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In a letter dated 24 March 1970, Professor V. E. Hoggatt, J r . , has 
communicated to me the following interesting result: "Choose a binomial co-
efficient I . J inside Pascal1 s triangle. There are six bordering terms of 

* / n \ 
Pascal 's triangle surrounding I, 1. The product of all six is a perfect 
square.11 As he notes, the theorem is also true for the generalized binomial 
coefficients <, > discussed in [1], In a later communication (22 April 1970), 
Hoggatt has noted that a corresponding extension to multinomial coefficients 
holds true. (See [2].) 

We may arrange the six binomial coefficients as follows: 

i) U - il 

(1) 

Here the braces denote the generalized binomial coefficients studied in [1] 
and defined by 

(2) jn 
I k 

JEIL 
[k]t [n - k]l 

with the generalized factorials given by 

[n]! = A n A n _ 1 - - - A2A!, [0]< = 1 , 

where {At, A2, • • • } is an arbitrary sequence except that Ai f 0. In the 
present paper, we shall abbreviate the factorial notation and agree to write 
(n) instead of [n]l. 
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Now it is easily seen that 

[Oct. 

(3) 

( 

n - l M n - l j j n M n ) j n + l ( j n + l ) 
k - 1 k - l ) k -imi* + I 

(n - l)(n)(n + 1) >2 

(k - lJW)(k + l)(n - 1 - k)(n - k)(n + 1 - k), •)• 
so that the hexagon theorem is indeed true in general. 

Moreover, this is true because in fact two products are equal: 

(4) n - 1 
k - ^ 

n 
k + 1 

n + 1 
k 

The arrangement of these terms in the original hexagon suggests a Star of 
David, and we will refer to this form of the theorem as the Star of David 
property. This property motivates the following paper. 

Instead of searching for squares in the general Pascal triangle, we will 
look for equal products of generalized coefficients. The first such problem 
which we solve is to find equal products of five binomial coefficients, just as 
Hoggatt?s Star of David property gives such a result for equal products of 
three binomial coefficients. 

F i rs t of all, however, we ought to examine into the question of whether 
there are any other equal products of three. To keep the problem within 
reasonable bounds we will consider only what happens when we make all six 
possible permutations of the lower indices k - 1, k, k + 1 in a product such 
as that in (4). The six possible products of three binomial coefficients yield 
the relation (4) and the remaining set of four products are in general unequal. 
For example, 

n n + 1 
k + 1 

(n - l)(n)(n + 1) 
(k - l)(n - k)(k)(n - k)(k + l)(n - k) 

and 

,n - 1 
Ik + 1 ".jjVi (n - l)(n)(n + 1) 

(k + l)(n - 2 - k)(k - l)(n + 1 - k)(k)(n + 1 - k) ' 
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which are two different things. We should remark that the simplest possible 
case of equal products 

(5) n + a 
k + c 

n + b 
k + d 

n + al 
k + d 

n + b 
k + c 

has only the trivial solutions a = b or c = d or both. 
Demanding relation (5) is something rather different from the knowledge 

that 

« 
nl fn 
if Ik 

a true identity, because we are concerned solely with permutations of the 
lower or upper indices. 

To go ahead with the situation for a product of five coefficients , we note 
first that it is not necessary to enumerate all possible products which can be 
written. It will be sufficient for our purposes to see first of all in how many 
ways the numbers k - 2 , k - l 9 k5 k + 1, k + 2 may be added to the num-
bers n - k - 2 , n - k - 1 , n - k , n - k + 1, n - k + 2 so as to yield some 
or all of the numbers n ^ 2, n - 1, n, n + 1, n + 2. Now, k - 2 may be 
paired with n - k , n - k + 1 . , or n - k + 2 only, unless we wish to admit 
elements such as n - 3 or n + 3. Our paper will exclude consideration of 
any numbers in the upper index position other than n - 2, - • • , n + 2. 

A list of possible pairings can be written as follows: 

k - 2 
k - 1 

(6) k ' 
k + 1 
k + 2 

n - k , n - k + 1, n - k + 2 
n - k - 1, n - k , n - k + 1 , n - k + 2 
n - k - 2 , n - k - 1 , n - k , n - k + 1, n 
n - k - 2 , n - k - 1 , n - k , n - k + 1 
n - k - 2 , n - k - 1 , n - k 

k + 2 

If we denote the five numbers n - k - 2 , n - k - 1 , n - k , n - k + 1, n - k 
+ 2 by, respectively, A, B, c, D, E then we may set up the chart more 
conveniently as follows: 
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(?) 

k - 2 

k - 1 
k 

k + 1 
k + 2 

c, 
B , 
A, 

A, 
A, 

D , 

c, 
B , 

B, 
B, 

E 
D , 

c, 
c, 
C 

E 

D, 
D 

and all arrangements necessary to consider then may be found by choosing 
arrangements of the distinct letters in columns, where one letter only may 
be chosen from a given row in (7). There appear to be just 31 possible 
combinations: 

(8) 

c 
B 
E 
D 
A 

D 
E 
B 
A 
C 

E 
C 
A 
D 
B 

C 
D 
E 
B 
A 

D 
E 
B 
C 
A 

E 
B 
D 
A 
C 

C 
D 
E 
A 
B 

D 
E 
C 
A 
B 

E 
B 
D 
C 
A 

C 
E 
A 
D 
B 

D 
E 
C 
B 
A 

E 
B 
A 
D 
C 

C 
E 
B 
D 
A 

E 
D 
A 
B 
C 

E 
B 
C 
D 
A 

C 
E 
D 
A 
B 

E 
D 
A 
C 
B 

C 
E 
D 
B 
A 

E 
D 
B 
A 
C 

D 
B 
E 
A 
C 

E 
D 
B 
C 
A 

D 
B 
E 
C 
A 

E 
D 
C 
A 
B 

D 
C 
E 
A 
B 

E 
D 
C 
B 
A 

D 
C 
E 
B 
A 

E 
C 
D 
A 
B 

D 
E 
A 
B 
C 

E 
C 
D 
B 
A 

D 
E 
A 
C 
B 

E 
C 
B 
D 
A 

They give a remarkable collection of identities. Firs t of all5 there are six 
combinations that yield the desired n - 2 , n - 1, n, n + 1, n + 2: CEBDA, 
CDEAB, DBECA, DEABC, EBDAC, and ECABD. The resulting generalized 
binomial coefficient product identities are: 

(12) 

2 \ 
2J 

n - 2 
k - 2 

n + 1 
k - 1 

n 
k - 1 

n - 1 
k 

n + 2 
k 

n + 2 
k + 1 

n 
k + 2 

= M M ( 
n - l \ f n + 1 
k + 1J }k + 2 

n + 2 \ f n + l \ f n 
k J [k + 1J \ k + 
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n - l \ J n + fl J n - 2 \ J n \ J n + 2~1 
k - 2 J \ k - 1J \ k J \k + 1J \k + 2J 

n - 2 \ J n + l"! J n - l \ J n + 2*1 
k - 1J ( k J \ k + i f \ k + 2 J 

n + 2 \ J n + l\ 
k + 1] \k + 2j 

n 
k - 2 

n \ k - 2j 
n - 2 

k 
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If we next equate these products in pairs* we find that a common factor can-
cels out in a number of cases , so that we obtain three different pairs of equal 
products of five coefficients: 

(10) 

n - 2 \ J n + l \ J n - l \ J n + 2 
k - 2J \ k - 1J 1 k J \k + 1 

n 
k - 2 

n - 2 \ J n + 1 

n 
k + 2 

2 \ J n + l \ J n - l \ J n + 
1 ( 1 k J \ k + I f 1 k + 

(11) 

n 1 j n + 2 
k - 1 k 

n - 1 
k + 1 

n + 1 
k + 2 

J n - 1 \ J n + l \ J n - 2 \ J n \ J n + 2 \ 
| k - 2 J \ k - If \ k J \ k +- 1} I k + 2 J 

(12) 

n - 1 
k • - 2 

n 
k - 2 

n - 1 
k - 1 

n + 
k j ik + 1 >\ 

n - 2 
k 

n + 2 
k + 1 

n 
k +. 
n + 
k + 

A 

These identities are the natural extension of the Star of David property (4). 
Of those cases in (9) where a common factor cancels out, we appear to 

get twelve equal products of four binomial coefficients: 

(13) 
n + l \ J n - l \ J n + 2\ J n \ = 
k - 1 J \ k J J k + 1 J J k + 2 J 

n 
k - 1 

n + 2 
k 

J n - l \ J n + 1 
\ k + l j \ k + 2 

(14) 
n - 2 
k - 2 

n + 
k -

1\ J n - 1 n + 2 
k + 1 

n - l\_ J n - 2 
k - 2f I k - 1 

n + 2l J n + 1 
k [ 1k + 1 
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(15) 
fn - 2l fn - l l fn + 2l f n \ „ f n - l l fn - 2I f n 1 J n + 2 
[ k - 2 j \ k J \ k + l j \ k + 2 / " \ k - 2 J [ k J \ k + l j \k + 2 

n 1 fn + : 
. + 1 j "J k + 

(16) 
n - 2 
k - 2 

n + l l f n - l l f n 1 _ f n 1 f n - l l f n - 2l f n + l l 
k - 1 j \ k j \ k + 2J ~ } k - 2J \ k - 1J 1 k J 1 k + 2J 

(17) 
n - 2 
k - 2 

(18) 
n - 2 
k - 2 

J n 1 fn - l l fn + l l _ fn - l l fn - 2I f n + l l f n 1 
1 k - 1J | k + l j \ k + 2 J " \k - 2 j \k - if \k + i f \k + 2J 

f n 1 f n + 2l f n + l l _ f n 1 f n - 2*1 f n + l l f n + 2 \ 
\k - 1J "J k j \ k + 2J ~ [k - 2 j I k - 1J \ k J I k + 2 j 

(19 
n - 2l f n- 1 fn + 2l fn - l l _ f n \ fn - l l fn - 2I J n + 2l 
k - 2 f \ k - l j j k J ^ k + l | " l k - 2 J \k - l j \ k J "\k + l j 

(20) 

{J- l | t k / 
(21) 

n - 2\ fn + 2 \ fn + l l f n 1 _ fn + l l fn - 2l f n 1 fn + 2l 
I k + l J \ k + 2J " \ k - l j | k j 1k + lJ \ k + 2J 

n - l l fn + 2l fn + l l f n 1 _ f n 1 fn + l l fn - l l fn + 2 
k - 2 J \ k f \k + lf \k + 2f ~ \ k - 2 J \ k j j k + l j \ k + 2 

(22) 
f n - l l f n + l l f n - 2 l f n \ f n 1 f n - 2l fn + l l fn - 1 
\ k ~ 2 f \ k - l f \ k J l k + l J " ' \ k - 2 J \ k - l j 1 k j l k + 1 

(23) 
fri - l l fn + l \ f n I fn + 2l _ f n 1 fn - l l fn + 2l f n + l l 
\k - 2J \k - l j I k + If \k + 2 J " \ k - 2J" \ k - l j I k + l j ] k + 2 J 

(24) 
fn - 2l fn + l l fn - l l fn + 2l _ fn - l l fn - 2l fn + 2l f n + 1 
j k - l j 1 k j l k + l j l k + 2J " j k - l j \ k f } k + l j \k•+ 2 
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But these twelve are not all distinct. In relation (13) replace k by k - 1 
and n by n - 1, This shows that (13) is equivalent to (22), Similarly, (14) 
and (24) are equivalent and (17) and (23) are equivalent Thus we obtain nine 
distinct relations. Of these* only the first, relation (13), has consecutive 
integers in both the upper and lower index positions, and is thereby an ele-
gant companion to (4). It is an octagonal equivalent of the original Star of 
David property: 

(25) 

n + 1 
k - 1 

We return next to the 31 permutations in (8), There are 25 of these 
which yield products having some repetitions among the numbers n - 2, n -
1, n, n + 1, n + 2, It is worthwhile to explore these. Three of these stand 
alone: CEADB, DBEAC, and EDCBA. Three pairs give equal products of 
five coefficients: CBEDA and EBADC; DCEAB and DEBAC; CEDAB and 
DEACB. Four trios give inequalities: CDEBA, EBCDA, EDABC; DCEBA, 
ECBDA, EDBAC; DEBCA,DECAB, ECDAB; CEDBA, EBDCA, EDACB, 
Finally, there is a set of four equalities of products: DECBA, ECDBA, 
EDCAB, EDBCA. Exploring all the possible pairings, case-by-case, we 
find first of all three sets of equal products of five coefficients, as follows: 

(26) 
n - l M n - 1 / (n + ) 
k - 2 f l k - i n k 

n 
k + 1 

n 
k + 2 j k - 2 J j k - l [ j k |Jk + ljJk t 2 

+ 2 
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(27) 

n - 2 
k - 2 

(28) 

n + lT fn + il f n 1 J n 1 f n l f n \ f n - 2 \ fn + fi fn+ll 
k - l j j k J Iki + lj \k + 2J \k-2j\k-lj\ k J \ k + lj 1k + 2J ' 

f n - l \ fn + fl fn - f l fn + fl f n 
\k-2J\k-lj\ k J |k + l f ]k + : 

n 1 J n - l l j n + ll Jn- . r l J n + 1 
k -2 (1k- lM k r1k + lMk + 2 

and these form interesting geometric patterns when marked in the Pascal 
triangle. The left and right members in each identity are symmetrical with 
respect to <^> as a central point. 

Next, we obtain five sets of equal products of four coefficients: 

(29) 

n - l i r n + l i r n l f n i r n 
k - 2 [ 1 k - 1 [ lk + l M k + 2[ I k - 2 f I k 

n I U - l \ /n + ll 
- 1J \k + 1J \k + 2 J ' 

(30) 
n - l l ' j n + l l j n l j n 1 _ J n I f n 1 J n - l l f n + 1 
k - 2 [ 1 k - l [ 1 k [ 1 k + l [ 1 k - 2 f 1 k - l [ 1 k [ 1 k + 1 f 9 

(31) 

n - l l j n + l l j n I f n 1 __ J n 1 fnl J n - l M n + 1 
k - l f l k M k + l M f c + 2 1 " 1 k - l [ 1 k ^ 1 k + l ^ 1 k + 2 ^ , 

(32) 
n - 2 \ f n \ fn + 2 \ f n \ f n " I f n - 2 \ fnl fn + 2 \ 
k - 2 f \k - lJ 1 k . J 1 k + 1J ~ 1 k - 2J \k - lJ 1 kf \k + 1J ' 

(33) 

k - l | \k$ \ k + l | 1> + 2 | = " \ k - l | \ k | \ k + lj~ \ k + 2 
fn - 2 \ fnl f n + 2*\ [ n ) _ f n \ fn - 2 \ f n \ fn + 2'' 

The remainder of the relations found are equal products of three co-
efficients. The most interesting of these results from equating the permuta-
tions CBEDA and EBADC: 

(34) 
n - 2 I f n + 2 \ f n 1 _ \ n \ J n - 2 \ J n + 2 
k - 2 f 1 k k + 2 ' k - 2 k M k + 2 
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This is an extension of Hoggatt!s original Star of David, and within the Pascal 
triangle it forms a Star of David with each point moved out one unit further in 
each direction. What is more, it is easily verified that we have a quite gen-
eral Star of David formula: 

(35) 
fn + al f n n - a l j n + a l j n I _ J n 1 In - al J n + a 

k - a | 1 k | I k + a f I k - a l l k M k + a 

where a is an arbitrary integer. Some similar extensions of other relations 
developed in this paper are possible. It should also be possible to find multi-
nomial extensions. 

Relation (34) also follows upon equating permutations CDEBA and 
EDABC. 

