author has recently had recourse to these functions 
in a very different field, that of mathematic geography, and he has been the 
first to show that their utilization simplified notably the determination of the 
conformal representations of the sphere or ellipsoide on the plane, that it 
lightened very much the algebraic expression of these representations and 
that it helped to state precisely the relationships existing between the differ-
ent systems. 

2. The sequences concerned are defined by the general relation: 

(1) z = z 1 + ZM Q , 
n n-1 n-2 

in which z indicates the term of rank n. 

^ u c a s developed a very different generalization of both sequences. It Will 
be reminded in paragraph 6* 
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Each sequence can therefore be cha rac t e r i zed by two a r b i t r a r y in tegers 

which we call z0 and Zj and which don't s e e m , a p r i o r i , to be pa r t of the 

sequence because they a r e not squar ing with the definition (1); but, ac tual ly , 

they, too , en t e r into the sequence s ince i t i s poss ib le to extend it without 

end, in the opposite d i rec t ion , s t a r t ing from the a r b i t r a r y t e r m s z0 and zl e 

3. The shape of the re la t ion (1) between the success ive t e r m s of the 

sequences sugges ts immedia te ly the use of c i r c u l a r o r hyperbolic l ines (func-

tions) for express ing each t e r m according to i ts place in the sequence. As it 

i s a question of indefinitely inc reas ing sequences , it i s obviously suitable to 

have r e c o u r s e to hyperbolic l ines . 

Let us wr i t e the re la t ion (1) in the form: 

(2) z ,- - z - = z , 
x n+1 n - 1 n 

and designate by m , X, and 0 , th ree constants to fix u l t e r io r ly in t e r m s of 

sequence ' s data. Let us se t bes ides : e i the r 

z ,- = mshA(n + 0 + 1) and z - = mshA(n + 6 - 1 ) 
n+i ' n - i ' 

o r 

z - = mchA(n + 0 + 1) and z - = mehA(n + (j> - 1). 

Then the re la t ion (2) conduces to: 

z = 2mshAchA(n + 0) 

for the f i r s t c a s e , o r 

z = 2mshAshA(n + 0) 

for the second case , 

Le t us define now the p a r a m e t e r A by shA = 1/2, from which i t comes 

chA = N/5 /2 and 
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i e = ——^ J (golden number) 

Both expressions of z become simplified and it is obvious moreover 
that the terms of the sequence can be represented alternatively by hyperbolic 
sines and cosines 

(2 bis) z = m chX(n + $) 

or 

z = m shA(n + 0) 

ors generally, speaking 

A(n-M/>) _L Q"Mn-H/>) ± e e z = m — 
n ^ 

The parameters m and </> are easily obtained with the help of initial 
data z0 and zl9 but it is obviously necessary to consider two cases accord-
ing as one adopts for z0, a hyperbolic sine or cosine, and the inverse for 
zj. In the first case, the terms with an even index agree with hyperbolic 
sines, those with an odd index are represented by cosines* In the second case, 
the inverse occurs. To make a distinction between both cases , we shall write: 

A =. Zj_ + z0e B = Zj - z0e 

from whats taking the value of A into consideration, 

A - B = 2z0 chA A + B = 2ZJL - z0 AB = z\ - z0£| - ZQ . 

Suppose, now, that one intends to adopt hyperbolic sines for the terms 
with an even index. It comes: 

A - B m shA0 = z0 = 2 , mchA($4- 1) = z1? 
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from what 

m chA0 = ^ 
z i - zo siiA A _ B 

2 chX 
and therefore, 

me ^ = A/chX m e " ^ = B/chX m = N/AB/CIIA eA^ = \ / $ 7 B 

B must so be positive, and we have consequently: 

zt > z0 e 

either 

Zi > z0 T-^-

2zt - z0 > z0 \/5 

A parallel argument shows that if a hyperbolic cosine is adopted for the 
terms with an even index, -B takes the place of B in the formulas of m 
and of e , and that consequently, B must be negative and 

. 1 + \/5 
Zi < Z0 s 

For example, the sequences defined by z0 = 3 and zt = 1, or by z0 = 
2 and zA = 3 must be represented by 

z = m chA(n + 0) 

when n is even, whereas a hyperbolic sine is necessary for the sequence 
defined by z0 = 1 and z t = 2. 
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Using the formulas of m and , we get the general expression 

(1) zn = - ^ [ A e ^ - B ( - e ^ ) n ] 

Before going further in the study of the sequences, we deal first with 
the special case of (j> integer; then, this parameter can be taken cipher, 
which is equivalent to shifting the number of the te rms, the n term r e -
ceiving the index n - 1. The condition 0 = 0 produces A = B if B is 
positive, A = -B in the opposite case. Both cases correspond respectively 
to the Lucas and Fibonacci sequences* 

The knowledge of both these sequences makes it much easier to set up 
formulas of the general sequence z* We add, besides, a special sequence 
G which also appears in the relations. 

4. The Fibonacci Sequence* For this sequence, . A = B, and conse-
quently, z0 = 0 and zA = A. Hence, for the general term, 

S - ok [«* - <-•'» 1 • 

As no motive exists for keeping the same factor zA in all terms of the 
sequence, we can take zA = 1. Therefore, we have, with the symbol F in-
stead of z: 

(3) F = S h X n 

if n is even, 

"n chX 

v = c h A n 

n chX 

if n is odd. 

1Substituting to the quantities A and B in this formula, their expressions 
in the terms of z0 and z4, one may obtain a relation which is no 0theT than 
the relation (5), given further and then more directly obtained, 
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It would be possible to more quickly obtain these relations by departing 
from the usual definition z0 = 09 zj = 1, and writing 

m shA0 = 0 m chA( 0 + 1) = 1 , 

relations giving 0 = 0 and m = 1/chA. 
As 

A 1 + \[E -A 1 - N/5 
e = — 7 T — — - e = •—•—s 

the expressions of the general term become: 

F -. - - [(Ĥ T - (^n 
or, more symmetrically, 

F 
n 

. (H*r - (^° 
1 + \/5 1 - N/5 

and numerically, 

F = a U 6 1 8 - ' ) n - (-0,618 - - P 1 1 

n 2 , 2 3 6 - . . 

As shkx, with k integer, is always divisible by shx, and as chkx is 
divisible by chx when k is odd, the term F, is always divisible by F , 
which is also shown by the general formula.. Specifically, the even terms 
have an index divisible by 3; the terms divisible by 3 have an index divisible 
by 4; the terms divisible by 5 have an index divisible by 5; and so on. 

Likewise, when n becomes very great, which makes thAn very near 
from the unity, the ratio of consecutive terms draws near to chA + shA, Le„ , 
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eX = l + j£ = J 6 1 8 . . . < 

So the successive terms of the Fibonacci sequence are: 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 

F = 0 1 1 2 3 5 8 13 21 34 55 89 144 n 

| j ^ = 0 1 3 8 21 55 144 

chAn - n r 
chX 13 34 89 

5. The Lucas Sequence* We have seen that, for this sequence? A = - B , 
from which z0 = A/chX and zt = z0/2§ and* for the general term5 using 
the symbol L for the terms of the sequence, and taking zt = 1, as in the 
Fibonacci sequence9 and for the same reasons 

L - e + n <-e-»" - (H^)" * ( V ) ' 
and we have 

(4) L = 2 chAn 
n 

for n even? and 

L = 2 shAn 
n 

for n odd* It would also be possible to get these expressions directly from 
the relations 

m chA0 = z0 = 2 

and 
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m shA ($ + 1) = zt = 1 

which give (f) = 0 and m = 2. 
If one considers the product kn, the term L. is divisible by L 

when k is odd. Particularly, the terms having an index odd multiple of 3 
are divisible by 4, whereas, as ch6X is equal to 9, odd integer, the terms 
having for index a multiple of 6 and consequently for expression 2ch6An, are 
divisible by 2, and by no other power of this number, whatever the eveness 
of n may be. 

The Lucas sequence, therefore, is as follows: 

n = • 0 1 2 3 4 5 6 7 8 9 10 11 12 • • • 

L = 2 1 3 4 7 11 18 29 47 76 123 199 312 ... 322 n 

2ch n = 2 3 7 18 47 123 312 • • • 322 

2sh n = 1 4 11 29 76 199 

6. The previous expressions of F and L in terms of 

1 + N/5 , 1 - \/5 — — _ and ?j 

are connected with more general results set up by Edouard Lucas, who con-
siders the functions U and V defined by 

n n J 

n . n 
TT = a " 

n a - b 

and 

V = a + b n 
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Lucas shows that U = U V (a s i m i l a r formula is given fur ther in p a r a -zin n n 
graph 9) and that , on the o ther hand, he can wr i t e U = 2 ain n and V = & * n n 
2 cos n; for n r e a l , the c i r c u l a r t r igonometr ic l ines fit, w h e r e a s for n 

imag ina ry , one mus t use hyperbol ic functions. 
It is also in te res t ing to cons ider the quadra t ic equation having the roots 

a and b„ In the special c a se where U and V a g r e e , r e spec t ive ly , with 

F and L , this equation Is x2 - x - 1 = G, n n ^ 
7. Connected Sequences, One can eas i ly se t up the relat ion: 

(5) z = z A F - + z - F 
' n 0 n - 1 1 n 

pe rmi t t ing to deal with all sequences defined by re la t ion (1) a s soon a s the 

Fibonacci sequence has been Investigated. 

We shall cons ider now that th is re la t ion (5) defined a function G (z, F) 

of both s equences , and we shal l sp r ead It to any sequences y and z , wri t ing: 

G {y,z) = zAy - + z - y 
n\y r 0 J n - l l J n 

Through the re la t ion (5), one shows without difficulty that G (y,z) = 

G (z ,y ) , and consequent ly, 

G (y,z) = yAz - + y - z 
n J J 0 n - 1 J l n 

More genera l ly , and if q i s any in t ege r , we find m o r e : 

G n (y ,z ) = z ^ ^ + \+1Y^q • 

One can also show that G = G , + G„ „, and the re fore that the s e -
n n—x n—u 

quence G is a l i nea r sequence of the family (1) concerned and has 

ing t e r m s : 

Go = yizo + 2 ^ 0 - y0z0 

and 
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Gi = y0z0 + yiZi . 

With the symbols of paragraph 3, we can show that, on the other hand, 

A(y,z) = A(y)A(z) m(y,z) = m(y)m(z)chA 

B(y,z) - B(y)B(z) 0(y,s) = </>(y) + 0(z) 

hence, 

(5 bis) G (y,z) = m(y)m(z) chXshA[n + 0(y) +-0(z)] 

or 

Gn(y,z) = m(y)m(z) chXchA[n + 0(y) + $(z)] , 

accordingly as to whether Gj is superior to 

n 1 + N/5 
G 0 9 — 

We have first, G (z,F) = z . The sequence G (z,L) affords a special 
interest because 

G (z,L) = LAz - + L-z = 2 z -, + z = z - + z ,-nN 9 0 n-1 1 n n-1 n n-1 n+1 

which gives, in particular: 

<6> L n = G n < L ' F ) = F n - 1 + F n + 1 ' 

When the sequences y and z are the same, one may obtain, using 
G (z) instead of G (z, z), n n 

G (z) = zAz - + z-z = z z - + z ,-z nv ' 0 n-1 I n q n-q-1 q+1 n-q 

In this sequence, 
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G0(z) = z0(2z.| - z0) 

Gi(z) = z2
0 + z\ 

G2(z) = Zi(2z0 + zj) . 

We find also: 

(6 bis) G (z) = m2chAchA (n + 20) or m2chA shA (n + 20) 

according to the value of the ratio Gj /G0 . 
Consequently5 through these relations, 

Gn(F) = F n 

(7) G (L) = 5F 
n n 

z G (z,L) = G0 (z) . 
n nx 9 2nx 

Likewise, the sequence z can be connected to the same sequence z 
shifted by an integer P* As m(z) = m(z+ ) and 

(z,z, ) = (z) + (z, ) , 
' +p +p 

It comes 

G (z,z ) = m2chAchA(n + p +• 20) If n and p have different 
,„ . . v

 n p eveness 
(7 bis) 

G (z,z ) = m2chAshA(n + p + 20) if n and p have the same 
n P eveness 

Obviously 5 the terms of the connected sequences G must be, like those of 
the other linear sequences, alternatively a hyperbolic sine and a hyperbolic 
cosine* 

8* Sundry Relations* Having resort to formulas interconnecting hyper-
bolic lines 9 we can set up many relations between the terms of the linear 
sequences of type (1). 

(a) Formulas of addition and subtraction. One finds 
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!

z L if p is even 

n p ^ 
( z n - l + Vn)Fp if P i s o d d 

!
(z . + z , - )F if p is even 

n-1 n+1 p ^ 
z L if p is odd 

These relations can be condensed into the following form: 

z _, + (-1)P z = z L 
n+p n-p n p 

z _ (_i)P z = (z + z ) F . 
I n+p n-p n+1 n-1 p 

One can write them more symmetrically: 

!

z _,_ +(-l)Pz = L G (z,F) / = G (L,F)G (z,F) 

n+p n-p p n ' 1 p nv 

• W - < - ^ V p - ' p V - M "•*»*""•* I - Gp(F,F,G„(z,L, 

(8) 

Each of the above mentioned sums and differences concerns both terms 
z and z of which the indices are separated from 2p which is an 
even integer. 

When the difference , which we call a, between the indices q + a and 
q of the considered terms is odd, i. e. , when we t ry to compute the sum 
z + z or the difference z - z , the problem is much more difficult q+a a q+a a 
because the terms are expressed, one by a hyperbolic cosine, the other by a 
sine, and there is no general formula for the addition or subtraction of both 
lines. Then, it is possible, to make the investigation easier , to pass through 
the Fibonacci sequence by introducing the following auxiliary linear sequences, 
of which the number is unlimited and which are only interesting when a is 
odd. We use the letters x and y to denominate these sequences: 

x (a) = F ^ + F 
q q+a q 

y (a) = F ^ - F J q q+a q 

Particularly: 
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Xq(1) = Fq+2 V W = F q-1 

Xq(3) = 2Fq+2 V 3 ) = 2Vl 
Xq( 5 ) = 5 F q + l + 4 F q y q ( 5 ) = 5 F q+ l + 2 F q ' 

Generally speaking f we have 

F , = F -F + F F ,-q+a a-1 q a q+1 

Hence j with the help of (5), 

V a " Zq = z 0 X q - l ( a ) + z l X q ( a ) = G
ql*'\W • 

In the same way9 

Zq+z ~ \ = Gq[z>yq(a)] 

(b) Sums or differences of Squares, Using the sums and differences 
just set up9 one finds: 

z2 - z2 = G , (z)F if p and q have the same eveness 
( 9 ) p q p+q p-q 

z2 + z2 = G , (z)F if p and q have different eveness, 
p q p+q p-q 

and? by condensing these relations: 

z2 „ (™i)P^z2 = G M (z)F 
P q p+q p-q 

The difference of the squares, when p - q is odd9 can be written: 

ZP " Zq = G q [ Z | X q ( P " q ) ] Q q [ Z 9 y q ( p " q ) ] 

but this way does not lend itself to practical applications. Likewise, for the 
sum of the squares when p - q is even* 
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(c) Sums of the terms of Linear Sequences. One easily finds by recur-
rence the following relation which is suitable to all linear sequences defined 
by formula (1): 

i=q 

Z = } z. = z l0 - z ,-
p ? q Z ^ i q+2 p+1 

i=P 

We have, therefore, in the case of the first n + 1 te rms , from p = 0 to 
q = n: 

Z = z l 0 - z-
n n+2 1 

In addition to this general methods there a re , for two special cases-, 
other methods making possible, for instance, to get checking of the 
computation: 

In one of the cases, the number n + 1 of the implicated terms is a mul-
tiple of 4 and one gets 

F ,- / z i r z , , \ F ,., G 
_ n+1 - - " 

Z n " ~ 

/Zn+5 _,_ V l \ n+1 n+3 , _, 

The second special case, which looks more interesting, concerns a num-
ber of terms which are multiples of 2 and of no other power of 2. In this 
case, n - 1 is a multiple of 4 and we have, consequently, 

z =
 Ln+1 Zn+3 

n 2 2 

i9 ee , the sum of the n + 1 implicated terms is equal to the product of the 
(n+5)/2 term of the sequence (index (n+3)/2), by the (n+3)/2 term of 
the Lucas sequence (index (n + l)/2). There i s , therefore, equality between 
the sum of the first six term (n = 5) and the product of the fifth term by 4: 
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the sum of the first 10 terms (n = 9) and the product of the 7th term by 11, 
the sum of the first 14 terms (n = 13) and the product of the 9th term by 29 , 
the sum of the first 18 terms (n = 17) and the product of the 11th term by 769 

and so on. 
(d) Sums of the two-by-two terms. Let us add first the (n/2) + 1 terms 

with an even index 5 from 0 to n. We find 

S = (Zn - Z<) + Z , - = Z . - - Z 1 . 
n u 1 n+1 n+1 -1 

For the (n? + l) /2 terms with an odd index nf , from z4 to z , we get 
likewise 

O 8 Z O , -« ~" Z/\ B 

n! n?+l 0 

One can easily check the accuracy of both expressions of S and S . 
by taking n! = n - 1. Adding both sums, one must find again the sum Z of 
the n + 1 terms of the sequence z, from z0 to z . 

We have indeed, on the one hand for the number of terms 

( } + i ) * s L i - - 1 . 
and, on the other hand, for the formulas of the sums 

Sn< = zn " z 0 

and 

Sn + Sn- = zn+l " Z - l + z n " z0 = zn+2 " z l = Z n • 

Moreover, man can try to get the sums of the two-by-two terms between the 
indices p and q, both even or both odd. The number of these terms is 
(p - q)/2, and their sum is the difference between the sums S and S 
made from the beginning of the sequence to q and to pe As p and q have 
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the same eveness 9 one obtains 

S - S = z _Ll - z _Ll q p q+1 p+1 

from which it c o m e s , by using the formulas (8): 

(10) 
g - s = ^ ^ S 0 2 + l ( Z s L ) if SLz-P is even 

q p 2 2 2 

s -S =^lE^2 + l ( z ' F ) if SLl_R i s o d d 
q p u u. u 

9. Application to the Fibonacci and Lucas Sequences. The r e l a t i ons , 

which we shall get by application of the formula of the prev ious p a r a g r a p h s , 

could be obtained by us ing the formulas (3) and (4), which give the t e r m s of 

both the Fibonacci and Lucas sequences in the shape of hyperbolic l ines of 

the index n* We think, n e v e r t h e l e s s , m o r e into the sp i r i t of the p re sen t 

pape r to cons ider both sequences as special c a s e s of v e r y g rea t s implici ty . 