Relations equivalent to Hoggattfs original formula are obtained in five 
cases. Finally, there are six remaining cases: 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

n - l l j n + 2 l j n + l l Jn + 1 I J n - 1 I J n + 2 
k - l M k M k + 2[ I k - 1 M k M k + 2 

n - 2l J n + l l J n - l l _ J n - l l J n - 2l J n + 1 
k - 21 1 k [ I k + l f I k - 2 ( 1 k f 1 k + 1 

n - l l J n + 2l J n 1 = J n l j n - l l J n + 2 
k - 2 [ 1 k M k + 1[ 1 k - 2 [ 1 k f 1k + l 

n - l \ J n + 2\ J n 1 J n \ J n - l l Pn + 2 
k - 1J 1 k + 1J \k + 2J \ k - 1J \ k + 1J \ k + 2 

n - 2 \ fn + l l J n \ = f n 1 fn - 2*1 fn + 1 
k _ 2 ( l k - l [ 1 k + l f l k - 2 [ l k - l f l k + l 

n - 2 \ J n + l \ J n \ _ J n \ \ n - 2l J n + 1 
k - l M k f 1 k + 2 [ ~ 1 k - l f 1 k l l k + 2 

These offer various geometric patterns because they do not involve consecu-
tive integers for the upper and lower indices. As a matter of fact, they all 
represent Star of David patterns, rotated differently than the original pattern. 
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Each of the formulas (36) — (41) represents a Star with two points in 
common with the original Star. From these relations, by means of the sub-
stitutions k + 1 for k, or a + 1 for n, etc. , it is easy to see that rela-
tions (36) and (40) are the same, and relations (37) and (39) are the same. 
The others are distinct from each other and from these. The result is that 
relations (36), (37), (38), and (41) are the four distinct relations given0 One 
c>an easily find, as we did in the case for products of five coefficients, whether 
there are any other distinct such relations* 

It would seem to be possible to program the entire procedure for a 
modern digital computer, which could tirelessly check out all possible cases, 
and this would make it very easy to tabulate all possible equal products of 
binomial coefficients within any specified range of parameters. A program 
could evidently be written along the lines of the procedure used here. Some 
results , such as formula (35), would not be Immediately evident to a com-
puter program, but even here a computer can be programmed to look for 
certain patterns* 

Finally, It would be interesting to find out whether any of the products 
of the type studied here could be studied in the context of gene rating function s, 
as coefficients in power series. 
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THE LEAST REMAINDER ALGORITHM 
J. L. BROWW, JR., and R. L DUWCAi 

The Pennsylvania State University, University Park, Pennsylvania 

Lame's theorem [1] asserts that the number of divisions n required 
to find the greatest common divisor (a,b) of a and b (a ^ b) using the 
Euclidean algorithm does not exceed five times the number of digits p in b. 
More precisely, 

n < ** + l where £ = J^-— . 
log f ^ 2 

It is also known [2], [3] that the number of divisions required to find (JU - , 
a ) is n and that 

(1) u o g j - 1 1 " 1 " Liognf J 
where p is the number of digits in \x and \xt - 1, JU2 = 2 and \x = ju -. 
+ jit o (n > 2) are the Fibonacci numbers* Thus the upper bound given by 
Lame's theorem is about the best possible and it has been shown [3], [4] that 
the upper and lower bounds in (1) are attained for infinitely many n. 

We recall that the remainders in the ordinary Euclidean algorithm are 
always positive but that shorter algorithms may be obtained by allowing neg-
ative remainders. A well known result of Kronecker [1] asserts that the 
least-remainder algorithm (L. R. A.) is never longer than any other Euclidean 
algorithm. The purpose of this note is to derive results analogous to (1) for 
the L. R. A. To do this, we define vt 1, v2 = 2 and v m = 2v m _i + v m _ 2 

( m > 2). This sequence has been applied to a similar problem by Shea [5], 
Let 

a = 

b = 

b 
m 

bqj + e-t bj_ 
biCfe 

-2 

+ e 2 b 2 

m - 1 %i 
+ e 

] 
b m m 

m - l m 
347 
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be the L. R. A. for (a ,b ) , where a = ±1 (k = 1, • • • , m) and a > b ^ 2b* 
m > 4b2 > • • • > 2 b ^ 0. Then the requ i red number of divis ions is m + 1 

and [1] 

b > 1 = Vi, b - > 2b > 2 = v2 , m l' m - 1 m L ' 

b 0 > 2b - + b > 2v2 + Vi = VQ, • • • . m - 2 m - 1 m <s i «*> 

Hence 

b _ . > v, + 1 and b ^ v , -m - k k m+1 

Now le t N = 1 + N/2 . Then 

N<= | - 5 = i v 3 , 

N2 = 2N + 1 < i ( 2 v 3 + v2) = | v 4 , ••• 

Hence, 

A T m-l ^ 1 ^ 1 , 
2 m+1 2 

If p is the number of digits in b , then b < l ( r and 

i o g b - l o g 2 < P - i o g 2 m + 1 < 2 + r p . - l o i 2 i 
log N log N [_ log N J 

Also , 

N > 2 = v2, N2 = 2N + 1 > 2v2 + vt = v3, 

Hence N > v . If q i s the number of digi ts in v , then n ln & n 

q - 1 n v > 10 n 
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and 

q - 1 
n - 1 ^ log N 

The L. R. A. for (v - , v ) is n+1 n 

n+1 n n-1 
v = 2v n + v 0 n n-1 n-2 

v3 = 2v2 + Vi 

v2 = 2v4 

and the required number of divisions is n. Thus 

(2) [ikw\ s n - 2 4 q C 2 ] 
and the upper bound for the required number of divisions in the L. R. A. is 
about the best possible. 

We now show that both the upper and lower bounds in (2) are attained 
for infinitely many n, Using standard difference equation techniques, it is 
easily shown that 

v = _ ± _ r(i + ^ 2 ) n - (1 - ^ 2 ) n ] 
n 2^2 L 

and it follows that 

Nn 

n 2N/2 

Let <j> be the fractional part (mantissa) of log v . Then, since 
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we have 

THE LEAST REMAINDER ALGORITHM 

q = 1 + [ log v ] j H n
 L & n 

Oct. 1971 

Hence 

(3) 

But (3) impl ies that 

q = 1 + log v - 0 

q = 1 + n log N - log 2 ^ 2 - 0 + o(l) 

q - log 2 (p - — 
n > JL + n 4 

log N log N 

for all sufficiently l a rge n. Thus 

n - 2 
Q - log 2 1 P log N 

If cp > 1/4 + log N and n is sufficiently l a r g e . Also , (3) impl ies that 

q - 1 (P + 7y 
^ n , n 2 

n < -T ^r- + log N log N 

for all sufficiently l a rge n. Thus 

n - 2 < logN J 

if 0 ^ 2 log N - 1/2 and n is sufficiently l a r g e . 

The des i r ed r e su l t s will follow when it is shown that the sequence {log v } 

i s uniformly dis t r ibuted modulo one [6 ] , The proof i s a lmost identical to that 
of a s i m i l a r r e su l t [3] and is therefore omit ted. Also , fur ther d iscuss ion of 

such r e s u l t s occurs e l sewhere [ 7 ] , 
[Continued on page 401. ] 



A PROPERTY OF MULTINOMIAL COEFFICIENTS 
V.E. HOGGATT, JR. 

San Jose State College, San Jose, California 
and 

G. L ALEXANDERSON 
University of Santa Clara, Santa Clara, California 

ABSTRACT 

The multinomial coefficients "surrounding" a given multinomial coef-
ficient in a generalized Pascal pyramid are partitioned into subsets such that 
the product of the coefficients In each subset is a constant N and such that 
the product of all the coefficients "surrounding" a given m-nomial coefficient 

m 
is N . The result is then generalized to other numerical triangles or 
pyramids,, 

1. INTRODUCTION 

In the paper by Hansell and Hoggatt [1] the following is proved: 
Theorem., The product of the six binomial coefficients surrounding each 

binomial coefficient [ k | > (n ^ 2; 0 < k < n), in PascaPs triangle is a 
perfect integer square, N2» Further^ each triad formed by taking alternate 
binomial coefficients has product N. 

Further results In the plane are obtained by Gould In [4], 
In this paper, we generalize this theorem to generalized Pascal pyra-

mids in m-space* 

2S SELECTING THE MULTINOMIAL COEFFICIENTS 

Let us expand (xt + x2 + x3 + • • • + x m ) , (m ^ 2; n = 0 , l , 2 , - - » ) : 

frl + - + * m > = 2-f W k25 ... k J W " - * ™ 1 1 -
kjfH • e+km=n 

(k^O) 

Here 

351 
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(ki + k2 + . . . + k m )1 / k i + k2 + . . . + k m \ ^ 

\ k l 9 k29 . . . , k m / ktSkaSka! . . . km! 

The r e c u r r e n c e re la t ion is 

/ ^ + k2 + . . . + k m \ _ J ^ / kj + k2 + . . . + k m - 1 \ 

y k l f k2, . . . , k m y Z l ^ \ k i " cij» k2 " ®2j> * ' • » k m " e m j / 
j= l 

where 5 . . = 0 if i ^ j and 6.. = 1 if i = j . 

Given a mult inomial coefficient (inside the pyramid , i . e . , k ^ 1, 
s 

s = 1, 2 , • • • ,m) 

/ l q + k2 + . . . + k m \ 

\ki, k2J ••-, kmy 

t he r e a re m mult inomial coefficients 

/ k1 + k 2 + k 3 + . . . + k m - l \ ( . = ^ 

\kt - d i j , k2 - $2j» • • • » k m - 5 m j / 
2 , • ' . . , m) 

which "contr ibute to A" by means of r e c u r r e n c e re la t ion (R); that i s , l ie d i -

r ec t ly above A in the pyramid . These same m mult inomial coefficients 

contr ibute to m(m - 1) mult inomial coefficients 

( k-t + k2 + . • • + k _- + k \ 

k i - « i j + C i k . k 2 ^ 2 j + 5 2 k s
m - - 9

k m m ^ m j + S m k / J ( j ' k = 1 ' 2 ' ' ' ' ' m ; 3 ^ k ) 

which a re all on the same level as A. T h e r e a re also m mult inomial co-
efficients which a re contr ibuted to by A, namely those of the form 

/ ki + k2 + . . . + k m + 1 \ 

\ ki + Cij, k2 + 8 2 j , • • • , k m + 5mj / ' (j = 1, 2 , . . . , m) 
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Thus there are m above A, m(m - 1) on the same level as A and m be-
low A. These m(m + 1) multinomial coefficients we say are adjacent to A, 
and geometrically surround A. 

3. THE PRINCIPAL RESULT 

Theorem. The product of the m(m + 1) multinomial coefficients adja-
cent to A is a perfect integer m power. 

Proof. In the following, s = 1, 2, ••• , m. On the level above A, 
the number k - 1 appears once; on the level with A the number k - 1 

s s 
appears m - 1 times; k - 1 does not appear in the level below A. (In the 

s 
level with A, k appears (m - l)(m - 2) times; and on the level below A, 

s 
k appears m - 1 times. On the level above A, k + 1 does not appear; 

s s 
on the level with A, k + 1 appears (m - 1) times; and on the level below 

s 
A, k + 1 appears once. Thus? in the denominator of the product, (k - 1)1 

s s appears m times, (k )! appears m(m - 1) times, and (k +1)1 appears s s 
m times. The product, therefore, of all m(m + 1) multinomial coefficients 
adjacent to A is: Zh 

,i=l 

nv - / v - i m ( m - l ) n 
/ m \ I T 2> 

i= l 
m 

n 
i=l 

mv^^'-r^Vi + i)'-] m 

m 

& 
i= l 

m 

£4 i=l 

m - 1 , -i HI 

Z^J i + I I 
i= l 

m n 
TT (k. - D K k . D ^ ^ k . + 1)1 
i=l 

= N 

N. B. N is an integer, since (p/q) reduced to lowest terms with q f 1 Is 
not an integer when raised to the m power. But the product is an integer, 
since each multinomial coefficient factor is an integer. 

We next prove the following rather surprising result. 



354 A PROPERTY OF MULTINOMIAL COEFFICIENTS [Oct 

Theorem: The m(m + 1) multinomial coefficients adjacent to A with 
product N , can be decomposed into m sets of (m + 1) multinomial 
coefficients such that the product over each set is N. Furthermore, the con-
struction yields sets of (m + 1) multinomial coefficients such that permuting 
the subscripts cyclically on any one set m - 1 times produces all the other 
sets. Thus the m sets are congruent by rotation. 

Proof. We now describe a construction for the sets. Recall that the 
product within each set must be 

m - 1 , 

N = ISk-- HIk')! ( I H ! 
m 
1=1 

For convenience s we introduce the following notation for the multinomial 
coefficient 

( 

ki + kg + • • • + k \ 

k , k2> . . . . r j = ( 0 , 0 , 0 , . . . ) 0 ) 

so that by introducing -1 or +1 as entries in the m-tuple, we can raise or 
lower one of the k. and thus represent adjacent coefficients. For example: 

/ kt + k2 + • • • + k m - 1 \ 

\ k i - 1, k2, k3, ••• , k m y ~ (-1 , 0, 0, • • • , 0) 

and 

/ kj + k2 + • • • + k \ 
( k 1 , k 2 , k 3 + l , k 4 , . . . , k n i

m
i ! k m - l j = ^ ° ' 1 ' 0 ' - - ' 0 ' - 1 ) 

Thus a subset of multinomial coefficients of the type desired could be repre-
sented as an (m + 1) x m matrix, where each row is a vector as described 
above, each row representing one of the adjacent multinomial coefficients. 
Each subset5 in order to have the proper numerator in the product, must have 
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one coefficient from above, one from below, and m - 1 from the same level 
as the given coefficient. We shall adopt the convention that the first row rep-

st resents the coefficient above and the (m + 1) row the coefficient below* 
Let the (m + 1) x m matrix have entries a... It is necessary to consider 
two separate cases. 

For m odd 5 let 

a.. = -1 
3J 

a l 0 . . = +1 
a.. = 0 otherwise 

13 

1, 25 
1, 2f 

, m + 1 
, m 

We illustrate with m 

- 1 

0 

0 

0 

0 

,+1 

0 

- 1 
0 

0 

+1 
0 

0 

0 

- 1 

+1 

0 
0 

0 

0 

+1 

- 1 • 

0 
0 

0 

+1 
0 

0 

- 1 
0 

1 f Spacing between -1 and +1 
4 I on the middle m - 1 rows . 
2 

This corresponds to six multinomial coefficients whose 5 lower arguments 
are given in rows of this matrix. The other four sets are obtained by rotat-
ing cyclically the column vectors of matrix C. We note that (k - 1)! appears 
once5 k I appears m - 1 t imes, and (k + 1)1 appears once in each of the 

s s five s e t s , s = 1,- 2 , • • • , m. 

F o r m even, l e t 

a.. - - 1 
3J 

a k + l 5 m + l - k = + 1 

a m + l - k 9 k = + 1 

a m + l s ( m / 2 ) + l = X 

a.. = 0 o therwise 
13 

3 = 1, 

k = 1, 

k = 1, 

h = i. 

2, • 

2 , • 

2 , • 

2, • 

2 , • 

•• , m 

• • , (m/2) - 1 

• • , (m/2) + 1 

• • , m + 1 
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We illustrate for m = 6: 

Cf = 

4 
2 J Spacing between -1 
5 } +1 on the middle 
3 I m - 1 rows 
1 

and 

In both matrices C and Cf a cyclic permutation of the column vectors does 
not produce a duplication before m steps. Thus each set of m + 1 elements 
are distinct and the m sets exhaust the collection of m(m + 1) multinomial 
coefficients adjacent to A. 