We have previous ly seen that in (6), L = F 1 + F - . Substituting 

F to z in the formulas (7), one finds F L = F 0 . 
w n n 2n 

(a) F o r m u l a s of addition and subtract ion. The F o r m u l a s (8) give: 

F ^ + (~1)PF = F L 
n+p n-p n p 

L _,_ + (-1)PL n+p N = L L n -p n p 

F - ( - D F F = F L 
n -p N n -p p n 

L , - (~1)PL = 5F F 
n+p N n -p n p 

In p a r t i c u l a r , 

F ,- + F - = L 
n+1 n - 1 n 

F - F = F 
n+1 n - 1 n 

L • + L - = 5F 
n+1 n - 1 n 

L ,., — L i ~" L , n+1 n - 1 n 

and consequently, 

F 2 , - - F 2 - = F L = F 0 
n+1 n - 1 n n 2n 

L 2 - - L2 - = 5F L = 5 F 0 n+1 n - 1 n n 2n 
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(b) Sums or differences of squares. One finds with the help of formulas 
(9): 

F2 _ (_1)P+V = F F L2 - (~l)P+qL2 = 5F F 
P q P+q P-q P q P+q p-q 

from which we deduce, among others 

F2
 + -p2 - jp T 2 + T2 = 5F 
n n+1 Jj2n+1 n n+1 *2n+l 

F2 + (- l ) n = F ^ F 1 L2 + (- l ) n = 5F ^ F , . 
n n+1 n-1 n n+1 n-1 

(c) Sums of the terms of each sequence. Let us nominate by <J>. and 
A the sums of the first n + 1 te rms , from the index 0 to the index 1. 
Using the formulas of the paragraph 7c and taking zj = 1, we get: 

n n+2 n n+2 

For n + 1 multiple of 4, it becomes 

F F F 5F F 
d> = n+1 ln+5_, n+1 A = n+1 n+3 

n 2 2 2 An 2 2 

For n - 1 multiple of 49 one finds 

^ _ Ln+1 Fn+1 A = V l Ln+3 
% " —T~ ~2T n 2 2 

(d) Sums of the two-by-two terms. The sum of the first (n/2) + 1 terms 
of even index is 

Sn<F) = Fn+1 " 1 Sn<L) = V l + 1 

Tha t of the f i r s t (nf + l ) / 2 t e r m s of odd index i s : 

S ?(F) = F fJ_- S f(L) = L fJ_, - 2 
n? n f + l n? n f + l 
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For the two-by-two sums between the indices p and q, of the same 
eveness, we find, using the formulas (10): 

S (F) - S (F) = ^ £ ^ + 1 S (L) - S (L) = ^ t E hgV + i 
q p 2 2 qv p 2 2 

when (q - p)/2 is odd. When this quantity is even, we have 

F Li 5F F 
S (F) - S (F) = - £ E - £ 2 + 1 S (L) - S (L) = — 1 2 _ £ £ - + i 

q p 2 2 q P 2 2 

(e) Other relations between the terms of the sequences F and L. 
Cancelling out the hyperbolic lines between the expressions (3) and (4), we 
obtain the following relations, in which we can note again the prominent part 
taken by the factor 5 which, is equal to 4 ch2 . 

L2 = 5F2 + 4( - l ) n L9 = 5F2 + 2( - l ) n 

n n ' 2n n 
L2 = F2 + 4F -F _,- 2L0 = L2 + 5F2 

n n n-1 n+1 2n n n 

According to the first of these relations, we see that no one term of the Lucas 
sequence can be a multiple of 5, and 1 
n grows indefinitely. One also finds 
sequence can be a multiple of 5, and that L draws nearer to F <s/5, when 

L2n = L ^ " 2 ( - 1 ) n 

10. Research of a Linear Sequence. The matter here is to research if 
a given number can be a term of given rank in a linear sequence. In other 
words, the values of z and n are given, and those of z0 and Zj are un-
known. The relation 

(5) z = zAF - + z-F 
x ' n 0 n-1 1 n 

contains the solution of the problem. It is a simple equation which must be 
solved by integers, which is always possible. On the other hand, if z0 and 
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zA are a solution, there is an infinity of other solutions defined by z0 + kF 
and Zj - kF - , where k is any integer, positive or negative* 

As an example, let us search the sequences in qhich zT = 81. The equa-
tion of the problem is 

8z0 + 13zi = 81 . 

Few trials show that z0 and zt can be respectively taken equal to 2 and 5B 

Consequently, the solutions are: 

z0 = •• 
Zi = •• 

. -24 

• 21 

-11 
13 

2 
5 

15 
- 3 

28 
-11 

The differences between the terms of two such sequences defined by the values 
k? and kl? of k are equal to the product by k? - kM of the terms of a Fib-
onacci sequence. 

11, We can generalize the notion of linear sequence if we admit that the 
parameter n can vary in a continuous way? without being limited to integers, 
so that z is a continuous fraction z(n) of the parameter n and can con-
sequently take irrational values® This expedient can be used to simplify the 
records, but it is not of practical value for the applications. 

bis 
With the notation of paragraph 3, we can write the formulas (2 ), ac-

cording to the case: 

(2 t e r ) z = ^ W f F ^ or z = 4 ^ T L ^ 
x ' n n+0 n 2 ch A n-Hp 

The quantities z and n are well integers, but it is not the case for the 
functions F _^ and L _|A, like for the parameters A, </), and m far 

Thus, any linear sequence can be reduced to a generalized Lucas or 
Fibonacci sequence by use of an irrational factor* 

In the special case of the connected sequences (paragraph 7), the form-
ulas ( 5 b i s ) , (6b i s ) and (7 b i s ) can be modified like the formula (2b l S) and 
therefore simplified. One replaces to this end: 
[Continued on page 298, ] 
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Let { F } be a Fibonacci-type sequence, where 

Fn+2 = F n + F n + 1 ' F* = a ' F* = b • 

Let {s } be the sequence obtained from the given sequence by taking the 
partial sums of its te rms, that i s , 

n 
S = V F. . n A—' i 

i=l 

Then there is an unexpected relation between the F-sequence and the S-
sequence, namely that S. ~ is a multiple of F„ -. In fact, 

S4r-2 = C 2 r - l F 2 r + l ' 

where ( c } is itself a Fibonacci-type sequence with Cj = 1 and c2 = 3 
(the Lucas sequence). 

Proof. If a and j3 are the roots of the equation 

t2 - t - 1 = 0 , 

we may show, as usual, that 

n a - p 
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We may then obtain S by summing geometric progressions, which gives 

S = afcn - ft11) + bla(aR - 1) - p((f - 1)} 
n a - ft 

Hence, 

t 2 r - l 0 2 r - L , , . 2r 0 2r . 
v = a (a - f t . ) + b(a - ft ) 
*2r+l a - ft 

and 

S 
, 4r-2 r>4r-2, , ur / 4r-2 1X n/,o4r-2 1V1 a(# - f t .) + b| Qf(a - 1) - ft(ff - 1) I 

4r-2 a - ft 

Since 

t 2r 0 2 r w 2r- l , o2r-lv 4 r - l 0 4 r - l , , m 2 r - l , m 
(a - f t ) (a + ft ) = a - f t + (aft) (a - ft) 

4r- l 04r- l , ox 
= a - ft - (a - ft) 

we have 

where 

S4r-2 C 2r-1 F2r+1 ? 

2 r - l ^ fi2r-l 
c 2 r - l = * + P 

It follows that {c } is itself a Fibonacci-type sequence, with 

c t = a + ft = 1 

and 

c2 = a1 + ft2 = 3 
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T h e r e a r e two o ther r e s u l t s of i n t e r e s t . F i r s t , we have a somewhat 

s i m i l a r re la t ion between S. and F~ 9, namely 

S, = c 0 F 0 l 0 - 2b . 
4 r 2 r 2r+2 

This can eas i ly be proved in the same way as the e a r l i e r r e su l t . 

Second, it follows from the e a r l i e r r e s u l t s that 

and hence that 

S n = F n + 2 " b 

S _UQ = S + S ^ + b n+2 n n+1 

[Continued from page 295. ] 

bis — for (5 ) , the product AB by the product of the values of A and B 

re la t ive to the sequences y and z , and, on the o the r hand, 0 by the sum 

of the values of 0 for these sequences . 
~ f o r ( 6 b l S ) ^ A B by AB and 0 by 2 0 , 

— f o r ( 7 b l s ) NJ"AB by AB and 0 by p + 2 0 . 

12. The author thinks he has shown, by the p re sen t study which does 

not maintain to be exhaust ive , how much the use of hyperbolic l ines to e x -

p r e s s the t e r m s of the l i n e a r sequences of the type (1) i s favorable by the 

s impl ic i ty which i t in t roduces in the calculat ions bear ing on these sequences , 

by the fact also that i t sugges t s r e l a t i ons , which m a k e s i t e a s i e r to se t up. 

These advantages a r e special ly c l e a r in the ca se of the Fibonacci and Lucas 

sequences , for which it is poss ib le to r e - e s t a b l i s h quickly the well known 

formulas concerning them™ 



RECIPROCALS OF GENERALIZED FIBONACCI NUMBERS 

A, G. SHANNON* 
University of Papua and New Guinea, Boroko, T. P. N. G. 

and 
A. F. HORADASV1 

University of New England, Armidaie, Australia 

1. INTRODUCTION 

The purpose of this paper is to find expressions for 

EH2~n> E ^ , IT1 and H ^ . 
n=l n=l 

where (H } is the generalized Fibonacci sequence defined by Horadam [6 ] 
as follows: 

(1.1) Hn = H n - 1 + Hn_2 (n > 3), Hi = p , H2 = p + q , 

where p,q are arbitrary integers, and 

(1.2) Hn = ( 2 \ / S r 1 (%n - m b n ) 

with H= 2 (p - qb) , m = 2 (p - qa) and where a, b are the roots of x2 - x 
- 1 = 0. 

The required expressions will be obtained as results (2.1), (2.2), (2.3), 
and (3.6), respectively. They will be seen to involve Lambert series and 
Bernoulli-type polynomials. 

Let 

(1.3) H = E J l ^ b . 
p - qa 

We define the Lambert series 
*Part of the substance of a thesis presented for the Bachelor of Letters degree 
to the University of New England in 1968. 
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OO 

(1,4) Lj(x) = ] C H" r / 2 - * -
- 1 - x 

r=l 

and 

(1.5) L2(x) = ^ H' 
r .-r x 

l - x r 
r=l 

Details of some of the properties of the Lambert series may be found in 
Hardy and Wright [5] and Landau [7]. 

We also need to introduce a new expression 

(t)f 
in which the B (x) is analogous to the general Bernoulli polynomials of 
higher order which have been discussed by Gould [3]. 

A Bernoulli polynomial B (x) is defined by means of 

V^ n r n e 1 ^ 
(1.7) V B (X) 2 - = -3e r r; «. -

A e - 1 
r=0 

Some of their properties are developed by Carlitz [2] , Hardy and Wright 
[ 5 ] , and Gould [3] and [4] who relates the Bernoulli and Euler numbers. 

(t)f 
In fact? the B (x) are generalized Bernoulli polynomials and satisfy 

the recurrence relation 

(1.8) Bit)?(x + l) - HB(t)?(x) - nB( t"1 ) ?(x) •= 0 . 
r r r 

The proof of (1.8) is as follows. 
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E f r f f c + D - H B f w } ^ 
r=0 

t nx n „ t nx n e e Hn e 
( e 1 1 - ^ * (e11-!!)1 

n t " 1 e ° X V^ Ut-lV. , n r 

= n —E Tl = n Lu Br (x) F" 

(t)T 

We shall also use a special case of w (x), when r = 1, defined by 

—^ r nx 
d-9) E BLW ^r = n e 

r rl n __ 
A e - H 

r=0 

The Bf (x) also satisfy a recurrence relation 

B! (x + 1) - HB' (x) = r x r % 
r r 

This recurrence relation follows since 

r 
(B*r(x + 1) - HB'r(x)}5r 

r=0 

nx n nx 
ne e Hne 
e11 - H eR - H 

nx \~^ (nx) 
ne = n L V r=0 
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2. CALCULATION OF THE RECIPROCALS 

DH2n = 2 ^ i : , 2n * .2n 
n=l n=l ia ~ m b 

Thus 

(2.1) 

V-rb 2n 
2 J _ L y _ T T 

K 4 n 

n=l—T b 

! « m ^ L 1 

1 b 2 n l h 4 n 
H b 

i - ^ - b 2 * i - l b 4 n 
n=l | ^ H 

= 2VISE|H-Ib2nr-H-v 4nr < n - -z o - i i r 
n=l r=l 

r=l v 

E^^^V^H^) 
That i s , the required expression is seen to involve Lambert series defined in 
(1.4) and (1.5). 

Write 

-t _ / ^ / s V _ L i 
n \-mJ nt ( c n _ allu (C11 - H)t 

where C = b/a. 
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Then 

-t _ /^ysV i _ c ^ 
n \ - m / (cV)11 ~^~~^ 

= (i^i i ex(nl°gc) 

\ ~m) id***)* ( e n l o § C - H ) ' 

= (2^\ L 
_ V - m / (n log C)fc 

t XZ 
z e 

(C a ) (e - H) 

where z = n log C. Thus 

^ ) ——r-x-niEBfw (n log C ) r 

r=0 
(a) 

Wtf f rS*" (log C ) r fc r - t 
r! 

F r o m th is 9 the genera t ing function for powers of the r e c i p r o c a l s can be set 

up. Th is is 

(2.2) L <** - fe) E = f « ^ • 2 »r-' -rib) • 
n=l ^ r=0 n=l ^ a ' 

Thus s the requ i red express ion involves the genera l ized Bernoull i polynomials 

of h igher o r d e r (1.6). 

As a special c a se of (a) with t = 1, it follows that 

(2.3) H"1 = f ^ n £ B' (x) ^ ^ n'"1 

' n . l ~ x u x , n *—' r r! 
m(a b ) r = Q 
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As expected from (2.2), our expression involves the Bernoulli polynomials 
(1.9). 

Following Gould [3], let 

oo 

(2.4) H(x) = Yl H^1 xR • 
n=l 

Then 

oo 

IH(ax) - mH(bx) = Y, E^ (^ ~ " ^ \ 2 N/5 x11 

= X)2^5xn 

n=l 

Thus 

(2.5) m(ax) - mH(bx) = | ^ | , 

which is a succinct expression involving 

E H"1 xn 

n=l 

3. THE OPERATOR E 

We introduce an operator E , defined by 

(3.1) EH = H ^ . 
n n+1 

Thus 
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n+2 n+1 n 

becomes 

(E2 - E - 1)H = 0 n 

o r 

(3.2) (E - a) (E - b ) H n = 0 . 

Let 

G = (E - b)H = H _,_- - b H . n v n n+1 n 

Then from (3.2), 

(3.3) {E - a ) G n = 0 o r G n + 1 = a G n , 

and so 

(3.4) Gi = H2 - b H i = ap + q . 

It follows from (3.3) and (3.4) that 

(3.5) G n = a n _ 1 ( a p + q) . 

Now 

H n + 1 = b H n + G n • 

and so 
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/. -v r / a n r - r 
(-D W^a r = b~' Hn' . E — 7 ^ - (ap + q)1 

„ n r i b H r=0 n 

where 

Thus 

(t) - t(t + l)(t + 2) . - (t + r - 1) [1J 

(-l)r(t)„ ^ „f ^ r - s 8 

a_ H *-r t _ y ^ r T*^ rl p 
n+1 L** r! £-* si r - si s-M-nr,r+t n 

r=0 s=0 a D 

and so 

_t ^ ^ (-D (t)r r - s s . 
lo.o; n n + 1 ^ L , ^ s ! r _:JSf s _ n r r+t n

n 

r=0 s=0 a D 

See also (or). 
We have thus established expressions for the reciprocals stated at the 

beginning of this article, 
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A. G. SHANNON 
University of Papua and New Guinea, Boroko, T, P. N. G. 

and 
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University of New England, Armidale, Australia 

1. INTRODUCTION 

The results in this paper arose from the efforts of the first-named author 
to adapt Horadamfs Fibonacci number triples [3] to generate direction of 
numbers in solid geometry for a multivariable calculus course. This effort 
was unsuccessful in that the equation obtained was true for quadratic d io-
phantine equations in general, but it did not use any properties of the Fib-
onacci sequence. However, it did give rise to some results for higher order 
sequences. 

Horadam [2] , [3] , [4] has studied the properties of a generalized Fib-
onacci sequence defined by 

(1) H ^ = H J_- + H , (n > 1) 
n+2 n+1 n 

with Hi = p9 H2 = p + q. One of the properties he found was that 

( 2 ) ( HnHn+3> + < 2 H n + l H n + 2 ) 2 = ( 2 H n + l H n + 2 + H n ) 2 

Which connects generalized Fibonacci numbers with Pythagorean triples,, 
In the next section of this paper, an analogous result is obtained for gen-

eralized "Tribonacci" numbers* The theorem is then extended to general 
linear difference equations of order r with unit coefficients. 

2* TRIBONACCI NUMBER TRIPLES 

The general Tribonacci series (see Feinberg [1]) is defined by 

( 3 ) Un+3 = Un+2 + U n + 1 + Un> <n * « 
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with initial values Ui, U2» U3 . 
Theorem le 

(4) (U U ^ + (2(U A1 + U ^ )U l Q )2 = (U2 + 2(U ^ + U AO )U ^ )2 
n n+4 n+1 n+2 n+3 n n+1 n+2 n+3 

Proof, 

u2 M u ^ - l u . + u ±0) )2 

n n+3 n+1 n+2 
= U2 + (U _,, + U ^)2 - 2(U ^ +U ^0)U ^Q n+3 n+1 n+2 n+1 n+2 n+3 

and so 

K + 2<Un+l + Un+2>Un+3 = K+3 + <Un+l + Un+2>2 • 

This gives 

(U2 + 2(U ^ + U l 0 )U ^o)2 
n n+1 n+2 n+3 

<5) = Un+3 + <Un+l + Un+2 )4 + 2<Un+l + Un+2 )Un+3>2 

= K+B ~ <Un+l + Un+2) 2>2 + <2<Un+l + U n + 2 ) U n + 3 ) 2 • 

Now 

( U n + 3 - < U n + l + U n + 2 ) 2 > 2 

( 6 ) = <Un+3 " <Un+l + Un+2> )2 + <Un+3 + <Un+l + Un+2))2 

= u2 u2 

n n+4 

Substitution of (6) in (5) gives the result (4). 
Theorem 2. All Pythagorean triples are Fibonacci triples. 
Proof, Put Uj = x - y5 U2 = y, U3 = 0. Then 

U4 = x and U5 = x + y . 