It should be noted that the above construction does not yield the only 
possible partitioning. There exist other partitionings into subsets with the 
desired property in both the even and odd cases. For example, for m = 3, 
the above construction yields 

1 
0 

0 

1 

0 

- 1 
1 
0 

0 

1 
- 1 

0 

0 
1 
1 
0 

- 1 
0 
0 

1 

0 
- 1 

1 
0 

0 
1 

1 
0 

0 

1 
- 1 

0 

- 1 
0 
0 
1 

but 

1 
0 
0 

1 

0 
- 1 

1 
0 

0 
1 

- 1 
0 

/ ° 
1 

I -1 

V o 

- 1 
0 

1 
0 

0 
- 1 

0 
1 

0 
1 

1 
0 

0 
0 

- 1 
1 

- 1 
1 
0 
0 

also have the desired property. 

For m = 4, the following is a partitioning different from that yielded 
by the above process: 
[Continued on page 420. ] 



GENERAL IDENTITIES FOR RECURRENT SEQUENCES OF ORDER TWO 

DAVID ZEITLIN 
IVlinneapolis, Minnesota 

1. INTRODUCTION 

Let W0j Wl9 a f 09 and b f 0 be arbitrary real numbers ? and define 

(1.1) Wn + 2 = aWn + 1 - bWn, a2 - 4b f 0, (n = 0, 1, •• •) , 

(1.2) Un = (an - fp)/{a - P) (n = 0f 1, . . . ) , 

(1.3) Vn = a?n + ^ (n = 0, 1, •••) , 

(1.4) W_n = (WQVn - W n ) /b n (a = 0, 1, •••) , 

where a -f p are roots of x2 - ax + b = 0. If W0 = 0 and Wj = 1, then 
W = U , n = 0, 1, • • •; and if W0 = 2 and W4 = a, then Wn = Vn9 n = 
09 1, • • •. Our first result is 

Theorem 1. Let W and W* be solutions of (1.1). Let r , m9 and 
n be integers (+, - , or 0). Then? for k = 0, 1, 9 8 e , 

as) E ^ Q W ^ ^ W ; ^ ^ 

= b r k i4 | o ( - i )3 (^ -%j w ; + . . 

Special cases of (1.5) are given by 
Corollary 1. 

d.6) i; (-D^V;1 u1 u x , A. = b^tf u , 
i=6 V1/ r + m r n+rk+im m n ' 

357 
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.^Q \ : 1 / r + m r n+rk+im m n ' 

(1-8) E (-IH^II^T1 uW ., . = brk Tp V , 
w) \ i / r+m r n+rk+im m n 

d.9) | ( - ^ ( f ) V f ^ V* Un+2kr+im - (a* - ^ V ^ ^ ^ , 

d.10) I <-l)f f ) v ^ j vi Wn+2kr+im - (a* - 4 b ) k b ^ U > n . 

(LID | ( - D 1 ^ ) ^ v*r vn+2kr+ im = (a* - 4 b ) k b 2 k V k v n . 

2E1(-D1f2k.+ 1 )v2 k + 1- iv iv 
.•^ v ' \ i / r+m vr n 

2k+l 
. nMZK + i l ^ i c n - V , 

n+(2k+l)r+im 

(1.12) 

= -fe» - 4b)k+V2k+1)rU2k+1U . 
m n 

•̂ 0 ^ i / r + m r Un+(2k+l)r+im 

(1.13) 

= - ( a2 -4b ) k b ( 2 k + 1 ) r U 2 k + 1 V . 
m n 

Our next result related to Theorem 1 is 
Theorem 2. Let W be a solution of (1.1). Let r9 m, and n be in-

tegers (+, - , or 0). Then, for k = 0, 1, • • • , we have 



1971] RECURRENT SEQUENCES OF ORDER TWO 359 

¥ k W , ^ m kr+n 

(l614) r- . , 
L^-i>/2j , k . } k _ 2 j _ x 2 j + 1 

-ifi 12j + 1 P 4 b ' b V r + m U r ( W l V n - ( 2 j + l ) m 

0 n - ( 2 j + l ) m - l 

V
k u = TJ I k W - 4 b ) j b 2 j m V k _ 2 J TI2J TT 

V m U k r + n . ^ ^ 2 j f a m b V r + m U r Un 

[ (k- l ) /2 ] 
+ 

(1.16) 

+ L"i: (? .k
+ 1Va2-4b)V2 j + 1 ) mvk^-v^v ,9..,, , 

,^0 ? 2J + 1 / r+m r n- (2 j+l )m ' 

V
k V = V i k \ (a2 - 4b) j b 2 j m V k - 2 J TI2J V 

V m V k r + n ^ \2]}(& 4 b ) b V r + m U r V n - 2 j m 

+ [(kE/2]( ^ .W-W^b^V-^-V^u „.+1, 
j=0 V 3 ' r + m r n-(23+l)m 

2. PROOF OF THEOREM 1 

Let W* = S x a n + S2j3a and W n = C ^ n + C2j3n
? n = 0, 1, • • • , where 

S. and C.j i = 1, 2? a r e a r b i t r a r y cons tan ts . Since W0 = Ct + C2 and 

Wi = Cjtf + C2jSj we read i ly find that 

k 
(2.1) (a - pM = (Wi - ^W0)k = £ (-D^Jw^WiJ^ , 

(2.2) ( a - / ? ) k C 2
k = ( t fWo-Wt)* = ( - l ) k £ ( - l ^ C j l w f ^ w j a 3 . 

i =0 \ J » 
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Let L denote the left-hand side of (1.5). Then, using the binomial theorem 
and representation of W ' , we have 

k k 
(2.3) L = S 1 a n + r k ( W r + m - a m W r ) + S 2 ^ 1 + r k (W r + m - / P v y . 

Since 

Wr+m " ^ m W r = ( / ^ - am)fFc 2 

and 

r+m r 

we obtain, using a/3 = b9 (2.1), (2.2), and (1.2), 

L = S l b r k a n ( r - ^ ) k C k + S2bTkpn(am - ^ ^ c \ 

(2.4) = b ^ U ^ a Y D ^ - /3)kC2
k

 + S2 A * - <3)kCk} 

= b * ^ £ (-D^jw^wJ ( S , ^ + S ,^ ) = R . 

where E denotes the right-hand side of (1.5). 
If Wr s Ur and W* = U , then W0 = 0 and (1.5) gives the special 

case (1.6), noting that all terms in the right-hand sum of (1.5) vanish except 
for j = 0. 

Since 

(2.5) Wn = W f t U + 1 + (Wi - aW0)U , 

we obtain (1.7) from (1.6); and (1.8) from (1.7) when W = V . 
If Wn s Vn (i.e. , Ct = C2 = 1), then (2.4), with k = p, gives 
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(2.6) L = b 1 * U ^ (a - jS)p(S1an(- l ) p
 + S2i8n) . 

m 

Noting that (a - jS)2 = a2 - 4b, then (2.6), "for W* = U ( i . e . , St = -S 2 = 

l/(cif - 0 ) ) , gives (1.9) for p = 2k and (1.13) for p = 2k + 1. Using (2.5), 

we get (1.10) from (1.9); and (1.11) from (1.10) when W = V . 

If W* = Vn ( i . e . , Sj = S2 = 1), then (2.6) gives (1.12) for p = 2k 

+ 1. 
If a = - b = 1, then U = F , and (1.6) gives the identity of Halton 

[ l , p. 34] a s a special c a se . 

3. PROOF OF THEOREM 2 

Our method i s a genera l iza t ion of a proof used in the unpublished M a s -
r i r r 

t e r ? s t he s i s of Vinson [ 2 , pp« 14-16 J. If we t r e a t a and jS a s the un-
r r m r J H r 

knowns in the sy s t em (a - jS)U = a - jS and V = a a + fr fi , we 
obtain 

V aT = V ^ + (a? - j S J j ^ U and V ]3r = V , - ( a - j8 )a m U . m r+m ^ r r n r r+m ^ r 

k k 
Since W k r + n = C t an (aT) + C2j8n(/3r) , we obtain 

ir k k 
V W, = CiQfn(V + (a-P)f!aiV ) +Co^ 1 (V_ L - (or - jS) armU ) m kr+n * r+m ^ ^ r ^ r+m ^ r 

(3 1) k 
v^ / k \ / m i _ r k - i T T i / aJQ-i ,~ n - m i , , -vi« 0 n-miv 

= L I i ] ^ - P) Y
T+m

JJY{a^ (Cia ( _ 1 ) ° 2 ^ *e 

Now 

~ n - m i , / -v ip J i - m i Cjtf + (-1) C2/T 

= [(Wi - /3W0)an~mi + (- l)Vw0 - Wt)^~mil/(* ~ P) 

^n-mi _ ( • p y - m l ) ( a n -ml - l _ ^ y - i n l - l , 
_ _ bw0— - j - : p — 
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Since (a - /3)2 = a2 - 4b5 we obtain (1.14) from (3.1) for i = 2j and i = 2j 
+ 1. 

If Wn = Un? then W0 = 05 w t = 1, and thus (1.14) gives (1.15). If 
W n s V n ' t h e n W° = 2f Wi = a ? a n d t i l u s ( l e l 4 ) S i v e s d-1 6)* noting that 
Vn = aUn - 2bUn_1 and that 

a Vn " 2 b V l = 2Vn+l " aVn = ^ ' 4b>Un ' 

4. EXTENDED RESULTS 

Our next class of results are of a higher level order than Theorem 1, 
since we now essentially replace W* in (1.5) by its cross-product with itself. 

Theorem 3. Let W and W* be solutions of (1.1). Let r , m, p, 
—— n n ^ 

and n be integers (+, - , or 0). Then9 for k = 0, 15 • •• , 

£ {-1}t^iL^^ - 4b> 

(4.1) = b * ^ m £ < ^ 
J +b2w2*v A lM. 0) 

o p+n-rk+j-2' 
- (Wf - aW0*Wf + bWn* )bnV Uk (W4V _, - bW0V _, - ) k . 1 u l u p-n m * r+m u r+m-1 

Corollary 3. In special cases of (4.1), we have 

Z (-l^V'll w*v . v . 
r^L V1/ r+2m r p+im n+im 

(4.2) = b r k u | m E ( - l ) J ( j ) w ^ - j w J V . . 
p+n-rk+j 

+ bnV Uk (WiV - bWnV - )k . 
p-n m v * r+m ° r + m - 1 ' 9 
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k 

(4.3) 

(4.4) 

(4.6) 

(4.7) 

£ (-i)1(^uk"l, uV . v . 
f ^ v ' \ij r+2m r p+im n+i n+im 

b r k n k + b^V l ^ V k , 
2m p+n-rk p-n m r+m 

r ^ X1 / r+2m r p+im r 

/ 2 yiu\ku2rkTT2k TT , t 2 / f Uv2k,nT 7 TT2kTT2k = (a.* - 4b) b UI V ± „ , + a - 4b b V U U , , 2m p+n-2rk p - n m r+m 

2E1(-Di(2k+i)v2k:i- iviv . v . 
&Q \ i / r+2m r p+im n+ii 

(4-5) = _(a2 _ ^ + 1 ^ ( 2 ^ 1 ) ^ ^ 
v ' 2m p+n-r(2k+l) 

J. / 2 / i u \ 2 k + 1 K n T r T T 2k+l T T 2k+l 
+ (a^ - 4b) b V U U , , 

v ' p -n m r+m 5 

n+im (a2 - 4b) g ( - ^ ( ^ l ^ r V i m ^ i 

= b*^m^(-l)J(^)wJ-Mv: •R) \ J / p+n-rk+j 

b n V 1 ^ (W-tV ^ - bW0V _,_ - )" p -n m J r+m u r + m - 1 
k 

(a 2 -4b)E(V(^;L U rVim U 
n+im 

b r k u 2 m V
P + n - r k " ^ p - n U m ^ + m ' 
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E^Wv^Vu,. IT . f^n \ i / r+2m r p+im n+im 
(4.8) 1 _ u x ' 

2m p+n-2rk p - n ' m r+m ; 

y:+1(-i)if2k.+ 1W2 k
9

+ 1- iviu . u 
&0 \ i / r+2m r p+im r 

(4.9) = - (a^-4b) k b r ( 2 k + 1 )u 2 k + 1 U + , „ _ . 
2m p+n-r(2k+l) 

- (a* - 4b)2 kbnV U 2 k + 1 U 2 k + 1 . p-n m r+m 

Closely associated with Theorem 3 is 
Theorem 4. Let W be a solution of (1.1). Let r , m? p9 and n be 

integers (+, - , or 0), Then, for k = 0, 1, ••• , 

E (-W^Wll wiu • ^ 
f?0 V1/ r+2m r p+im n+i 

n+im 

<«« -"*'4ng<-»10KMvMb, 
+ b n U Uk (WiV - bW0V , ) k 

p-~n mv 1 r+m ° r+m-1 

Corollary 4. As special cases of (4.10), we have 

£ ( - l ^ V ^ o Ui;U . V 
"n+im 

(4.11) 
= b r k Uk U A , + b n U Uk Vk 

2m p+n-rk p-n m r+m 
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2k y (-1)1 / 2 k \ v
2 k- i v1 u 

j j o \ i / r+2m r u p+i 
(4.12) 

. V . p+im n+im 

= (a* - 4 b ) k b 2 r k u f IT „ . + (a* - 4 b ) 2 k b n U U 2 k U 2 k , 
2m p+n-2rk p -n m r+m 5 

2^^vf2^+1)v2k:l-iviu . 
.4$ \ i / r+2m v r p+i 

p+im n+im 

W-13) = _ f e l k ^ 1 ) ^ + 1 
2m p+n-r(2k+l) 

, / 2 ,iu\2k-H , n TT TT2k+l TT2k+l + (a^ - 4b) b U U U , 
p - n m r+m 

R e m a r k s . Since U~ = U V , we note that for p = n , (4.10), (4.11), 

(4.12) and (4.13) reduce to special c a s e s , r e spec t ive ly , of (1.5), (1.6), (1.9), 

and (1.13). 

5. PROOF OF THEOREM 3 

We readi ly find that 

(5.1) W* W * . = S ^ V ^ + S ^ P + V ^ + S i S ^ V b m i . p+im n+im 1 L*^ ^ 1 L p -n 

Le t (a2 - 4b) • L denote the left-hand side of (4.1). Then, the binomial 

t h e o r e m , us ing (5.1), g ives 

L = s i a P + n ( W i 9 - a2mW ) k + S ^ P + n ( W ^ - / 3 2 m W ) k 

,_ 9v 1 r+2m r L r r+2m r 
+ SiS2bnv (w_,0 - b m w.r . 

1 L p -n r+2m r 

Since W = Cjc/1 + C2J311, we have , us ing (2.1) and (2.2) for k = 1, 

<5-3) ( W r + 2 m " b m W / = U > i V m " b W » V m - l > k s Y • 

Noting the re la t ions cited after (2 .3) , we have 
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L = S 2
1 b r k a P + n - r k C 2

k ( ^ 2 m - a2m)k 

(5.4) + S 2
2 b r k ^ + n - r k C k ( « 2 m - p2m)k + S l S 2 b n V p _ n Y 

= b r k I ^ m j s 2
1 o p 4 l l - l k ( - l ) k ( a - )S)kC2

k + $[P+a-rk(a - /3)kCkf 

+ S l S 2b n V p _ f l Y . 

Recal l ing (2.1) and (2.2), we now have 

L = brkU^mg (-l) j0W%J(S^^ 
(5.5) 

+ S i S 2 b n V Y . 1 L p -n 

Since (a - p)St = W* - 0W* and {a - p)S2 = orW* - W*> additional s imp l i -

fication of (5.5), using cr/3 = b , a + /3 = a , and (a - /3)2 = a2 - 4b , y ie lds 

(4.1). 

If W* = V , then Wjf = 2 and W^ = a, and thus (4.1) gives (4.2), 

noting that 

a 2 V - 4abV n + 4b2V 0 = (a2 - 4b)V . c c - 1 c-2 c 

We get (4.3) f rom (4.2) when W = U . 