For n = 1, Eq. (4) becomes 
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(x2 - y2)2 + (2xy)2 = (x2 + y2 )2 . 

For example, when x = 5 and y = 2, we get the triple 20, 21 , 29* 

3. GENERALIZED PYTHAGOREAN THEOREM 

Comparison of (4) with (2) suggests that for a general recurring sequence 
("V } of order r where 

r - 1 

W Vn+r = E Vn+i • <n * « • 
i=0 

witn initial values Vl9 V2? s •8 , Vr , there is a Pythagorean theorem of the 
form 

Theorem 3e 

(V V )2 + (2 V (V - V ) )2 

1 n n+r+1; l n+r l n+r n ; ; 

( 8 ) = (V2 + 2V (V - V ) )2 

lvn . n+r1 n+r n ; ; 

For example, when r = 2, we get 

<Vn W + ( 2 V n + 2 V n + l ) 2 = K + 2 V n + 2 V n+l ) 2 

which agrees with (2). When r = 3, we get 

<VnVn+4>2 + < 2 V n + 3 ^ + 2 + V n + l ) ) 2 

= ^ n + 2 ( V n + 1 + V n + 2 ) V n + 3 ) 2 

which agrees with (4). 
Lemma 1. 

<9> 2 V n + r " Vn+r+l = Vn 

Proof. 
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n+r n+r+1 

= V + V - V 
n+r n+r n+r+1 

= (V - , + V 0 + 9 « - + V ^ + V ) + V v n + r - 1 n+r -2 n+1 n ; n+r 

- ( V + V ., + V « + • • • + V ., ) v n+r n + r - 1 n+r-2 n + l ' 

= V . n 

L e m m a 2. 

(10) 2V _, + V ^ ^ = 4 V X - V 
n+r n+r+1 n+r n 

Proof. This r educes immedia te ly to 

n+r n+r+1 n ' 

which has jus t been proved. 

Proof of Theo rem 3. F r o m L e m m a s 1 and 29 we have 

(2 V - V ., ) (2 V + V ., ) = V (4 V - V ) , v vn+r n + r + 1 / v n+r n + r + 1 ' n v n+r V 9 

which becomes 

4V2 - V2 . = V (4V - V ) n+r n+r+1 n v n+r n ; 

Th is can be r e a r r a n g e d as 

(11) V2 . = V2 + 4V (V - V ) . 
v ; n+r+1 vn n + r x n+r V 

On mult ipl icat ion by V2 and addition of (2V , (V , - V ) )2 to each s ide 
^ J n n+r n+r n 

of (11), the r e su l t in (8) follows. 
F o r example9 when r = 45 we get a " t e t r a n a c c i n s e r i e s [1] and (7) 

becomes 

v = y^ v . 
vn+r £-** n+i 

i=0 
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with Vi = V2 = V3 = V4 = 1, say. Then V5 = 4 , V6 = 7. At the same 
time, (8) becomes 

( 1 2 )
 ( Vn + 2 ( \ + l + V n + 2 + V n + 3 > V n + 4 ) 2 

= <VnVn+5)2 + <2<Vn+l + V n + 2 + V n + 3 ) V
n + 4 ) 2 • 

n = 1 gives the Pythagorean triple 79 24, 25* 
If we call the type of triangle in (8) a recurrence triple, we get 
Theorem 49 All Pythagorean triples are recurrence triples* 
Proof. Put 

Vi = x - y, V2 = y, V3 = V4 = 0 

in (7). Then V5 = x9 Vg = x + j 9 and for n = 1, Eq* (8) becomes 

2 2 
(x2 - y2) + (2xy)2 = (x2 + y2 ) . 

4e CONCLUDING COMMENTS 

The results in Theorem 3 can be used to produce various properties for 
recurrence relations of different orders. For instance! when r = 2 and 
n = m - 1, we get 

(13) 4 (H' - H - - H2 ^ ) = H2 - - H2 ^ , v m+1 m-1 m+1 m-1 m+2 

which, in conjunction with Eq* (11) of [2] , gives 

<14> 4<HL - H U + ^m^ = HL-i - = U • 
where e = p2 - pq - q2* 

For a third-order relation, the property analogous to (13) is 

(15) 4 ( U m + 2 U m _ 1 - U ^ + 2 ) = U ^ - U ^ + 3 . 

This may provide a convenient method for the development of properties of 
third and higher order recurrence relations, which have been studied in a 
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number of papers in the Fibonacci Quarterly in recent years. For earlier 
studies, Morgan Ward [5] provides a useful reference. 
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ON AN INITIAL-VALUE PROBLEM ^ 
FOR LINEAR PARTIAL DIFFERENCE EQUATIONS 

W. JENTSCH 
University of Halle/S. Germany 

SUMMARY 

Sufficient conditions are given for the existence and unity of the solution 
of an initial-value problem with linear partial difference equations. From 
this s in particular, assertions about the existence of compatibility conditions 
between initial values can be derived in case9 by the formulation of a prob-
lem (perhaps a discretization of a partial differential equation) or by the 
method of solution, more than the required initial values goes into the cal-
culation. With the aid of a two-dimensional operational calculus, certain 
applications are investigated. 

INTRODUCTION 

In the classical work [1] of A. A. Markoff, there is an existence and 
uniqueness theorem for partial difference equations of the form 

(1) x ,- ,- - a x ,- = b x ,. , 
N m+l5n+l mn m9n+l mn m+k?n 

(m,n > 0, integralj k fixed natural number) , 

for a desired complex-valued function x = x with given initial values 
^ mn & 

x (m > k) and x (n > 1). The proof is conducted by investigation of 
mo N - on N "" F J & 

a system of infinitely many ordinary difference equations equivalent to (1). 
Here j in Theorem 19 an essentially more general initial-value problem for 
linear partial difference equations of arbitrary order will be treated by which 
the ideas of Ch. Jordan [2] on the subject are made precise. 

The applications in the second part of the work show that the two-
dimensional discrete operational calculus developed in [3] is appropriate to 
give in certain cases the solution, determined uniquely according to Theorem 
l, in closed form and the possibly necessary compatibility conditions between 
the initial values explicitly. 

t r a n s l a t e d by P. F. Byrd7 San Jose State College, San Jose, California. 
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EXISTENCE AND UNIQUENESS THEOREMS 

We consider the linear partial difference equation 
M 

( 2 ) D ( X ) = E a i jXm+i,n+ j
 = bmn ( m ' n * °> i n t e ^ r a l ) • 

k , j=i ,o 
of order (k9H) with given complex-valued functions 

a.. = a..(m,n), b i j 13 m n 

Let k > 1, I > 1, and for at least one i or j the coefficients a. 9 a ., 
J 10 oj 

a.-, a, . should not vanish. 
The question arises which of the initial values 

x . (j = 0, 1, e 9 8
 9i - 1) 

mj J 

x. (i = 0, 1, • • • , k - 1) 
i n 5 9 9 

should be prescribed so that the function x is uniquely determined by (2) 
for all remaining m9n > 0. An answer to this is given by the following: 

Theorem 19 The difference equation (2) of order (k,£) possesses ex-
actly one solution if, for all m,n > 0, 

(a) ak f 0 for j = i^ < 1 and for j = iQ < ^ 5 a^ = 0 for j > j?k 

holds j and the initial values 

x . = J (j = 0, 1, • • • , £. ; j f £«; m > 0) , 
mj m J k J u 

(3) x. = jS1 (i = 0, 1, • • • , k - 1; n > 0) 
in ^n ' 

OL) = p] 
1 J 

are prescribed, or if 

a. ^ 0 for i = kj < k and for i = k0 < kA 
( b ) a., = 0 for i > kj 

i i * 
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holds and the initial values 

(4) mJ m 

x. 
in 

= j8* (i = 0, 1, . . - , kt- i 7̂  k0; n > 0) with a] = £ 
ii * i i 

are prescribed. For £, = 0 (in the case (a)) or kg = 0 (case (b)) the first 
equation of (3) or the second of (4), respectively, drops out. 

Proof. We consider case (a) and solve equation (2)for x ,, ,fl which 
— m+Kijn+xQ 

is possible because a, 0 ^ 0. For m = n = 0, there results , after insert-
ing the initial values (3), 

( k-l ,£ £k 

boo - S y$ - E \fl 
i,3=0,0 j=0 ^ 1 3 + £ ° For ft, = 0 and thus #0 = 0, the sum 2Z\-<\ drops out in agreement with 

the concluding remark of the theorem. Since a, f 0, the equation 

( k-l ,£ ^k"1 

bmm ' £ a i j X m + j , n + j 2 akjXm+k,n+j 
i,j=0.0 j=0 

follows from (2), and there results with (3) the function values x, (n > £. ). 
If the function values up to x . - (p > 2) are determined, then it fol-
lows for 2 < p <£ . that 

k - l , l V 1 £k"P 
JV Xk,£k+p l /ak,£.[bop" S aij^+p" S \ f k , j 4 p ~ E \ f k 

\ 1,3=0,0 i=£k™p+l j=0 

For p > L , the last sum drops out and the lower limit of the second sum is 
set to zero. The elements x result analogously for the rows m > k 
(the function x being regarded as an infinite matrix) by use of the ele-
ments standing at hand in the immediate upper k rows, which are given 
either by (3) or are determined by (3) and (5). 
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For the case (b), one notes that (2) can be solved respectively for 
xm-fk0?n-^ o r x m + k l 9 n ^ b e c a u s e %/ * ° o r akl9£ * °- * an analogous 
way as with (a) the function values x (m = k0, m > k1? n > 1) are de-
termined column-wise, 

The proof of uniqueness of solution is triviaL If there were two solutions 
x f y in the case (a) and if x ^ y for m0 > k and n0 >*. , 
while x = y for m < m0 and m = m0, n < n0, then there immed-
iately results from (2), for m = m0 - k, n = n0 - L because a. - f 0, 
a contradiction. In case (b), the same holds for n0 = #0 < £, . 

In applications 9 the case when £0 = L = 1 and k0 = kj often occurs; 
then it follows that k. = k and the distinction between cases is cancelled. 
The solution x of (2) Is then uniquely determined by the specification of 
k + £ initial functions, namely by the first k rows and the first columns, 
(See example 1°, 2°.) Also, if L < £ or kt < k, occasionally k + £ initial 
values x (j = 0, • • • , £ - 1), x. (i = 0, e e • , k - 1) are considered as 
prescribed. Compatibility conditions between these must then exist so that 
in the case (a) the £ -£, functions x . (j = £0, £, + 1, • • • , £ - 1) and in 
case (b) the k - kA functions x. (i = fy, kj + 1, • • • , k - 1) are already 
respectively determined by the remaining k + £, or £ + kj functions. (See 
example 3°, 4°, 5°.) 

APPLICATIONS 
In the treatment of the following applications, we make use of the oper-

ational calculus developed in [3]. It is shown there that the set of complex-
valued functions x = x of integral variables m,n with vanishing function 

mn & & 

values for m < M and all n for n < N(m), m > M (for each function an 
integer M exists and a function N(m) ) forms a field by means of ordinary 
addition and of two-dimensional Cauchy product as multiplication. The sub-
set D of functions with M = 0 and N(m) = 0 is an integral domain. For 
functions x E D, the difference theorem 

x ,i ,i = P Q x m+k.n+1 v n mn 
(6) k - 1 

£ V 1 k-i 

i=0 

£-1 k - l , £ - l 
k r ^ £-1 , V"* k-i £-i 

- ? L q x m j + 2^ p q xij 
j=0 i , j=0 ,0 
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holdsj where x , x. and x.. can be understood as functions from D 
which at least for n = 0 or m = 0 and m = n = 0 possess nonvanishing 
function values; p5q are displacement functions from Q5 with k,£ being 
natural numbers. 

1°. The equation 
Xm+29n+2 * Xm-KL,n+2 " Xm+2?n+l " Xm?n+2 + 3 xm+l5n+l " Xm+25n = ° 

(m?n > 0) 
related to Fibonacci numbers was treated in [4] and [5]. Its solution accord-
ing to Theorem 1 is uniquely determined because 

ik = i = ki = k = 2 , 

if the k + 1 = 4 initial values x Q, x - , xQ , x- (so far as k0 = £0 = 2 
is chosen) are prescribed independently of one another. This solution was 
represented in [5] in closed form. 

2°, The equation 

, 2m + n + 3 . ^ m 

x = x + • —. x ,- (m5n > 0) 
m+l?n+l m+l ,n 2m + 2 m,n+l 

possesses the solutions1 

/ m + i \ | 2 m + n + l \ , 0 n / m + n \ 
V m ) V 2 m + 2i + l J ^ ^ = ^mn 2 \ m )' 

GO 

mn 
i=0 

Here. 

£k = I = kt = k = 1 . 

Thus if one chooses £0 = k0 = 1, then it follows from Theorem 1 that the 
equation is uniquely solvable if the initial functions ^-mQf x

o n are prescribed. 
Since x = y = 1 (m > 0) and xnn = y = 2n (n > 0), it immedi-

mo Jmo on •'on 
ately follows that x = y, and thus 

According to a written communication from A* Kotzauer (treated there by 
complete induction),, 
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m , n = 0 , 1 , - • • . E / m + i \ / 2m + n + 1 \ _ n / m + n\ 
\ m / \ 2 m + 2i + 1 / \ m ) 

i=0 

3°. The equation 

(7) x . + x ^ 0 = 0 (m,n > 0) 
m + 3 , n m,n+2 ' 

of o r d e r (3.2) p o s s e s s e s , on account o f £ , = 0 < 2 = £, k^ = 0 < 3 = k, 

exact ly one solution from D if e i the r in the ca se (a) the th ree init ial func-

tions x = fr (i = 0, 1, 2) according to (3), o r in the case (b) the two 

functions x . = or (j = 0,1) a r e p r e s c r i b e d according to (4). With appl i -

cation of the difference theorem (6) the re a p p e a r s , however , k + it = 5 

init ial functions in the operat ional r epresen ta t ion of equation (7): 

(8) x = x = - £ (p3/3° + p 2 ^ 1 + p/32 + q2^0 + qa1 ) . 
mn o NF *n F Ho. F r n H m H m 

P 
With i t , 

+ q3 \ 0 
= P3

 = ) ( - D m / 3 for n = 2 m / 3 , n = 0 ,3 ,° 
p3 + q3 ( 0 o therwise 

The requ i red compatibi l i ty conditions between the init ial functions a r e , as 

r e s u l t f rom (8) for n = 0 o r n = 1 af te r easy calculat ion in the field Q, 

/n\ J / i x T n i / S l / m .. n - ^ AX ... 40 f o r m =0(3) 
(9) or = (-l)L ' J / S . L O r / Q , (j = 0 , 1 ; m > 0) with € = K . - / 0 / 

m ^ j + 2 [ m / 3 ] J m \ l f o r m E l ( 3 ) 
(2 f o r m = 2(3) o r , af ter f$ i s solved, *n 

/ IA\ oi / 1 x ^ / 2 1 ^n ,. A i o ^ A\ -̂ -u * ) ° f ° r n = 0 (2) (10) B = (-l)L ' la. _ / o (l = 0 , 1 , 2 ; n > 0) with 8 = 1 . , * i /o\ • Ho. i+3 n /2 . n (1 for n = .1 (2) 

If one combines the conditions (9) with the rep resen ta t ion (8), the re r e s u l t s 

the solution of equation (7) de te rmined according to case (a) of Theorem 1 in 

D, namely , 
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( 1 1 ) Xmn = ^ ^ ^ / S j + n < m > n ^ °> > 

while in case (b), the solution can be represented with the aid of (10) in de-
pendence of initial functions x . = c? (i = 0. 1). in the form 

(12) v = w ) ^ 1 ^ ^ ] <m>n °̂> 
41. As an example of a discretized partial differential equation, let us 

consider the difference equation 

(13) z i Q ,n - z ,- l 0 - z ,i + z , i = 0 (m5n> 0) s m+2,n+l m+l,n+2 m+l,n m,n+l \ > — / 

of order (2.2) appropriate for the wave equation z = z,,. Because #, = kj 
XX t»L K. 

= 1, the solution of (13) according to Theorem 1 is uniquely secured if three 
initial functions are prescribed, in the case (a) z , z, , z , and in the ^ on In mo 
case (b), zmo$ z ^ , zQn. For k0, £0, only the possibility k0 = % = 1 ex-
ists. A compatibility condition between the four initial functions z . (j = 
0 , 1 ) , z. (i = 0, 1) is thus necessary. One obtains in [6] further evidence 
and the proof of existence of a solution from D only after application of an 
operational calculus to equation (13) where the initial functions are specially 
selected. We again use the difference law (6) with which, for arbitrary initial 
values z m j = a^ (j = 0, 1), z i n = ^ (i = 0, 1), a\ = j8J (i,j = 0,1), 
there results the operational representation 

(14) z = pq/(pq - l)(j3j» + a ^ ) + uy(|S£ - <*£ - v ^ + u ^ ) 

(u,v in Q inverse to p,q) with 

.? ( 0 . for n = 0 1? (0, 
^n = [ l f o r n > 0 ' ( i = 0 ^ ^ «m = ( ^ 

for m = 0 
for m > 0 

and 

p2q 
(p - q)(pq - T) 

. j m + n + 1 for Jnf < m, m > 0 ^ 
I 0 otherwise 



320 ON AN INITIAL-VALUE PROBLEM FOR LINEAR [May 

From this, there follows, after easy calculation in Q, upon use of 

pq/(pq - 1) = 8 m n E D 

(S Kronecker delta) for n = 0, the required compatibility condition 

(15) or* - 01
 M = o° - /3° , m > 0 . 

N m+1 ^m+1 m ' m 

If one specializes the initial functions according to [6] , namely, 

(16) z A = z - = a0 , z = 0 , z. = /31 , 
N ' mO m l m ' on 5 in Hn 9 

then (15) transforms to the condition 

(17) a° - aQ , = p1 (m > 1) , 
x m m-1 ' m \ - / > 

which is equivalent to the equation 

< = £ > ? (n> 1) . 
1 

given in [6]. 
With the compatibility condition (15), the solution of (13) can be repre-

sented in dependence on three initial functions. In the case of (a), these are 
a0 , 6 (i = 0, 1) and there results m n 

z = 8 (/3°f + a0 ) + uy(/31? - 0* + P° , - jS° - ) . m n r n m J r n *m ' i n - l ' n - l 

If one carrys out the multiplication (in Q), one obtains finally the solution 
z £ D in the form 

0 
T j a. = 0 set 
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min(m,n) 
(18) z = V (jS1 

m+n+l-2i rm+n-2i 
i=l 

0° for 0 < m < n, m-n 
Q/0 for o < n < m . mon ~ 

For the special initial functions (16), equation (18) yields 

Min(m,n) I n * n <r *-
N 1 ^or ~ m — n 9 

mn 2-4 ^m+n+l-2i J cfi for 0 < n < m 
. - I m-n 
i= l I 

and one easily recognizes with the aid of the special compatibility condition 
(17) that this function is in agreement with that given in [6]. 