If W = V , then (4.2) gives (4.4) and (4.5), which a r e a lso obtained 

from (5.4), where St = S2 = Ct = C2 = 1. 

If W* = U , then (4.1) gives (4.6), which gives (4.7) for W s U . 

If W = V , then (4.6) gives (4.8) and (4.9), which a r e a lso obtained from 

(5.4), where now CA = C2 = 1 and Sj = -S2 = (a - p) . 

6. PROOF OF THEOREM 4 

We readi ly find that 

tr i\ TT tr °P n 2mi £ p n ^ m i , , nTT K mi 
(6.1) U ,. V , . = o & - -—n p + b U b 
N p+im n+im a -p a- p p - n 
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Let L denote the left-hand side of (4.10). Then, the binomial theorem, 
using (6.1), gives 

L - trrp ( W
r+2m - a W r } " 7F^ ( w

r + 2 m " * W r } 

(6.2) 
+ bnU (W ^ - b m W ) k 

p-n r+2m r 
, rkTTk , p+n-rk, -Jk, m k n k 0p+n-rk/ mk~kW / 0. 

2m 

+ bnU Y . p-n 

Using (2.1) and (2.2) in (6.2) gives the desired result (4.10). 
We obtain (4.11) from (4.10), where W = U . If W = V , then v ? n n n n9 

(4.10) gives (4.12) and (4.13), which are also obtained from (6.2), where CA = 
C2 = 1. 

7. ADDITIONAL SUMS 

Closely related in proof to the above theorems are the following results: 
Theorem 5. Let W and W* be solutions of (1.1). Let m, p, and 

n be integers (+, - , or 0). Then 

1 <D W ^. W* . (k > 0) 
p+rni n-im 

(7.1) 

where 

(7.2) 

= b P U ^ ( a 2 - 4b)k"1Z1(m,k) , 

W 0 W * V n-2 jm-p + l " <bW»Wo*+ Wl W l*)Vn_2.m_p 

+ bWfWiV ^ ^ s Z ^ . J ) 

(7.3) 

2k+l .... . . . 
(k = 0, 1, : • • ) 

i=o — ' - " i m g1 (-l)f\+1)VimWt 
= b * V k + V - 4b)k.Z2(m,k), 

where 
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W 0 W * V ^ + D m - p H - l - ( b W o W * + W i W * ) U n - ( 2 j + l ) m - p 
(7.4) 

+ bWo'WiU / 0 . ^x - = Z2(msj) . 
u 1 n-(2j-fl)m-p-l ^ SJ 

Corollary 5. As special cases of (7.1) and (7.3), we have 

2k / \ 
(7.5) T, ( - D M ^ J U _,_. U . = -b P U 2 k (a 2 - 4b)k _ 1V „. 

•^0 \ 1 I P + i m n _ i m m n-2km-p 

(7.6) J ( - « ' H v r V . = bPU2k(a2-4b)kV ••^0 \ 1 / P + i m n-im m n-

|„ «*{?>, (7.7) y ; ( - l ) M ^ J u j . . V . = -bpU2 k(a2 - 4b)k U p+im n-im m n-2km-p ' 

(7.8) Y] (-1H 2 k J V J.. U . = b p U 2 k (a2 - 4 b ) k U 
•'=3) \ x / P + i m n-mi m n-

(7.9) T ( - l ) 1 ^ 1 ) U p + i m U n _ i m = - b P l ^ V - 4b)kUn_(2k+1)m_p 

(7.10) ^ ( - l / f ^ + ^ V , - V . = b p U 2 k + 1 ( a 2 - 4 b ) k + 1 U l9M, ^TA V 1 / P+iin n-im m N n-(2k+l)i 

(7.1D ^ ( - i ) 1 ^ 1 ^ . - v • 
•TQ \ i / P + i m n - i 

. = -b P U 2 k + 1 (a 2 - 4b)kV „ . ^ . im m v n-(2k+l)m-p 
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Theorem 6. Let W and W be solutions of (1* 
n n 

n be integers (+, - , or 0)8 Then, for k = 0, 19 . . . , 

Theorem 6. Let W and W be solutions of (1.1). Let m, p , and n n ' *> 

(7-12) ( E ( k ) W ^. W* . |(a2 - 4b) = 2 k Z 3 + b P V k 

\ -̂ o \ V p xm n - im / n m
Z 4 ' 

where 

(7.13) Z3 = WiW*Vp+n - b(W0*W! +W0W1*)Vp+ri_1 +b2W0W0*Vp+n_2 

= Z3(p,n) 

(7.14) Z4 = W0Wf V ^ . . ^ - (bW0W0* + W ^ X ^ p 

Corollary 6. As special cases of (7.12), we have 

(7.15) 

1 E f k V A. U . j(a2 - 4b) i H yiy p+im n-im Jr 

= 2kV A - b P V k V . 
p+n m n-km-p 

. P ^ k -(7.16) y ( k ! V . V . = 2kV , + b F V~V , 
x ; . ^ l i l p + i m n-im p+n m n-mk-p 

sO)' (7.17) F f ^ l u . V . = 2kU _, - b P V k U . 
\ J 'X«/ ^ l i l u p + u n n-im p+n m n-mk-p 

Remarks. Special cases of (7.5, (7.6), (7.9), and (7.10) for Un s F n 

V = L w( n n 
and Bicknell [3]. 
and V = L were given, using matrix methods, in the paper by Hoggatt 
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8. PROOF OF THEOREMS 5 AND 6 

We readily find that 

/ 0 1X p+im n-im 
W - ' i m W n - i m = S A ^ ^ ^ + C . S , ^ 1 1 1 ^ 

+ C1S1«P+n + C 2 S 2 ^ + n . 

For r > 0, we obtain, using the binomial theorem, 

k™1® W ,. W* . p+im n - i m 

( 8 ' 2 ) = S j C ^ ^ d - a-m{P)T + C&cPftl - amfTm)T 

= b P U ^ ( a - ^ ) r ( S 1 C 2 a n - m r ^ + ( - l ) r C 1 S 2 i S n - m r ^ ) , 

Using (2.1) and (2.2), (8.2) gives (7.1) for r = 2k and (7.3) for r = 2k + 1. 
Special cases (7.5), . . . , and (7.11) are readily obtained from (7.1) and 

(7.3) for the choices indicated, 
Using (8.1) ? we readily find that 

£ (k) w __. w* . = 2k(c j s, cP+n + c2 s2 /sP+n) 
H I i l p+im n - i m * i i & i ** > 

(8.3) 
+ b P ^ ( S 1 C 2 a r l l - m k - P + C1S2/3n-n i k - p) . 

Using (2.1) and (2.2)5 (8.3) reduces to (7.12). Special cases (7.15), ••• , 
(7.17) 9 are readily obtained from (7.12). 

9. MORE SUMS 

Introduction of new integer parameters requires that we redefine cer-
tain identities by notationally including parameters previously suppressed 
for simplicity. Thus, we define Zjfm, j 9 p9 n) by (7.2); Z2(m,j,p?n) by 
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(7,4), and Z3(p,n) by (7.13). Using (8.1), we can obtain the following r e -
sults, whose lengthy details are omitted* 

Theorem 7, Let Wn, W* and W^ be solutions of (1.1). Let m, p, 
—"""——-——————— xi n n 

n, and r be integers (+, - , or 0). Then, we have 

E (-iH2 kIb~mV^0. w _,_. w* . (k > o) 
£ Q \ i / r+2im p+im n-im 

(9.1) 
= (a2-4b)k"H-2kml4kW-2kmZ3(Pjn) 

+ b P + r (a2 - 4b)k"1U2^1 [Wrz 2 (4mk,0 ,p + r - l ,n) 

- W f Z2(4mk, 0, p + r , n ) ] , 

Y (-1)1 ( 2 k + 1 )b"m iW** W . W * . (k > 0) 
A \ i I r+2im p+im n-im v - ; 

2k+l 

E 
i=0 

(9.2) 

/ 2 ., v k - l u - m ( 2 k + l ) T T k+l r ,TTr**Tr = (a* - 4b) b U m [ bW0 V r + m ( 2 k + 1 ) _ 1 

< V r + m(2k + l ) ] Z 3<e> n > 
1 

J2m 

• w f ZiCm, 2k + 1, p + r , n) ] 

+ bp + r (a2 - 4 b ) k _ 1 U ^ + 1 t^o" Zi(m,2k + l , p + r - l ,n) 

5(0' 
(9.3) 

(a2 - 4b) £ [^) b " m i W - 2 i m W p + i m W * _ i m (k > 0) 

= 2 k b P [wf c Z 2 (0 , k, p - r , n) - b w f Z2(0, k, p - r + l ,n)] 

+ bp+rVk
m[W0*, :Z2(2mk,0,p + r - l ,n) - w f z 2 (2mk, 0, p + r ,n)] 

b -mk k ** z8(p,n) . 
m r+mk 0Nr 

Remarks. As a typical special case, we get from (9.1), 
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8 <-i>ifrym iij+ 9 . n . u . <k>o) 
JTQ \ i / r+2im p+im n-im ' 

<9'4) = & - 4 b ) k " 1 b - 2 k m U 2 k U +9k V + 
m r+2km p+n 

+ b p + V - 4b)k"1uf U , . 
2m n-4mk-p-r 

Theorem 8. Let W^, W*9 and W ^ be solutions of (1.1). Let m, 
p, n9 q, and r be Integers (+, -9 or 0). Then 

2k . / v 
£ ( - l ) f fw _,_. W ,. W* . W* (k ^ 0) 
£ J y 1 J D+im a+im n- im vr_i™ ^K * u ' 'p+Im "q+im vvn-im v vr-im 

(9.5) 
b P U ^ ( a 2 - 4b)k"2Z1(m> kf p , n)Z3(q9r) 

+ b q U^(a2 -4b)k- 2Z1(mf ks q9 r)Z3(p9n) 

+ bP^(a»-4b)k-2uf A(V+ A , ) , 
2m n+r-p-q-4mk' 9 

where 

A(W**) = (W0 Wj )2 W*f2 - 2W0 WJ (bW0 W0* + Wt W? JW*^ 
(9.6) + [ b2 (W0 W0* )2 + 4b W0 Wi W0* Wjf + (Wj W* )2 ] W** 

- 2bWcTw1(bW0W0* + W i W f j W ^ + b2(WoWi)2W? 
i 

2 

2k+l 
V ( - l )M 2 k . j |w ,. w ^ W* . W* . ( k > 0 ) 
•4Q \ i / P+im q+im n-im r- im 

(9.7) = b P u ^ + 1 (a2 " 4b)k~lz2(ni> k5 pf n)Z3(q9r) 

+ bqU^+1(a2 - 4b)k~1Z2(m9k9q9r)Z3(p9n) 

. b P - V - ^ - ^ ^ A ^ ^ ^ ^ ) . 
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Remarks. As a special case of (9.5), we have 

(9.8) 

2k . / 9 1 \ 
V ( - l H ^ J U _,. U _,_. U . U . (k >0 ) 
•"=0 \ 1 / P + i m Q.+im n ~ in i r - i m 

= -bPU2 k(a2 - 4 b ) k ' 2 V 91 V ^ 
m n-2km-p q+r 

- b q U 2 k ( a 2 - 4 b ) k " 2 V 91 V ^ 
m r-2km-q p+n 

+ bP+q(a2 - 4b)k"2U2 k V 
+ b la m U 2 m V r - p - q - 4 m k e 

For Fibonacci, F , and Lucas, L , sequences, we obtain from 
(9*8)5 with a = -b = 1, 

2k g (-l) IF . F . F . F . (k > 0) 

1 1 1 p+im q+im n+im r+im 
0-9) = ( - l ) r + 1 5 k - 2 F 2 k L + 9 I _ L 

' m n+2km+p q-r 
._ .n+1 k-2 2k k-2 2k 
1 ' m r+2km+q p-n 2m n+r+p+q+4mk 

Theorem 9. Let W , W*, and W** be solutions of (1.1). Let m, n n n 
p , n, q, r , and t be integers (+, - , or 0). Then 

(9 10) V (_l) i (2 k1b~m lW'!* . W . W . W* . W* . (k > 0) 
\y.xv) ^ M ' ^ j " vvt+2im p+im q.+im n-im r - im v ' 

= bp + t(a2 -4b)k - 2U2k
n[W0*, =Z2(4mk,0,p+t-l ,n) - w f z ^ m k . O . p + t . n ^ Z a t a . r ) 

+ bq+t(a2 -4b ) k " 2 u | k
n [WfZ 2 (4mk s 0 ,q + t - l , r ) - W f Z2(4mk,0,q + t,r)]Z3(p,n) 

+ b P*V - 4b) k - 2 u^KA(a n W t . p _ q . 2 i n k ) - b<A(an+rl t_p_q.2 ink_1)] 

+ i ^ v - ^)k-2TJ2^[wrA(^r_v_q_t_6mk+1) - wrA(un+r_p_q_t_6mk)] 

+ b_ 2 m k(a2 - 4b)k-2U2^W^2mkZ3(p)n) Z8(q,r) 

+ b-2mk+n+q(a2 _ 4b)k-2U2
n

kW^2mkVp+r_n_qD(W0!W1)D(W0*) W?) , 

where 
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(9.11) D(W0,Wi) = -(Wj - aWflWj + bW2,) . 

V (-1)1 f2k.+ M b " m l W*f„. W M. W ^ W* . W* . ( k > 0 ) 
t^L \ i / t+2im p+im q+im n-im r - im 

2k+l 

E 
i=0 

= bP+t(a2 - 4b)k~2U2k^1[W0*,'z1(m,2k + l , p + t - l ) n ) 

- w f z 1 ( m , 2 k + l ,p+t ,n) ]Z 3 (q ) r ) 

+ b q + t ( a 2 -4b ) k - 2 U^ 1 [W 0 *"z 1 (m,2k + l , q + t - l 5 r ) 

- w f z 1 ( m , 2 k + l > q+t , r ) ]Z 3 (p ,n) 

+ b P + q ( a 2 - 4 b ) k - 2 U 2 k + 1 [ W r A ( V i _. , 9 1 r + 1 J 
/Q 1 9\ m L * n+r+t-p-q-m(2k+l) 

u v n+r+t-p-q-m(2k+l)-l J 

+ & n (az-4b) U0 rWn A(V , . 0 /0i , - , \ , i ) 
3m L u v n+r-p-q-t-3m(2k+l)-Kl 

- wrA(v n + r _ p - q _ t _ 3 m ( 2 k + 1 ) ) ] 
,, -m(2k+l), o ,,. vk-2TT2k+lru„oK*TT 

+ b (a2-4b) U m [ b < V t + m ( 2 k + 1 ) _ 1 

- < W j k + l ) J Z ' * , ' n ) Z ' ( q ' r ) 

+b-m(2k+i)+n^(a2 _ 4 b ) k X k ^bw 0 ^ t + m ( 2 k + 1 ) _ 1 

' W " V t + m(2k + l ) )D(W0*,Wf)D(W0) W l ) V + r _ n _ q . 

Theorem 10. Let W and W* be solutions of (1.1). Let m, p, n, 
q, r , t, and s be integers (+, - , or 0). Then, for k > 0, 

2k s < - ^ p+im q+im s+im n-im r - im t-im 

= b V ^ a * - 4b)k"3Z1(m,k,s,t)Z3(p,n)Z3(q,r) 

+ bp l^(a2-4b)k"3Z1(m)k,p ,n)Z3(q,r )Z3(s , t ) 

+ bqU2^(a2-4b)k"3Z1(m,k,q,r)Z3(p,n)Z3(sJt) 

(9.13) + b ^ U ^ ( a » - 4 b ) k - 3 Z , f a . t ) A ( V n ^ . I M 1 _ 4 i n k ) 

+ b p ^ ( a » - 4b)k-3Z3(q5r)A(Vn + t_p_s_4 m k) 

+ b q + S U 2 k (a2 - 4b)k-3Z3(p,n)A(V ) 
Z m r + t q s 4 m K (Continued, next page.) 