5°9 The linear difference equation of order (1,1) with constant 
coefficients 

<19> ^ m + l . n - b x m , n + l " c xmn = ° ( m ' n - 0 ; a ' b ^ 0 ) 

leads to the operator representation 

(20) Y = ?£_ 
ap - bq - c Y ' a UqC7 

with initial functions x Q = cP = a , xQ n = 0^ = (3. On account of the 
vanishing of the coefficients x + 1 . n + 1 » there exists, according to Theorem 
1, a compatibility condition between and B* This results from (20), 
since, for n = 0, 

0 otherwise 

and (qya) Q = 0, in the form 

m . 



322 ON AN INITIAL-VALUE PROBLEM FOR LINEAR [May 
In the case (a) of Theorem 1 (x prescribed), the solution of (19) can be 
represented, with the aid of the compatibility condition (21), as a function of 
fi alone, namely 

i=0 

which results , after easy calculation4. 
If one eliminates x and a in (20) with the aid of (21) and (22), there 

results the operator relation 

m / m } 

»-mE(?>'*m-\+i - 5 ^ ^ » - ^zfiy^ 
(m,n > 0) 

which for j3 = d (d = constant) changes to 

( H * r d° • *^4 ^ - * H M r ) «-> *»»• 
*For -m < n < -1 

x mn 

m+n t 

and from (21) and 

& ( p ; v ) ( r r l ) - ( , t , . + r + 1 ) (p'q'r-°* 
i=0 

it follows that x = 0 . 
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and, for a = b, c = 0, to 

(23) p = — (p/3 - qp ) (m?n > 0; p = p , £ D). 
mn p - q n m ? - ^mn pm+n 

A formula analogous to (23) is known in the operational calculus for functions 
of two continuous variables (see perhaps [7]; p,q difference operators) in 
the theory of two-dimensional Laplace transformation (see [8]). 
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ON THE GENERATION OF FIBONACCI NUMBERS AND 
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SUMMARY 

The authors j while emphasizing the role of Fibonacci numbers in the 
elaboration of the method of sequential search for the optimum, exhibit new 
generations of.these numbers, taking as the point of departure either a cer-
tain ordinary, second-order differential equation, or a minimization problem 
of a certain functional. Then they present, while continuing their studies 
concerning polyvibrating systems and generalized polyvibratings, a "poly-
vibrating" extension of Fibonacci numbers, 

1. Developments concerning the method of sequential search for the 
determination of the optimum, having at its basis Fibonacci numbers, have 
motivated in the recent times the work which refers itself so much to methods 
of finding the optimum in domains of several dimensions, as well as to dif-
ferent extensions of Fibonacci numbers. It is in the framework of this ad-
mirable progress which we helped in founding seven years ago and to the 
regular publication since then of a periodical specializing in this area, namely 
THE FIBONACCI QUARTERLY. 

In the following, the authors give new generations of Fibonacci numbers, 
taking as the point of departure either a certain second-order ordinary dif-
ferential equation, or a problem of minimizing a certain functional- They 
finally present , while continuing their research concerning polyvibrating 
systems and generalized polyvibratings, a "polyvibrating" extension of Fib-
onacci numbers. 

2* Given 

(2.1) (a4x + a2)y" + (a3x + a4)y? + (agX + a6)y = 0 , 

324 
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the second-order differential equation of Laplace* The recurrence relation 
between the coefficients K. of one of the equations solutions is written in the 
form of a power series expansion, which Is given by 

(2.2) 
a2 

K n + 2 n+1 
ajn + a4 ~ aj na3 + a6 

K - _ _ _ n + 1 K n-1 a5K. n-2 

and the first terms of the set of coefficients determined by (2.1) are 

l; l; 

(2.3) 

-1 (?+ 4 
- ^ ( 2 a 1 + a4) 

4 

4 

a2 
(ai + a 2 ) ( 2 a* + a6 I " 2 ^ 3 + a e ) " 

(at + a 4 ) ( ^ a4 + a6 J - ^ (a3 + a6) - 3a5 

3a5 

+ 

5(2a3 + a6) 5a5 

a? a 2 ' 

The direct calculation leads to the following theorem: 
Theorem 1, Equation (2.1) reduces for 

(2.4) a4 = 1, a2 =-0 , a3 = - 1 , a4 = 29 a5 = - 1 , a6 = -1 

to the differential equation whose solution; in the form of a power series ex-
pansion, have for coefficients the Fibonacci numbers. 

3. Following the fact that the equation of Laplace (2.1) results in the 
problem of minimizing the functional 

[yW] = / 
a3x2 + 2a4x - 2atx 

fyy" + 1 y,2J 
(3.1) 

a s x + atx + a2y'' 
dx 
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in the set of functions satisfying the conditions 

(3.2) y(a) = y(b) = 0 , 

results in the following theorem. 

Theorem 2. The minimization of the functional in the set of 

(3.3) T[y<X)] = / b f _ ^ J l i 5 y y . , ^ .E + ly . . * , . ! fe 1 
a J 

functions y(x) satisfying (3.2) leads to the second-order ordinary differen-
tial equation 

(3.4) xy" + (2 - x)y» - (x + l)y = 0 , 

of which the successive coefficients of the solution expressed as a power 
series represent the sequence of Fibonacci numbers. 

4. Now consider the polyvibrating extension of the sequence of Fibonacci 
numbers taking the point of departure of polyvibrating systems, of which the 
prototype is given by the eigenvalue problem 

(4.1) D[A(x)Du + AB(x)u] + A[B(x)Du + C(x)u] = 0, uj = 0 , 
>FrR 

X = \Xf j X2 9 X3 ? 5 XJQ ) , 

whose novelty consists in taking the rectangular domain 

R = {a. < x. < b.; i = 1, 2, 3, '" 9 m} 

which has m dimensions and the symbol D denoting the polyvibrating 
derivative j or (better) the total derivative in the sense of M. M. Picone9 

namely 
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o u 

327 

(4.2) Bu d x ^ x 2 ® ° ° d x 
m 

or (better) be the variational problem 

(4.3) G[f(x)] = / A(x)[D£(x)Pdx, (x = (xi$ x2s • • . , x m ) , 
R 

R = { a i < x. < b . } ? (i = 1, 2, • • • , m) 

and 

(4.4) H[f(x)] = J[2B(x)f(x)Df(x) + C(x)f2(x)]dx = ±1, f(x)| 
R FrR 

In the case where one considers the polyvibrating equation of Laplace 

(4.5) (a^ + a2)D2u + (a30 + a4)Du + (a5$ + a6)u = 0? 6 ="J^X. , 
i=l 

the-recurrence relation generating the coefficients in the form of a power 
series solution of the product 6 = x1? x%9

 m"9 , x m of the equation (4.5) is 

a2(n + 1) n k 
(4.6) xm 

•[ainm[n- 1] m , m + a4n (n + 2)k - (n + l)(n + 2) 

[a3(n - I)111 + a6 ] k ^ 1 - a5n (n + l)(n + 2)kn_2 

while the relation generating the polyvibrating extension of Fibonacci num-
bers (the hypothesis (2.4) concerning the coefficients of equation (4.5) is 
given by 

m (4.7) [n n(n = l ) m + 2 n m ] k n = (n + 1) [(n - I)111 + 1 J k ^ + n(n+l)fcn> 

and the first terms of corresponding sequence are 
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(4.8) 1; 21~m; 1 — [*—Li + 3 ] ; 
3 m (2 m

 + 2 ) L 2 m - 1 J 

REMARKS 

1. It would be interesting to give a geometric interpretation for the co-
efficients of the sequence (2.3) and of its polyvibrating extension (4.8). 

2. The application to the variational problem (3.2), (3.3) and to its 
polyvibrating extension (4.3) and (4.4) of the method of dynamic programming 
or by other present methods of optimization could perhaps clear up the (why) 
of the fundamental role which is performed by the sequence of Fibonacci num-
bers and the corresponding differential equation in sequential search, which 
is used with such success in the theory of supplies of all kinds, automatic 
sample control genetics, separation processes of separation of several 
phases and still others. 

3. We refer finally for algorithmic details and other results concerning 
this class of ideas to the paper in Bulletin of Polytechnic Institute of Jassey. 
To be found there among other ideas, are the extensions of the Fibonacci num-
bers and the many relations that connect them, corresponding to generalized 
polyvibrating systems, that is to the systems of the form (2.1), (2.4), where 
the ordinary differential operator d/dx and the independent variable x are 
systematically and respectively replaced by the generalized polyvibrating 
operator 16 - 17. 