1971] RECURRENT SEQUENCES OF ORDER TWO 375 
•+ b P+q+t n 2k fe2 _ 4 b ) k - 3 D ( w ^ W i ) ; D ( w ^ w * ) Z l ( m 9 k | P + q + t _ r „ s ? n ) 

m 
+ bn-Hi+S u2k( a 2 _ 4 b ) k - 3 D ( W o ) W i ) D ( W o * w * ) Z l ( m ) k 5 S j t ) V p + r _ n _ q 

+ W o W t b ^ U ^ - 4 b ) k - 3 A ( V n + r + t _ p _ q _ s _ 6 m k + 1 ) 

" <W*8 + W ^ b ^ U ^ a 2 - 4b)k-3A(Vn+r+t_p_q_s_6mk) 
+ W 0 * W i b P ^ + s + 1 u f (a2 _ 4 b ) k - 3 A ( V + „. R . ,) , 

u J 3m n + r + t - p - q - s - 6 m k - l 

2k+l 
Z-» X~A/ i j I v v p+im" v q+im V ¥ s+im ¥ V n- Im v v r - im V ¥ t - im E (-in2 k + Mw _,_. w _,_. w _,_. w* . w* . w*. (k > o) 
4-* I l I n+mn m+im fi+im n-im r - im r.-im 

= b S U ^ + 1 ( a 2 - 4 b ) k " 2 Z 2 ( m , k , s , t ) Z 3 ( p , n ) Z 3 ( q , r ) 

+ b P u 2 k + l ( a 2 _ 4 b ) k - 2 Z 2 ( m j k j P ) n ) Z 3 ( q > r ) Z 3 ( S } t ) 

+ b V k + 1 ( a 2 - 4 b ) k ~ 2 Z 2 ( m , k , q s r ) Z 3 ( p , n ) Z 3 ( s , t ) 

(9.14) + b M C < a 2 - 4W^.<s.t)A(UnHT.p_<t.2m(afcf l ) ) 
+ b P + S u 2 m + 1 ( a 2 " 4 b ) k " 2 z 3 ( ^ r ) A ( U n + t - p - S - 2 m ( 2 k + l ) ) 

+ b ^ U ^ a 2 - 4 b ) k - 2 Z 3 ( p , n ) A ( U r + t _ q _ s _ 2 m ( 2 k + 1 ) ) 

+ hv+q+tV^+1(&2 - 4b)k"2D(W0 !W1)D(W0*,W|)Z2(m5k,p + q + t - r - s , n ) 

+ b n + q + S U ^ + 1 ( a 2 - 4b)k"2D(W0)W1)D(W0* W ^ Z a d n . k . s . t ^ ^ ^ ^ 

+ W o W f l T ^ V - 4b)k-2A(U n + r + t_p_q_s + 1_3 m ( 2 k + 1 ) ) 
- (bW0W0* + W l W ? ) b ^ + S U 2 k f (a2 -4b)k-2A(Un + r + t_p_q_s_3 m ( 2 k + 1 ) ) 

+ w f w . b ^ ^ V - 4b)k-2A(Un+r+t_p_q_s_1_3m(2k+1)). 

R e m a r k s . As a special c a se of (9.13), we have 

2k 

S -'(•) U . U ,. U _,_. U . U . U. . (k > 0) 
p+im q+im s+im n - i m r - i m t - i m 

(9.15) 
- b ^ a 2 - 4 b ) k - 3 V t _ 2 k m _ s V p + n V q + r 

- b P U m (a2 " 4 b ) k " 3 V 2 k m - p V r V t 
- b ^ ( a « - 4 b ) k - 3 V r _ 2 k m _ q V p H f l V f l 4 t 

n (Continued, next page . ) 
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+ b^vf (a* - 4b)k"3V +. V + 
2m s+t n+r-p-q-4mk 

+ b p+ S u 2k (a2 _ 4 b ) k - 3 v v 
2m q+r n+t-p-s-4mk 

+ b q + s u 2 k <a» - 4 b ) k - 3 v + v t 
2m p+n r+t-q-s-4mk 

_ bP^q+t 2k, 2 _ 4 b ) k - 3 y 
D u m â to> v

n_2km-p-q-t+r+s 

n t q + s ^ k 2 k-3 
HI t-2km-s p+r-n-q 

_ bP+q+sIJ2k fa2 _ 4 b ) k -3 
3m n+r+t-p-q-s-6mk 

10. BINOMIAL SUMS WITH TRIPLE CROSS-PRODUCTS 

The following results are an extension of Theorem 3. 

Theorem 11. Let W be a solution of (1.1). L 
n 

be integers (+, - , or 0). Let pA + p2 + P3 = p. Then 

Theorem 11. Let W be a solution of (1.1). Let m, pl 9 p2, and p3 

1 <-«i(?)*mv2m,2t-'v;(fr w fJj * >«, 

(10.1) = 0^<»> - 4b)k_1 £ (-U'fjVf-NbW,)1^ p+2mk-i 

3 P4 
D(W0>W1)b4mkUm

i(a2 - 4b) k - 1 £ b j W p _ 2 p . _ 2 m k . 

^ ( - D 1 ^ ^ ^ (bmv„ )2k+1-v f r r w +. ) k.io) 
its V x / 2 m m \ j = 1 P j + i m / 

(10.2) = -U2,^1 (a2 - 4b)k_1 £ (-D^^W^ObWo)1 
Vp+m(2k+l)-i 

D(W0 )W1)b2 m ( 2 k + 1 )U2 k + 1(a^ - 4b)k-1Y1 
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where 

(io.3) Y l = Z bP%iVp_2pj.m(afcfl) - b w . v ^ . ^ ^ ) . 

Special cases of Theorem 11, with pA = p2 = P3 = ns are given by 

I -W 2k 
"'/0,_" (bmv9 ) 2 k _ iv1 u 3 . (k > o) 

2m m n+im 
(10.4) 

/ ? / iu\k-l /TT2^ TT o ln+4mkT T2kT T v 
(az - 4b) (Uo U 0 J 0 . - 3b U U 0 , ) , 

3m 3n+2mk m n-2mk 

l«/(j). 2k . / O I x 91 • • Q 

(bmv9 r R ~ v v* (k > o) 
2m m n+im (10.5) 

(10.6) 

/ ? ^u\k/TT2k TT , o ln+4mkT T2kT T v 
(az - 4b) (UQ V0 l 0 , + 3b U V 0 , ) , 

3m 3n+2mk m n-2mk 

z1(- i ) i ( 2 kr1Umv9 )2k+1-v u3,. (k^o 
. ^ \ 1 / 2m m n+im ^ 

2k+l 

i=0 

, o .. vk -1 , TT2k+lTT , oun+2m(2k+l)TT2k+lTT v 
( a 2 " 4 b ) ( " U 3 m V3n+m(2k+l) + 3 b U m V m ( 2 k + 1 ) ) • 

2k+l 

(10.7) 

!k+l / \ 
V ( - l ) 1 ^ 1 ) ^ ^ )2k+1-V V3

+. (k^o) 
£ - \ 1 / 2m m n+im ^ 

, 2 . . vk+1 , TT2k+lTT <3,n+2m(2k+l)TT2k+lTT , 
= (a2-4b) (-U3 m U 3 n + m ( 2 k + 1 ) - 3b U m V m ( 2 k + 1 ) ) 

11. BINOMIAL SUMS WITH FOUR CROSS-PRODUCTS 

The following r e s u l t s a r e an extension of T h e o r e m 3. 
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Theorem 12. Let W be a solution of (1„1)9 Let m, p l 5 p2s P3, and 

p4 be integers (+, - , or 0). Let Pi + P2 + P3 + P4 = P» Then 

M.D f / - » t f ) » m v 3 n / k - ' t ( ] T w p . + l m ) *>») 

V2l V - 4b)-2 g (-U'Qw" <bw0>> 

• ^ ^ . w . K a * - * > " i b2 m k™«v_2 p i_2 p i + i 

U^D(W0,Wi)(a2 „ 4b)k-2 Zi-^rM'hhWo)1^ 
. 4 4mk+p. 

b JV p-2p.-2mk-i ' 

> 0 ) (n.2) 5 N - i ) i ( 2 \ + 1 ) ( b
m v 3 m ) 2 k + 1 - V i ( T T w v i m ) (k_> 

+ (umu2 m>2 k +w«,w^-v*-1 |:bm(2k+1)+p^-%_2pi_2pi+i 

U ^ D W o . W i K a 2 - 4b)k"1 
2m 

by 
Special cases of Theorem 12, with pt = P2 = P3 = P4 = n, are given 
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I ">® (bm )2k-i 1 4 
3m m n+im (k > 0) 

(11.3) 
u 2 k ( a 2 _ 4 b ) k - 2 v 

4mv 4n+2mk 

_,_ a TT2kTT2k . 2 AU\2k-2
 u2mk+2n + 6U U0 (^ - 4b) b 

m 2m 

- 4U2k (a2 - 4b)k"2b4 m k + nV 
4 u 2 m la 4D) b v

2n-2mk 

(11.4) 

I -t) m 2k-iv i 4 
N 3m m n+im 

+ 6 u f ( a 2 - 4 b ) 2 k b 2 m k + 2 V k 
z m m 

, . TT2k . 2 ., vk, 4mk-fnTT + 4 U 0 (az - 4b) b V0 0 . 
2mN 2n-2mk 

(k > 0) 

(11.5) 

2k+l . / ' ^ i \ 
2 (-irt^ + Mo)1 

i=0 \ x / 

L }2k+l-i i n 4 
3m m n+im 

-U 
2 k + V ^ b ^ u 4m 

+ 6(U UQ m 2m 

4n+m(2k+l) 

)2 k + 1(a2-4b)^"Ab" 2k-l,m(2k+l)+2n 

+ 4 U ^ + V - 4 b > k-1, 2m(2k+l)+n 
2n-m(2k+l) 

(k > 0 ) 

(11.6) 

2k+l . / 0 ! , 1 \ 

i=0 
(bmV. ) 2 k + 1 - V V4 . v 3m' m n+im (k > 0 ) 

- U ^ + 1 ( a 2 - 4 b ) k + 1 U 4 n + m ( 2 k + 1 ) 

+ 6(U U9 ^ k + l ^ ^ k + l ^ k + l ^ n 
m 2m 

. TT2k+l . o .,vk+l, 2m(2k+l)+nTT 
- 4 U2m ( a " 4 b ) b U2n-m(2k+l) 

12. BINCMIAL SUMS WITH MIXED CROSS-PRODUCTS 

The following results are companion results for Theorems 11 and 12. 
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Theorem 13. Let W be a solution of (1.1). Let m, pt, p2, and p3 

be integers (+, - , or 0)„ Let p t + p2 + p3 = p. Then 

- *^ -^ 1 S<- i ) i p )wf^a ,wA I H t a W 

(12.1) 3 

+ D ( W 0 , W 1 ) b t o l V k
( a 2 _ 4 b ) k - 1 2 : b P J v , 0 , m j=2 p-2p.-2mk 

J J 

û V - ^ - V - ^ g ^ ^ - W A p _2P1. 2mk-i ' 

T <-«'(2v V w 1 - ^ ( V l m ] ^ wPj+jm) ^o, 
T2k+1 2 4b)k|:(-l)1(2

1)wf-1(bWo)IUE -U3m'A (a" - •"" . ^ ™ Viy VVI W , V ° ' up+m(2k+l)-i 

(12.2) 

D(W„ ,W 1 )b 2 m ( 2 k + i y i k + 1
( a 2 -4b ) k | : b P Ju , , , , 

m .4* p-2p.-m(2k+l) 

- U ^ V - 4b)kb2m(2k+l)+Pl £ (_1)iQw2-i(bWo)iUp_ 
2p1-m(2k+l)-i 
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| <-!>>(?) (b»Y2m)2k-'Yi (upi+lmTT Wpj+lm) * 

U3m(a2 " 4b)k_1 ? (-D^iJwi'^bWo)1^ 
2 

(12.3) 

+ U ^ . W ^ - 4b)*-1 f b 4 ^ Up_2p _2mk 
3~* 3 

I <-»' (?) *"%» >2k"X (vi»]3 v ) * *0) 

+ U ^ ( a = - 4 b ) k | ; b ^ ^ U p . 2 p _ 2 m k 
3-^ 3 

- ( a 2 - 4 b ) k U ^ b 4 m k + P 1 V 2 p i _ 2 m k , 

2y ; 1(-l) i(2 k + 1](bmV0 )2 k + 1-V (v A. T I W , . ^ (k>0) A v ' \ i / 2m' m I pj+im !_2 p +im J 

= U 2 k + 1 ( a 2 
U3m l a 

(12.5) 

- C W W - W^1 f b ^ ^ i v _2p..m(2k+1) 
3 - ^ 3 

• <a> - « " ^ b ^ l R P , | ( - U ' l ^ w f - ' W Y ^ , ^ . , 
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(12.6) 

TT2k+l , 2 ,, xk TT - U 3 m ( a 2 - 4 b ) V p + m ( 2 k + 1 ) 

U ^ + 1 < a * - 4b ) k V b 2 m ( 2 k + l ) + P j m p g p-2p . -m(2k+l ) 

+ (a* - 4b) k U 2 k + 1
 b2Hi(2kH-l)+Pl 

m p-2pi -m(2k+l) 

T h e o r e m 14. Let W be a solution of (1.1). Le t m 9 p l 9 p 2 , P3, and 
p 4 be in tegers (+, - , o r 0). 

Let Pi + p2 + P3 + P4 = p. Then 

- "2 - * > " < t <-«'(?)w?-I»w0)'np+2mk_. 

w + » w . - " ^ - W t - 1 « W W " ' , | ^ , + p , + 1 w p _ 2 p i _ 2 p i + I +i 

• DW..W.H.. - W " 1 ^ i/4mk+PiWp_2p._2mk 

tf - «"»*.,<-">>• § ^ ( ^ * * . > ' v * , ^ . 
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2£1(-Di(2 k + 1)(bmVq )2 k + 1-V (v A. TTW x. ) (k>0) 

3 

§ *~"' U / "^ W",U/ Vm(2k+l)-i 
(12.8) 

= -(a2 - 4b)k-1U^+1 £ (-D^Jwf-^bWojV 

+ D(W0,Wl)(a2 - 4 b ) 2 k ( U m U 2 m ) 2 k + 1 g b - < 2 k + 1 ) + P ^ - i W p _ 2 p i _ 2 p i + i 

, » ., ,k - l TT2k+l, 2m(2k+l)+Pi v* / i^f^-nfi-itum \kr - ( a 2 -4b ) U 2 m b H L (-D ( J W i (bW0) V2P l -m(2k+l)- i 

- tf - 4b)k-1D(w0)w1)u2k
n

+1b2m(2k+1)y2(2k + i) , 

where 

4 p. 
(12.9) Y2(k) = X) & ](WiV _ . - bW0V „ . J 

* r£ * p-2p.-mk u p-2p.-mk-l j=2 

(k>0) I < - » t ^ 3 m > 2 k - v ( n vPjtlm) ( n wPj+im] 
.(12.10) 

= to'-W^ g (-W1(?)w?-1(bW,)1VlHaink.1 

(a2
+4b)2k-1(UmU2m)2kb2-k+P^ g ( - ^ ( i J w f - W ^ ^ , 

3=1 F F1 F2+j 
(Continued5 next page*) 
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+ (a* - 4b)k-1U2k £ b4mk+Pj L (-D^Jwf-WAn 4 m j= l i=0 » J / P 

«a» - 4b)k-1D(W0,W1)U2k £ b 4 m k + PJV 

2p.-2mk-i 
J 

+ 

2k+l 

2m £ - " p-2p.~2mk 
j - 3 ^3 

|1«v(--),»v3m,--v-(frv to)(^w ) 
(12.11) J / \J J / 

(k &0) 

+ «-«2kw^'2k+1^<2k+1,+p'+fc
1|<-«i(2

I)w?-1(bwAp.2pi_2K.1 

+ D(W0,W1)(a2-4b)2k(U U0 ) 2 k + 1 V; b
m<2 k +D+Pl+P2+jv 

m 2 m j=i P-2Pi-2p2+j 

- * - ̂ c 1 £ > ~ . i <-»tRwV2Pr,»(21slM 

,2 _ /1KvkTT2k+lT <a' - 4 b ) k U ^ 1 D ( W o , W t ) i ; b 2 m ( 2 k + 1 ) + P j u 
2 m — o . » ^ « JUp-2p4-m(2k+l) ' 

(12 

- V - « " < f (-x»'(»)w?-'(bwa,'v+2mk_1 

> 0 ) 

3^ 
L x - \ i / " i ^ " » 7 vp+2mk-

(Continued, next page.) 
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•fe» - 4b)2 k - 2D(W0.W1)(UmUa m)2 k T b 2 m k + ^ + P ^ ( W l V p _ 2 p i _ 2 p 
J 1 J 

(a2 _ 4b)k-2U^b4mfc*i E ( - l ^ W W V 
- b W °Y2 P l -2p I + r l> 

° ; p-2p1-2mk-i 

+ fc»-4b)k-2<D(W0.W1)£b4mk+PJ(WlVp_2p__2mk - b W o V ^ . ^ ^ ) . 