D*u = d 
n1+n2+* • e+n„ m 

_ij n2 n 
dx dx9 • • • dx L m 

and by the product of independent variables 

(5.2) e* = J I V 
i=l 

CONTINUED ON INSIDE BACK COVER 



ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER 
C. C, CADOGAN 

University of Waterloo, Waterloo, Ontario, Canada 

1. INTRODUCTION 

The following problem is discussed,, Let 

Vi = (n9 0 ^ ^ 5 0), 
n-1 

where n is a finite positive integer. From "Vj are generated 

Vi + 1 = (n - if if 0 ^ ^ , 0), 1 < i < n . 
n-2 

From V2 are generated 

Vn+. = (Q - 1 - j , 1, j , 0 ^ - j , 0 ) , 1 < j < n - 1 , 
n-3 

and so ons until the entire list of non-null vectors V. has been considered* 
Suppose the first k (0 < k < n) components from left to right in each 

vector V. are fixed, with k = 0 meaning that none is fixed, and the r e -
maining components are arranged from left to right in descending order of 
magnitude* The positive integers in each vector V. form a partition of n 
and on arranging the components as above, we obtain what we define as partly 
ordered partitions of the integer ne 

Let </), (n) denote the number of distinct non-null vectors V. in the 
system generated above in which the first k components are kept fixed. The 
primary object of this paper is to derive a recurrence relation for </>. (n)9 

Several other interesting results are obtained* 

2e IMMEDIATE RESULTS 
Let p(n) denote the number of distinct partitions of the positive integer 

n. Several values of p(n) can be found in [1] , page 35* 

*This paper was written while the author was on an NeR.C9 postdoctoral 
fellowship at the University of Waterloo. 

329 
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Let VI be the vector obtained from V. (i = 1, 2, •e •) by removing 
all zero components of V. and let [V], [V!] denote the set of non-null 
vectors V., V.?, respectively. There is a one-one correspondence between 
V. and V.f and hence between [V], [V1]. We have, 

Theorem 1. $o<n) = P(n) • 
Proof, The components of V.f constitute a partition of n. Suppose the 

components of each vector in [V? ] are arranged from left to right in descend-
ing order of magnitude. Then each V.? (j f i) which has the same com-
ponents as V.f after rearrangement, hence the distinct vectors in [V! ] are 
those vectors V.? whose components are distinct partitions of n, hence 

0o(n) = p(n) . 

n-1 
Theorem 2. 4 (n) = 2 , k = n or n - 1 , (n > 1) . 
Proof. We show first that </> _-(n) = $ (n). 

n 

is the only vector in [V?] which has more than n - 1 components, hence 
keeping n - 1 components fixed in [V! ] is equivalent to keeping all n com-
ponents fixed; that i s , 

^ n - l ( n ) = ^n( n ) 8 

Now the system [Vf] contains all the compositions of the integer n, 
hence by a result of [2, page 124], 0 (n) = 2 ~ . 

This proves the theorem. 
We come now to the more significant results. 

3. MAIN RESULTS 
Theorem 3. 0 (n) = 0 k ( n - l ) + 0 k - 1 < n " D* (k > 1) . 
Proof. 0k(n) is obtained from 0 k i (r)» 1 5 r < n - 1, in the follow-

ing way: 
Let [U] be the system of distinct non-null vectors generated for a par-

ticular value of r (1 < r < n - 1) in which the first k - 1 components in 
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each vector are fixed and the other components are arranged in descending 
order. Let 

Define 

U = (ui9 u 2 ? °°° 9 u r ) [U] 

Uf = (n - r s u1? u2, °°° , u r ) . 

There is a. one-one correspondence between Us Uf and as U runs through 
the vectors in [U] we obtain a system of distinct non-null vectors in which 
the non-zero components sum to n and the first k components are fixed, 
As r runs through all integral values from 1 to n - 1 we obtain collect-
ively all the distinct non-null vectors in 4 (n ) except 

v = (n> °->„°» mJJ » ° ) » 
n-1 

hence, 

n-1 

r=l 
n+2 

i K-i<A = 1 1 + 2 ^-i(r) I +^k- i ( n - i } > 

= ^>k(n - 1) + 0k - 1(t i - 1) -

Using this result and the values for 0o(n) which are to be taken as initial 
values we obtain Table 1 for 1 < n < 10. We take 0O(O) = 05 and for k> 
n and finite we may also put </). (n) = $ (n) since this simply entails expand-

K n 
ing the vectors in [V] by adding a further k - n zero components on the 
right in each vector. These values of $k(n) fall below the leading diagonal 
in the table and are omitted. 

we note also that the binomial coefficients also satisfy a similar recur-
rence relation. 
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Table 1 

n 0 10 

02 
03 
04 
05 
06 
07 
08 

1 2 

1 2 

2 

3 

4 

4 

4 

5 

7 

8 

8 

8 

7 

12 

15 

16 

16 

16 

11 

18 

27 

31 

32 

32 

32 

15 

30 

46 

58 

63 

64 

64 

64 

22 

45 

76 

104 

121 

127 

128 

128 

128 

30 

67 

121 

180 

225 

248 

255 

256 

256 

42 

97 

188 

301 

405 

473 

503 

511 

512 

Here 0. stands for 0.(n) (0 < i < 8). 

Corollary le 

Proof. By Theorem 3, 

0n„2(n) = 2" i i -1 (n > 2) 

n-3 n-3 

E ^n-2-s(n " s ) - ^n-3-s(n - * - « > = E ^n-2-s (n " s ' 1] • 
s=0 s=0 

that is j 

n-2 
^n-2 ( n ) - *o<2) = ^ 2 S , 

s=l 

by Theorem 2, hence, 

^n-2 V - 2 W = 2(2 - l ) + 0o(2) , 

= 2 ,'ri-l 
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The following result can also be obtained by using similar difference 
methods. 

0n„3(n) = 211""1 - 1, n > 3 Corollary 2e 

Before we state a general expression for 0 _.(n), 3 < j < n - 1, we 
prove the following lemmas. 

Lemma 1* 

n-j-1 

EC"*/1)-(-A)- 3 < j < n - 19 n > 4 
r=0 

Proof, 
n- j-1 _ 

r=0 r=l L -J 

= ( n - j - l ) 

= (n - j - l ) 

+ 1 

= 1 + 1 

Lemma 2* 

E (p: y - r = E (p + •+ y-*-1+4(p tii1).** 
r=0 r=0 

Proofs 

z (p; YT - (p J y-1 + [(p 1 0 + (* x O]2"-1 
r=0 ' •-

q-2 
+ E (P r r Vq"r ' 

r=2 ^ ' 

,q-2 
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q-2 

E(P+rr): 

r=3 

Theorem 4. 

•0 .(n) = 

q-3 

r=0 

n- j -1 

E 
r=0 

Proof. When j = 

C 

0 

3, 

+ r + 
r 

- 3 + 
r 

i $ j 

iy-r-1
 + 

r \ 2 n - j - r+ l 

< n - 1, 

the right-hand side 

«h 

j 
+ E 

r=3 
n > 4 

5 i s 

Eh:;1) 00 (r) , 

n-4 
2 2n-r-2

+0o(3) 
r=0 

= 211-1 - 4 + 3 

= 2 n - 1 - l 

By Corollary 2 above, theorem is true for j = 3. Assuming it is true for 
j , we have, by Theorem 3, 

n-j-2 n-j-2 

2 ( f e - j - s - l ( n - s ) - V j - s - 2 ( n - S - 1 ) ) = S 0n- j - s - l ( n " S " 1 } ' 
S=0 S=0 

n-j-2 /n - j - s -2 j \ 

• E E (j-rr>n-j-r-s
+E n"i:r>« . 

s=0 \ r=0 r=3 N / 
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n-j-2 n- j - r -2 j n-j-2 

r=0 s=0 r=3 s=0 X 

= n £ (3 " r + ^ ^ ^ - 4) * E ( f I J ; J V W . by Lemma 1, 
r=0 V. 7 r = 3 V 7 

-"z\i"rO^,""1-4i(n°i"-i)+sa(J";+r){ 
r=0 r=0 } 

• S ( " : ; ; 0 * , w -
r=3 

• ° E (i-rr>"-)-r-(»-j-3
1)-|(»-^-4

1) n«-.r-)i 

+ i : ft:';})••"• 
r=3 x 

by Lemmas 1 and 2, 

r=0 X ' r = 3 X ' 

Hence, 

W w • "s C"'+r) 2n_)"r + S (": r; 0*'w + * ° t r + u • 
r=0 r=3 X 

n-j-2 j+1 

- E(J"rr)^J"r + E(°:r;i)*w-
r=0 r=3 X 7 

Thus? if true for j , also true for j + 1. This proves the theorem. 
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This proves the theorem. 
Further reductions on the result of Lemma 2 give the following: 
Theorem 5. 

r=0 ' r=0 ^ ' 

Theorem 4 can now be stated in the following way: 
Lemma 3, 

* H « - « , , £ ( , , ; 8 ) + 5 : ( , , ; - * ; 1 ) * « -
r=0 r=3 

Two special cases which are easily obtained from Lemma 3 are stated in 
Theorem 6. 

n+1 
0 / n - 3 \ 2 / n - r - l \ 

I T (n) = 2n~2
 + 2 n . 3 + S I n + 1 P(r)> n ° d d (~5) • 

*n-2 , v ftn-2 

r = 3 \ 2 

n+2 
2 / n - r - 1 

r 

(n) = 2 ^ + E L i 2 p<>(r)> n even ^4) 
2 

r = 3 \ 2 ~ r 

The author is indebted to R. N. Burns of the University of Waterloo for 
his many helpful suggestions. 
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