(12.13) | ( - l ) f k ) ( b ^ ) 2 ^ (u p j + i m T7 Vp.+ i m) <k > 0) 

- (a* - 4b) 2 k U 2 k U 2 k f b 2mk + P l + P l + j 
m 2 m ^ P - 2 P l - 2 P l + j 

(a* 4 h ) k U 2 k b 4 m k + p i U 
- (a -4b) U m b u

p _2 P l -2mk 

+ ( a2 -4b ) k U 2 k X b 4 m k + P 3 U , 9 . , 2m . ^ p-2p.~2mk 

2k+l / \ / 4 \ 
(12.14) g ( - l ) i ( 2 \ + 1 j ( b ^ 3 m ) 2 k + 1 " i t ( V i m ] T W v i m j (k>0) 

= - (a* - 4b)k-1U2^+1 £ < - » f i R W V ^ l M 

- (a* - 4b) 2 k - 1 D(W 0 ,W 1 )( U m U 2 m ) 2 k + 1 E b m ( 2 k + 1 ) + ^ + P - 3 <W, V ^ . ^ 

-bW0V „ „ J 
(Continued, next page.) P-^Pi-^Pi+j--1 
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" <* " ^ - ^ ( w o . w ^ 1 £ b 2 -^) + PJ wp_2pfm(2k+1) 

£m i=0 \ 1 / ' p-2prm(2k+l)- i ' 

(12.15) 2 Z 1 ( - l ) 1 ( 2 k + 1 ) ( b m V , ) 2 k + l - y L f | V + . ) (k>0) 
•Î O V i / 3m *n V Pi+im ! • p.+im I 

- (a* - 4 b ) 2 k + 1 ( U m U 2 m ) 2 k + 1 h b m ( 2 k + 1 ) + P l + P l ^ p _ 2 p i _ 2 p , + . 

- (a* - 4b ) k U 2 k + 1 E b 2 m ( 2 k + 1 ) + PJV . (9M. 
2m ^ p-2p.-m(2k+l) 

+ 0t« - 4 b ) k U 2 k + V m ( 2 k + 1 ) + P i V 9 „ . + 1 . 
2m p-2p1-m(2k+l) 

13. REMARKS ON THE PAPER BY CARLITZ AND FERNS [4] 

All the important identities of Sections 1 and 2 of the above paper are 
special cases of our general results. Indeed, for the proper choices of par-
ameters , our result, (1.7), contains as special cases, identities (1.6), (1.8), 
(1.10), (1.11), and (1.12) of [4, pp. 62-64]. In [ 4 , pp. 65-66], I noted mis -
prints and omissions in (2.9) (for n odd), (2.10) (for n even and odd), and 
(2.11) (for n even and odd). If these e r ro r s are corrected, we can then say, 
for the proper choices of parameters , our (1.9) gives their (2.8) and (2.10) for 
even n; our (1.13) gives their (2.8) and (2.10) for odd n. Also, our (1.12) 
gives their (2.9) and (2.11) for odd n. The odd and even n refers to their 
identity usage, not ours. Our (1.11) gives their (2.9) and (2.11) for even n. 

The remaining portion of [4] obtained transformation identities for the 
Fibonacci and Lucas sequences as an application of Legendre and Jacobi poly-
nomials. Under proper linear substitutions, these same polynomials could 
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give transformation identities for U and V of (1.1)* We will illustrate 
these ideas with a pair of identities suitable for our purposes* 

The following pair of polynomial identities, 

(13.1) x 2 n + 1 - (x - l ) 2 n + 1 = £ §-±_L ( n + i j ( x 2 _ x ) n - i ^ 

(13.2) x 2 n + 2 - (x - l ) 2 n + 2 = (2x - 1) ± (n
2+ I l l ) # - x)11-1 , 

appeared as a proposed problem 4356, p. 479, in the American Mathematical 
Monthly, 56 (1949), and their solution, in the same journal, 58 (1951), ap-
pears on pp. 268-269, We now proceed to apply (13.1) and (13.2) to obtain 
identities for U and V of (1.1)* n n 

Recalling that a and j3 are roots of x2 = ax - b (see (1.1)), set 
x = (a/b)y in (13.1) to obtain 

/-„ o\ 2 n + 1 2 n + 1 / u\2n+l ^ 2n + l /n + i \ u 2 i + l r t U \ i n - i (13.3) a y - ( ay -b ) = ] ^ _ _ | g . lb [ay(ay - b)J 

Thus, (13.3) for y = a and y = j3 gives the identities 

(13.4) a2 n + 1V2 n + 1 
V 2n + 1 in + i \ . 2i+l n-iT7 

"V4n+2 = g -WTT { 2i ) b a V3n-3i 

£ , 2n + 1 (n + i V 2i+l n-iTT 

2 2TTT 2i Jb a ua 
1=0 ' # 

(13.5) a u
2 n + l " U4n+2 " .4* 2i + 1 \ 2i 1" ~ ~3n-3i 

In (13.2), set x = (ay)/(2b) to obtain for even n = 2k, noting that a a - 2 b 
a2 - b = a(<z- j3), c*0 - 2b = 0(0 - a) , 
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i a 4 k + 2 - tf - 4b ) 2 k + 1 - (a* - 4b)ka2k(4b)(2k + l )}v 4 k + 2 

k - l 

(13.6) .4ft ' x ' V 23 7 4J+2 = 2 E (a2 - 4b)^(2b)4(k-J)+1f4k V " 2 J V, -ito V 2i I 4JH 

I (a* - 4b)ia2i-1(2b)4(k-i)+3 (4k + a_-;
21) U,. + 2 

An identity similar to (13.6) is obtained for n = 2k + 1„ We note that the 
factor (2x - 1) in (13.2) is troublesome for obtaining identities in U and 
V for (1.1), but is not so for the Fibonacci sequences. 

Additional identities for U and V are readily obtained from (13.1). 
For complete generality j we note that a and /3 satisfy x = U x - bU 
Thus, from (13.1), we obtain, having set x = (U y)/(bU ), the general 
identity 

(13.7) l C + l w 2 n + l ^ , - W2mn+m+p 

Mv 2i + 1 \ 2i J m m-1 
^ 2 i + 1 w 
' w(m-Kl)(n-i)+p ' 

where U and W are solutions of (1.1). n n ' 
It should be noted that (13„1) gives Fibonacci identities that are not 

special cases of (13.7). As a partial listing, we have 

<«•«> L
2»« - 1 $H (%?) • 

[Continued on page 421. ] 
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H-183 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Consider the display indicated below. 

1 
1 
2 

5 
13 
34 
89 

1 
2 

4 
9 

22 
56 

1 

3 
7 

16 
38 

1 
4 

11 
27 

1 
5 

16 

(i) Find an expression for the row sums. 
(ii) Find a generating function for the row sums. 

(iii) Find a generating function for the rising diagonal sums. 

H-184 Proposed by Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Define the cycle a (n = 1, 2, • ° •) as follows: 
th (1) a = (1234+ ••• + F ), where F denotes the n Fibonacci n n n 

number. 

389 
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Now construct a sequence of permutations 

vj{ , (n = 1, 2) 

where 

F. F. F. 
(ii) a

 i+2 = a i - a i+1 (i * 1) . 
n n n v ' 

Finally, define a sequence { u } as follows: 
u is the period of (ii); i . e . , u n ~ is the smallest positive integer such 

that 

F i + U n F 
(iii) aR = % (i ^ N ) . 

a. Find a closed-form expression for u . 
b. If possible, show N = 1 is the minimum positive integer for which 

(iii) holds for all n. 

H-185 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

n 

d-2x)n = E < - l ) n - k ( ^ , 
k=0 

where 2Fi [a ,b; c; x ] denotes the hypergeometrie function. 

SOLUTIONS 
H-127 REVISITED 

H-164 Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan. 

Generalize H-127 and find a recurrence relation for the product 
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C = A fe)B (y), 
n n^ n J 

where A and B satisfy the general second-order recurrence equations: 

(1) A
n + l ( x ) = R ( x )An(x) + s ( x ) A

n _ l ( x ) 

(2) Bn+1(y) = P(y)Bn(y) + Q(y)Bn^(y), 

a ^ 1 and A0§ Al9 B 0 J B* arbitrary. 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

We consider the following more general situation. Let E denote the 
operator defined by Ef(n) = f(n + 1). Let a 1 ? °* e

? aT, j3i9 • • • , ps denote 
r + s arbitrary constants and assume that 

(1) (E - at) - - (E - aT) AR = 0 

(2) (E - f t ^ ••• (E - iSs)Bn = 0 

If C = A B 5 we shall show that n n n 

(3) f l f f C E - « A ) . C = 0 
i=i j=i J 

If the a fs are distinct and the /3!s are distinct, the proof of this asser-
tion is easy. In this case5 the general solution of (1) is given by 

A n , n 
A = Cia-i + • 8 - + c a , n * l r r 

where cl9 • • • , c r are independent of n; the general solution of (2) is 

Bn = dttf + . . . + d X . 

where dj, ''' , ds are independent of n* Then 
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C = C i d i C c ^ ) 1 1 + ••• + c d (a 0 ) n 
n i i w - i ' r s r s 

and (3) follows at once* 

F o r the genera l ca se we requ i re the following l e m m a . Le t 

(E - afA = 0, (E - j3)SB = 0 . 
n ^ n 

Then C = A B sa t i s f ies n n n 

(E - a/3)lH~S-1C = 0. ^ n 

To prove th i s , note that 

A = P - (n)aR , n r - 1 

where P - (n) i s a polynomial in n of degree r - 1 with a r b i t r a r y constant 

coefficients: 

where Q 1 (n) is a polynomial in n of degree s - 1 with a r b i t r a r y constant s—x 
coefficients. Then 

C = P n (n) Q - (n) (apf n r - 1 ^ s - 1 ^ 

and the a s se r t ion follows at once. 

Now le t 

(E - at)ei... (E - ^ r ) 6 r A n = 0 

(E - frfi . . . (E - / ? s ) f s B n = 0, 

where the a f s and /3fs a re dis t inct . Then, by the l e m m a , 
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r s e .+f . - l 

(4) " n r T ( E - <*•?•)x ] - c = o . 
This result i s somewhat s t ronger than (3). The degree of the ope ra to r 

in the left member of (4) is equal to 

r s r s 

E J > i + fj -1) = s E e i + r E f j - r s* 
i=i j=i i=i j=i 

When some of the # f s and /3fs a re equal , c may satisfy a r e c u r r e n c e of 
even lower degree. For example , if 

(E - Qfi) . - (E - ^ r ) A n = 0, 

(E - at) . . . (E - ^ r ) B n = 0 , 

then C satisf ies n 

(E - a\)(E - ata2) . . . (E - a2
r)CQ = 0 , 

a recurrence of order n(n + l ) / 2 . 

Also solved by C. B. A. Peck, M. Voder, and the Proposer. 

SHORT-TERM INDUCTION 

H-165 Proposed by H. H. Ferns, Victoria, B.C., Canada. 

Prove the identity 

n / \ F / F \ n 

F 2 n M l ] , 
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where F . denotes the I Fibonacci number . 

Solution by the Proposer. 

The proof of the given ident i t ies i s based on the two ident i t ies : 

(1) F 0 + a1 = a2 F 
n-2 n 

(2) F 0 + if = / # F , 
n-2 r r n 

in which a = (1 + \[E)/2 and jS = (1 - \l~S)/2. These a re readi ly proved by 

induction on n. Thus , if in (1), we put n = 1, we get 

F ., + a = a2F. -1 l 

1 + a = or 

which i s t rue . Assuming that (1) i s t rue for n = 1 , 2 , • • • , r = l , r , we have 

r - 1 o 
F 0 + a = a2 F -

r - 3 r - 1 
and 

F 0 + a = o?Y 
r - 2 r 

Adding corresponding m e m b e r s of these two equat ions , we get 

F Q + F 0 + a*'1 + aT = Q2 (F - + F ) r - 3 r - 2 r - 1 r 

F - + a r _ 1 ( l + a) = a2 F J_1 
r - 1 r+1 

r+1 o 
F 1 + a = a2Y ,- . 

r - 1 r+1 
Hence the induction is complete for the proof of (1). The proof of (2) i s 
s im i l a r . 
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Continuing with the proof of the given identity, we have from (1) 

Hence 

/q \ x ' l 1 1 ! ! 1 ^ i _ i & i _ 2 n jextJ-feJ' 
In a similar manner (2) yields 

SOtef-frKf' (4) x ^ #" 11 H i _ i * i n2n 

i=0 

Subtracting members of (4) from the corresponding members of (3) we 
have 

£«£-(# F 2 n (k * 2) 

This completes the proof of the given identity. 
Note that addition of (3) and (4) yields 

L 2 n - 2 (k fi 2) 

Some special cases are of interest. Putting k = 1 and k = 3 in these 
two identities, we get the following. 
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E("k-r2». E(l) 
i=l i=l 

F Q . = 2 n F 0 3i 2n 

E O h - ^ - - £(") 
1=1 1=1 

L Q . = 2 n L Q - 2 3i 2n 

Also solved by A. Shannon, M. Yoder, C. B. A. Peck, L Carlitz, and D. V. Jaiswal. 

SUM EVEN INDEX 

H-166 Proposed by H. H. Ferns, Victoria, B.C., Canada (Corrected). 

Prove the identity 

i= l 
F 0 

£(°H F . , if m is odd 
m mi 

2mn n 

E<-»"+I("k 
i= l 

F ., if m is even 
m m i 

Solution by the Proposer. 

In the identity (this J o u r n a l , Vol. 7, No. 2 , p . 174), 

^ WvWFmi+A = vZj Fnk+A - FA> ( m * k ) 

put X = 0 and k = 2m. We get 
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i 

IF , t(")feM«" 2mn 

^ft-Aj^^i-Aj 
n 

Fn 

y ^ , 1 ) ( m + l ) i / n \ | m m \ = (_1)(m+l)nF 

mi 2mn 

Hence 

2mn 
n 

E (">i F . , if m is odd 
m mi 

S (-l) ( . 1L F . , if m is even yiy m mi 
i=l 

Also solved by M. Shannon, B. Giuli, and M. Voder. 

HIGHER BRACKET 

H-167 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

Sk 2 J F F . ' n n+k 
n=l 

Show that, for k ^ 05 

^ k - [ l ( n - 1)] 
( A ) F2k+2S2k+2 = k + 1 - 2 2 ~ F F + 9 

n=l n n + 2 
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2 k + l k 

(B) F2k+lS2k+l = S l " k + E 
n n n+2 n=0 

where [ a] denotes the g r ea t e s t in teger function. 

Special c a s e s of (A) and (B) have been proved by Bro the r Alfred B r o u s -

seau , "Summation of Infinite Fibonacci S e r i e s , " Fibonacci Quar te r ly , Vol. 

7, No. 2 , Apr i l , 1969, pp. 143-168. 

Solution by the Proposer. 

1. Proof of (A). It follows from the identity 

n+2k 2k+2 * n+2k+2 r 2k n 

that 

oo °° 
F 2k+2 S 2k+2 " F 2 k S 2 k = F2k+2 2-s ¥^¥~^~o ~ F 2 k 2- r F F _,_OI 

. n n+2k+2 . n n+2k 
n=l n=l 

oo -p T? _ ^ -p 
V ^ n+2k 2k+2 n+2k+2 r 2k 

, F n F n+2k Fn+2k+2 
n=l 

-L - F n+2k F n+2k+2 n=l 

2k 

= v —i y i 
Z - 1

F n F n + 2 Z t r n F n + 2 n=l n=l 

Since 
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we get 

2k 
F 2k+2 S 2k+2 " F 2 k S 2 k = X " S T~T~ ( k 

n = l n n+2 

Then, by addition, 

k 2j 

F 2k+2 S2k+2 k + -1 " Z ^ 2 J F T " . - - n n+2 3=1 n=l 

2k 
k + 1 V 1 V* 

Z-r F F _ Z ^ 
- n n+2 ^-o-^oi 

n=l n^2]<2k 

The inner sum i s equal to 

1 = k 2 x = k - ft(n -^ 
H * wii 

There fo re 

Fr t l , J n l lr t = k + 1 

2k 

E 
k - [ | ( n - 1)] 

2k+2 2k+2 JUi F F l 0 
. n n+2 

n=l 

Th is evidently p roves (A). 

2„ Proof of (B). It follows from the identity 

F n + 2 k + l F 2 k ~ l F n + 2 k » l F 2 k + l F n 

that 
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00 

; 2 k + l " 2 k + l " x ' 2 k - l M2k-1 ~ x>2k+l F„...,Snl.., - F„.. , s„.., = ^ , , 2 f ^ - - F 2 k . 1 E f T : 
1 n n+2k+l , n n+2k- l 

n=l n=l 

0 0 "F "F1 — "F1 "F 
V * 2k+l n+2k- l 2k-1 n+2k+l 
£^j "F "F F 

, % n+2k-1 n+2k+l 
n=l 

oo 

2^ F lOI , I - ""n+2k- l n + 2 k + l n = l 

oo 2 k - l 

Z-rf F F n ^ F F 
- n n+2 . n n+2 

n=l n= l 

so that 

2 k - l 

F 2k+1 S2k+1 " F 2 k - 1 S 2 k - 1 " x + 2- r Y~1T~Z 
n=l n n + 2 

Then, by addition, 

k 2 j - l 

F2k+1 S2k+1 " S l = "k + 2 ^ 2-r F F 10 . - - n n+2 3=1 n=l 

2k-1 

n=l n n + 2 n < 2 j ^ 2 k 

The inner sum is equal to 

£ * - * - Z * - * - [!] • 
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T h e r e f o r e , 

F 2 k + l S 2 k + l = S l - k + E F ^ j • 
n=l n n + 2 

This p roves (B). 

Also solved by M. Yoder. 

[Continued from page 350. ] 
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ADDITIONS TO THE SUMMATION 
OF RECIPROCAL FIBONACCI AND LUCAS SERIES 

WRAY G.BRADY 
Slippery Rock State College, Slippery Rock, Pennsylvania 

1. In two recent papers [1] , [2] , Brother U. Alfred Brousseau sur-
veyed the status of the summation of infinite reciprocal Fibonacci series. In 
this paper, we will add a few summations to those of Brother Brousseau. 

th We will use the notations Ln and Fn for the n Lucas and Fibonacci 
numbers. 

2. We have from Bromwich [3] 

2 n 

(1) x + x + . . . . + — x 

(H+iy E+u 
1 - x2 1 " x 1 - x2 1 - X̂  1 - X4 , .V ' 1 - X , 2 

The left-hand expression of (1) can be converted to 

45 

r(2jm) _ r(-2jm) 

if one substitutes x = r with fan integer and multiplies by <s/5. We then 
have 

(2) ^ F ( 2 L ) == ^ ( r ^ - l " r(m2n'1) _ J 

Clearly (2) gives rise to the infinite formula 

<3> £-4- = -i&-
~ F ( 2 J m ) r - 1 

402 
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30 One can easily show 

1 ^ 2 , 4 2n 

+ -—,— + _ + . . . + —^ 
X + 1 X2 + 1 X4 + 1 X2 + 1 

(4) 
,n+l 

x - 1 x 2 ( n + 1 ) - 1 

(Jolley [4] gives this formula for the infinite casee) Equation (4) can be con-
4m verted by the substitution x = r into 

(5) V 2Js
( 2 3 + l m ) _ 1 2 ^ 

j = 0 L<2JTim) r - 1 r(2"m) _ 1 

Since the final term of (5) goes to zero as n —»009 Eq. (5) gives rise to 

j = 0 L(2 J T i
m ) r * m - 1 

4. The author has not found the following summation formula in the 
li terature: 

,(3n) M x2(3n) 
(7) V - — 

Z ^ (3n+1) , x ^ 1 (3n+1) 

If in (7) we set x = r , we obtain 

(8) X ^ F(: 
Z-fT /0 

2m + l )3 j _ 1 1 
^ L ( 2 m + 1)3J+1 " 5 # 2 m + 6 ) - 1 " r (4m + 2)3 n + 1 _ 1 
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while if in (7) we set x = r , 

(9) 
n 

j ^ L(2m3J) ~ r 1 2 m - 1 " r ( 1 2 m 3 n + 1 ) _ 1 

4. Formula (7) suggests the following generalization: 

i=l 
(10) 

k-1 / . , j- lv 

z *(3k > 
(k1) 1 - x 

J L (k1-!) (k1) 
_ X V xv - x 

"r-f [". (M1)][".. (H1-!)] . (km) 
1=1 |_1 - X _||_1 - X J 1 - X 1 - X 

In (10), if x = r ( 4 n ) , 

(ID " ' 
^ J F(2nki)F(2nki_1) I r 4 n - 1 x 4nk m _ 1 J 

In (10) with k odd and x = r , we have 

m . 
(12) V L (2n + Dfe1 - k1-1)') 

^ L { ( 2 n + D K ^ L ^ n + Dtf1-1} r(4n+2) _ 1 r(4n+2)Mm _ ± 

Both (11) and (12) become infinite in an obvious way. 
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[Continued on page 412. ] 



A SERIES FORM FOR THE FIBONACCI NUMBERS F12n 

ROBERT C. GOOD, JR. 
Space Sciences Laboratory, General Electric Company 

King of Prussia, Pennsylvania 

ABSTRACT 

The Fibonacci Numbers, F - 2 , have been found to be expressible as a 
series: 

m m 

3=1 

and 

m 
F12(2m) = F ^ ] C t C ( m - 1 + J. 2j - 1) (5x12*J1"1] 

3=1 
3 

where m is the running index and C(p,q) is the combination of p and q. 
The rationale by which these series were derived is given: namely, by writing 
F, in the basic twelve system, recognizing groupings among the digits, and 
writing a summation series for the corresponding groups within sequential 
numbers. 

1. INTRODUCTION 

A list of 571 Fibonacci numbers, F, , given by Basin and Hoggatt [ 1] 
shows that Ft is 1 or I2 and F12

 i s 1 4 4 o r 12,2> N o other such coinci-
dences were found, at least for the second power. Other relations will be 
shown below for F 1 0 „ where n is an integer. 

J i-1 
If d. is the digit in the 10 place, then there are cyclic relations 

among the d.. That i s , dt of F k + 6 Q = dA of Ffe, and d2 of F k + 3 Q ( ) = d2 

of F . The cycling period for d3 is not to be found from the numbers in the 
K. 

above table. However, see Hoggatt [2]. 

405 
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To further the study of F - 2 let us examine Table 1 in which F, is 
written in the base twelve. The first 72 Fibonacci numbers are shown with 
X and e representing the tenth and eleventh digits, respectively. If D. is 
the digit in the 12 " place, it is evident that B1 of F k + 2 4 = B1 of F^, 
and D2 of F, 2 4 = D2 of F , . By examining an expansion of Table 1, one 
finds that D3 of F , + 2 8 g = D3 of Ffc. These cyclic relations suggest that 
the digits change in shorter cycles in the base twelve than in the base ten. 
Therefore, a sequence of digits might be more readily recognized in the base 
twelve than in the base ten. This paper presents the rationale by which the 
particular series were found. 

Table 1 
THE FIRST 61 FIBONACCI NUMBERS IN THE BASE TWELVE 

k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

| 16 

17 

18 

19 

20 

j 21 

22 

i 23 

24 

Fk 1 
1 

1 

2 

3 

5 | 

8 

11 

19 

2X 

47 

75 

100 

175 

275 

42X 

6X3 

ell 

l,5e4 

2,505 

2,Xe9 

6,402 

X,2ee 

14,701 

22,X00 

k 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

F k 

37,501 

5X,301 

95,802 

133,e03 

209,705 

341,608 

54e,lll 

890,719 

l,21e,82X 

l,Xe0,347 

3,10e,e75 

5,000,300 

8,110,275 

11,110,575 

19,220,82X 

2X, 331,1X3 

47,551,X11 

75,882,ee4 

101,214,X05 

176,X97,9e9 

278,0e0,802 

432,e88,5ee 

6Xe,079,201 

e22,045,800 | 

k 

1 49 
50 

1 51 52 
53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 
j 67 

68 

69 

70 

71 

72 

Fk 

1,611,102, X01 

2,533,148,601 

3,e44,24e,402 

6,477,397,X03 

X,3ee,627,205 

14,876,X03,008 

23,076,42X,211 

37,931,231,219 

5X,9X7,65e,42X 

96,718,890,647 

135,504,32e,X75 

210,021,000,500 

345,525,330,375 

555,546,330,875 

89X,X6e,661,02X 

l,234,3e5,991,8X3 

l,el3,265,432,911 

3,147,65e,204,5e4 

5,05X,904,637,305 

8,1X6,363,83e,8e9 

11,245,068,277,002 

19,42e,40e,Xe6,8ee 

2X,674,478,171,901 

47,XX3,888,068,600 
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2, GROUPS OF FOUR DIGITS 

Cer ta in F, f s have been ex t rac ted from Table 1 and i ts logical ex ten-

sion to form Tables 2(a) and 3(a); F 1 2 n a re shown where n is an odd in t e -

ge r in Table 2(a) and an even in teger in Table 3(a). 

The s m a l l e r F, f s contain a su rp r i s i ng number of z e r o s so that they 

a lmos t na tura l ly fall Into groups of four digi ts . F o r example , in Table 2(a), 

F6 0 = 210021000500 o r 21 - 0021 - 0005 - 00 

in which the four groups contain the smal l in tegers 2 1 , 2 1 , 5, and 0. When 
wr i t ten in the base ten, 

Ffi0 = 25 x 1210 + 25 x 126 + 5 x 122 . 

Table 2(a) 

FIBONACCI NUMBERS IN BASE TWELVE 

n 

.1 

3 

5 

7 

9 

11 

13 

15 

13 

15 

Fi2n 

F12 

F36 

F60 

F84 

F108 

F132 

F156 

F180 

F156 

F180 

j=9 8 

3 9274 

39265 

7 

9062 

3784 

9061 

e3773 

6 

1985 

e616 

6922 

5 

441 

3e83 

e615 

3571 

Table 2(b) 

l_e615 

D.6916 

jLe615 

_8356e 

4 

X5 

0799 

3224 

e350 

8676 

e350 

28676 

3 

21 

0127 

0483 

1145 

2772 

5576 

2772 

5576 

2 

5 

0021 

005X 

0106 

OIXe 

031e 

04X4 

031e 

04X4 

1 

1 

0003 

0005 

0007 

0009 

OOOe 

0011 

0013 

0011 

0013 

00 

00 

00 

00 

00 

00 

00 
00 

00 

00 

Row 
R 

1 

2 

3 

4 

5 

6 

7 

8 

7 

8 

"Bor rowed" in tegers 
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Table 3(a) 
FIBONACCI NUMBERS IN BASE TWELVE 

[Oct. 

n F^n 

2 F24 
4 F 4 8 

6 Fn 

8 F 9 6 

10 Fm 

12 F1 4 4 

8 F 9 6 

10 F1 2 0 

12 F1 4 4 

j=7 

40 

6 

9 

6463 

4063X2 

5 

1 

8581 

0821 

4 

e364 

6420 

X679 

Table 3(b) 

9856X 

_810784 

le362 

136414 

59X660 

3 

47XX 
3e50 

19e7 

8X86 

_23e50 

£19e6 

Jj)8X84 

2 

e22 

3888 

9398 

6774 

873X 

9398 

16774 

2873X 

1 

22X 

0686 

08e4 

0e22 

1150 

08e4 

0e22 

1150 

00 

00 

00 

00 

00 

00 

00 

00 

Row 
R 

1 
2 

3 

4 

5 

6 

4 

5 

6 
nBorrowed" integers 

Form Table 4(a) from Table 2(a) by writing the integers within each 
group in the base ten. In writing this table, certain numbers were "borrowed" 
from one group to expand a following group. (The "borrowed" digits are indi-
cated in Table 2(b) by underlining.) 

Likewise, form Table 5(a) from Table 3(a) using "borrowed" integers 
as shown in Table 3(b) as necessary. Further, since F 2 4 /F94 i s a*1 inte-
ger, form Table 5(b) by dividing all groups by 322 which is the only group in 
F24 (F24 = 322 x 122). Tables 4(a) and 5(b) are similar, especially the heads 
of the columns — 1, 5, 25, 125, etc. , which are powers of 5. Of course, the 
integer five plays a large role in the expression for Fibonacci numbers 

F k = Vs (H^J - (V*)k 

so one should not be surprised to find the digit 5 prominent in any expression 
for F k . 

By dividing each column by the number at its head, we obtain Table 4(b) 
from Table 4(a) and Table 5(c) from Table 5(b). Again, this process requires 
that digits be "borrowed" as noted above. 
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Table 4(a) 

FIBONACCI NUMBERS IN BASE TEN WITH SPECIAL NOTATION 

409 

n F 
n 1 

1 F 1 2 

3 F36 

5 F 6 0 

7 F 8 4 | 

9 F1 0 8 

11 F1 3 2 

13 F 1 5 6 

15 FJSO 

1 Ffi 
3 F33 
5 F60 

7 F 8 4 

9 F1 0 8 
1 1 F1 3 2 

1 3 F1 5 6 

15 F1 8 0 

j= § 

x l2 3 0 

78,125 

x l2 3 0 

x5 7 

1 

7 

x l 2 2 6 

15,625 

234,375 

x l2 2 6 

x5 6 

1 

15 

6 

x l2 2 2 

35125 

40 ,625 

281,250 

5 

x l2 1 8 

625 

6,875 

40,625 

171,875 

Table 4(b) 

x l2 2 2 

x5 5 

1 

13 
90 

x l2 1 8 

x5 4 

1 

11 

65 
275 

4 

x l2 1 4 

125 

1,125 
5,500 

19,500 

66,250 

x l 2 1 4 

x5 3 

1 

9 

44 

156 
450 

3 

x l2 1 0 

25 

175 

675 

1,925 
4 ,550 

9,450 

x l2 1 0 

x52 

1 

7 

27 

77 

182 

378 

2 

x l 2 6 

5 
25 

70 

150 

275 
455 

700 

x l 2 6 

X51 

1 

5 

14 

30 

55 

91 
140 

1 
j 
1 

x l 2 2 

1 

3 
5 

7 

9 

11 
131 
15l 

x l2 2 

x5° 

1 

3 
5 

7 

9 

11 

13 

15 

Row 
R 

1 

2 
3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

3e SERIES FORMS 

The rows in Tables 4 and 5 will be designated by R and the columns 
by j counting from r ight to left. F o r Table 5(c) the in tegers in each group 

a re the binomial coefficients o r the combinations C(R - 1 + j , 2j - 1). F o r 

Table 4(b), the in tegers in each group are not the binomial coefficient o r the 

combinat ions , but can be so exp res sed when a mul t ip l ie r and a d iv i sor a r e 

included: the express ion is 
(2R - 1)C08 - 1 + j , 2 j - 1) 

(R - 1 + j) 
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Table 5(a) 

FIBONACCI NUMBERS IN BASE TEN WITH SPECIAL NOTATION 

n F 
n 1 

2 F 2 4 

4 F 4 8 

6 F ^ 
8 F 9 6 

10 F1 2 0 

12 F1 4 4 

2 F 2 4 

4 F 4 8 

6 Fn 
8 F 9 6 

10 F1 2 0 

12 F 1 4 4 

2 F 2 4 

4 F 4 8 

6 F7 2 

8 F 9 6 

10 F1 2 0 

12 F1 4 4 

j= 6 5 4 3 2 1 ' 

x l2 2 2 x l 2 1 8 x l 2 1 4 x l2 1 0 x l 2 6 x l 2 2 

322 

1,610 644 
8,050 6,440 966 

40,250 48,300 16,100 1,288 

201,250 322,000 169,050 32,200 1,610 

1,006,250 2 ,012 ,500 1,449,000 450,800 56,350 1,932 

Table 5(b) 

x l2 2 2 x l 2 1 8 x l 2 1 4 x l2 1 0 x l 2 6 x l 2 2 

x322 x322 x322 x322 x322 x322 
1 

5 2 

25 20 3 

125 150 50 4 

625 1,000 525 100 5 

3,125 6,250 4,500 1,400 175 6 

Table 5(c) 

x l2 2 2 x l 2 1 8 x l 2 1 4 x l2 1 0 x l 2 6 x l 2 2 

x322 x322 x322 x322 x322 x322 

x5 5 x 5 4 x5 3 x52 X51 x5° 

1 
1 2 

1 4 3 
1 6 10 4 

1 8 21 20 5 

1 10 36 56 35 0 

Row 
R 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

1 . 
2 
3 
4 

5 

6 
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Of course, F^ is the sum of the numbers in a row multiplied by the 
proper factors for each column. It is convenient to write 122 as F12 and 
322 F12 as F24. One notes that in summing, j runs from 1 to R in every 
case. In Table 2(a), n = 2R - 1, and in Table 3(a), n = 2R. Therefore, 
for the odd multiples of 12, one has 

R r 1 
JJ12(2R-1) K*n ' 1 2 Z J ( R - 1 + j j * J 

j=l 

and for the even multiples of 12, one has 

R 
F12(2R) = F 2 4 S f C ( R • * + js 2 j " 1} X ^ X 1 2 4 ( j~1 ) ]" 

5. SUMMARY 

(A) d. for F, occur in cycles,, The cycles of d. are shorter when 
F, is written in the base twelve than when F, is written in the base ten. 

(B) F 1 ? written in the base twelve may be split into groups of four 
digits. Some borrowing among groups may be needed for the larger numbers 
to retain integers in the groups. 

(C) When the groups are rewritten in the base ten, certain features 
standout: (1) For n odd, F - 2 /F 1 2 is the integer shown in Table 4(a). 
(2) For n even, F-« / F 2 4 is the integer shown in Table 5(b). (3) Each 
column of integers is divisible by a power of five given by 5J" where j is 
the number of the column counting from right to left. (4) The quotients left 
after dividing by 5̂ "" are expressible as combinations and factors using the 
row and column designators. (5) F, is formed by summing the numbers in 
its row multiplied by the proper factors for each column. 

(D) F1 2 n may be expressed by the summation series that are given in 
the Abstract. 
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"Divisibi l i ty P r o p e r t i e s of the Fibonomial T r i a n g l e , " 
A. P . Hi l lman, Univers i ty of New Mexico, Albuquerque, New Mexico 

"Broadening Your Fibonacci H o r i z o n s , " 
B ro the r Alfred Brous seau , St. MaryTs Col leges Cal i fornia 

"Golden and Silver R e c t a n g l e s , " 
Mar jor ie Bicknel l , A. C. Wilcox High School, Santa C l a r a , Calif. 

[Continued on page 436. ] 



TRIANGLES DjE FIBONACCI 
W.C. BARLEY 

Los Gatos High School, Los Gatos, California 

Consider a triangle whose sides have lengths represented by Fibonacci 
numbers and whose area is non-zero. In fact, while you are at it, consider 
several. 

Also consider the possibility that the area, perimeter, and altitude to 
the base might be expressible in terms of Fibonacci numbers. 

It doesn't take long to discover that all the triangles under consideration 
are isosceles. Further, it is obvious that the perimeter is already expressed 
in terms of Fibonacci numbers. But what about the area and the altitude to 
the base? 

To aid and accomplish this end, it is suggested that Hero's formula for 
finding the area of a triangle be used. That is: 

A = lJs(S - a)(S - b)(S - c) , 

where 

S = | (a + b + c) 

if a, b, and c are the sides of the triangle. 

Before continuing, it might be helpful to classify the triangles into some 
general categories and thus avoid random samples. The aim here, should It 
be attempted before reading on, would be to classify ALL the Fibonacci 
triangles. 

The form selected here will be where the sides have length F^, F
n

j F
n v 

with k an integer. Thus the groups of triangles might be represented as 
follows: 

413 
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F n 

L 

k = - 1 

2 , 2, 3 

3, 3 , 5 

5, 5, 8 

etc. 

k = 2 

3 , 3, 1 

5, 5, 2 

8, 8, 3 

etc. 

k = 0 

1, 1, 1 

2 , 2 , 2 

3, 3 , 3 

etc. 

k = 3 

5, 5, 1 

8, 8, 2 

13, 13, 3 

etc. 

k = 1 

2 , 2 , 1 

3 , 3 , 1 

5, 5, 3 

etc. 

k = 4 

8, 8, 1 

13, 13, 2 

2 1 , 2 1 , 3 

etc. 

and so on for k > - 1 . 
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Now for an intuitive idea of what the area of a Fibonacci triangle might 
be for any k. 

For k = - 1 , 

SIDES | 

2 , 2 , 3 

3 , 3 , 5 

5, 5, 8 

8, 8, 13 

13, 13 , 21 

Without using 
F , F , and n n 
F , in the n -k 
formula , what 
is the a r e a in 
g e n e r a l ? 

F 3 , F 3 , F 4 

F 4 , F 4 , F 5 

F 5 , F 5 , F 6 

F 6 , F 6 , F 7 

F 7 , F 7 , F 8 

F , F , F _Ll j n n n+1 

AREA (usin 

Q L /•-

f V l - 7 

5 ,. 
| ^ i • i i 

8 , 
| N/2 • 18 

1 o 
J | W 3 - 2 9 

°1 
^ NT5 • 47 

ig Hero's formula) 

F4 
^ V F l L 4 

F 5 
T - ^ F 2 L 5 

Ffi 

L ; ^ F 3 L 6 

F7 
_ V F 4 L 7 

FR . 
t^^F^ 

F +]_ 
" i f ^Fn-2Ln+l 

Once again, the generalization is found by looking at these two columns, 
What APPEARS to be the relationship between the specific example and its 
answer — then generalize. It will be seen later how this can be proved, or 
really how it can be verified as one expression for the area. 

The reader may now wish to complete the following: 
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k = 0 

[Oct. 

F , F , F n n n 

F2 

n5 n ' n - 1 | 

F n - 1 
\ / L n - l F n + 2 
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k = 2 

417 

F , F , F 0 n n n -2 TT^WV^W 

k = 3 

*V Fn' Fn-3 TT ^VFn-4 + W 
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There is no need to stop at k = 3 and the interested reader may later 
with to continue. However, temporarily put aside the information found so 
far. 

The Pythagorean Theorem and the fact that the base of an isosceles t r i -
angle Is bisected by the altitude to that base leads to: 

h2 + (ivk)! F2 
n 

or 

h2 = 
4F 2 - F . n n-k 

and 

or 

h = 1 JZ l*" - F2 . 2 * n n-k 

J F 2 F 2 ^ F 2 . 
h = t 3 n n " k 

F3 

• n - k 

Then since A = 1/2 bh , 

F 
A = _£ l t gF'fF yi 2 Tp2 

3 n n-k 

It is unlikely that this was what was arrived at using Hero!s formula — 
and it might prove Interesting to equate the two at this time. That i s , for 
k = - 1 , 

"n+1 A = — | F n - 2 V l 

using Hero?s formula 



1971] TRIANGLES DE FIBONACCI 

F 

419 

A = n+1 J F 2 F 2 - F2 
¥ d n n n+1 

using A = 1/2 bh„ T h e r e f o r e , 

'n+1 
L3 " ¥ ^ i - 2 ^ n + l 

n+1 /F 2 F2 - F 2 
\ 3 n n n+1 

o r 

F n - 2 L n + 1 
•p2 p 2 

3 n n+1 

and 

F 2 F 2 
3 n 

Jn+1 

F 2 
n+1 

n-2 

which i s the same as 

! L = n 

F 3 F n - l - F L 
F n-3 

T h u s , a new method for obtaining ident i t ies , 

Although k = 0 is r a t h e r un in te res t ing , the r e a d e r may now wish to 

check and see what ident i t ies a r e produced by o ther k f s . The r e s u l t s can be 

proved by conventional methods., 

Anyone for Lucas t r i a n g l e s ? 
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[Continued from page 356. ] 
A PROPERTY OF MULTINOMIAL COEFFICIENTS 

0 
0 

- 1 

1 
0 

°\ 
0 
1 

. 1 / 1 - 1 
0/ \ 0 

[Oct. 

-1 
0 
1 

0 
0 

4. EXTENSION TO OTHER NUMERICAL TRIANGLES 

Although we have es tabl i shed the equality of products ove r the se lec ted 

m se t s of (m + 1) e lements where the e lements a re mult inomial coefficients, 

the r e su l t s r ema in valid when the sequence 1, 2 , 3 , • - • , n , • • • in the 

mult inomial coefficients i s replaced by the Fibonacci Sequence F l 5 F 2 , F 3 , 

• •• , F , . . . (Fi = 1, F2 = 1 and F ^ = F . + F for n 2 1.) The 
n l L n+2 n+1 n 

genera l ized binomial coefficients in [ 3 ] a re in t ege r s and the genera l ized 

mult inomial coefficients a re in tegers in [ 2 ] . This i s enough to guarantee the 

validity of both the t h e o r e m s . This occu r s because the identification of the 

var ious fac tors was independent of the pa r t i cu l a r function. In the case of the 

or iginal t heo rem, f(n) = n ! . In the case of the extension, f(n) = F ^ • • * F . 

Thus 

/kt + k2 + . . . + k \ 

\ ki> k2> k3, ••• , k^J 
f(ki + k m ) 

f(ki)f(k2) . . . f ( k m ) 

k i + . . 0 + k m 

n 
i=l 

. - 1 . - 1 i=l i=l 

F. 
1 

x m 
T T F . T T F . - TTF, 

(as in [ 2 p , instead of 

/ kj + • • • + km \ 

\k 1 , k2! • • • , k m ) 

(kj + k2 + 

k T k ^ 
• + km)I 

The cor responding N i s 
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, m - 1 n + i 

N 

n - 1 / n \ m - l n + i 

i= l \ i= l_ / 1=1 

where n = kj + k2 + • * * + k 

REFERENCES 
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4. Henry W. Gould, "Equal P r od u c t s of Genera l ized Binomial Coeff ic ients ," 

Fibonacci Quar te r ly , Vol. 9, No. 4 , pp. 337-346. 

[Continued from page 488. ] 

where 
H n + 2 = H n + 1 + H n • 

The following ident i t ies w e r e obtained from (13.2): 

<13'10> H4n+4+p - H2n+2+p = g ( ^ Y " ^ 3 1 3i+3+p 

H - 5 n + 1 H 
"8n+8+p n4n+4+p 

n q l l l _ o ^ 2 ] / 2 n + l - 2 i \ i 
(13.11) - 3 ^ ^ 2 . j 5 H 1 2 i + 3 + p 

••Tfc-yH - Q x „j . . , J0L12j+8+p + H l L 1 2 j + 9 + p ) 
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Many more Fibonacci identities are readily obtainable from (13.1) and (13.2). 

14. REMARKS ON THE PAPER 
BY HOGGATT, PHILLIPS, AND LEONARD [5] 

All the 22 identities in [5] are special cases of our general results. 
The 22 identities appear in the Master!s thesis of Leonard [6]. The notation 
(A, 1.6) means that identity A of [5] is a special case of our identity (1.6). 
Thus, we have the remaining identity pairings for special cases of our results: 
(B, 1.8), (C, 4.7), (D, 4.3), (E, 1.6), (F, 1.8), (G, 4.7), (H, 4.3), (I, 1.15), 
(J, 1.16), (K, 1.11), (L, 1.13), (M, 1,9), (N, 1.12), (P, 4.8), (Q, 4,4), 
(R, 4.5), (S, 4.9), (T, 1.16), (U, 1.15), (V, 1.16), and (W, 1.15). 

Since A and E are obtained as special cases of our (1.6), A and E 
are therefore not independent, i. e. , by a change of parameters , A can be 
transformed to E and vice versa. Thus, a perusal of the above pairings 
gives us the following dependent identity grouping: (A,E; 1.6), (B,F; 1.8), 
(I,U,W; 1.15), (J,T,V; 1.16), (D,H; 4.3), (C,G; 4.7). Since K, L. M,N, P, 
Q, R, and S are independent, the 22 identities A, B, • • • ,W, contains now 
only 14 independent identities. 
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AN EXAMPLE OF FIBONACCI NUMBERS USED 
TO GENERATE RHYTHMIC VALUES IN MODERN MUSIC 

EDWARD L LOWIVIAW 
200 Santa Clara Avenue, Oakland, California 94610 

It has been said often enough that mathematics and music are somehow 
related. Whether or not such a statement can be supported in detail, pro-
portion is certainly a major structural and expressive element in music* 
Time, in particular, seems to want clear-cut divisions and organization, r e -
flecting perhaps our uneasiness in dealing with it. 

In music of the twentieth century, the occurrence of two devices of 
temporal organization involving Fibonacci numbers stands out. One of these 
is the structuring of the lengths of phrases and sections in Fibonacci propor-
tions. The other is the use of Fibonacci numbers, as well as other mathe-
matical series and functions (even random number tables), to generate what 
are known as "irrational" rhythmic values. 

Rhythm in Western music of the past was based on durational patterns 
which could be reconciled easily to some short repeating unit of time. This 
unit is the Mbeat. n However long or short the beat, the rhythmic values of a 
passage would be multiples or divisions of it simple enough that the beat it-
self could be perceived. 

Some composers? however, have felt that uniform beats grouped in 
twos, threes, and fours produced rigidity and "squareness," the so-called 
"tyranny of the barline. " Claude Debussy, for example, deliberately ob-
scured the beat by using long tones which did not always move at the beginning 
of a beat. 

Not until more recent times, however, have composers tried to write 
irrational rhythms, rhythms which suggested no beat at all. From the outset, 
composers found that generating such rhythms from little numerical "games" 
stimulated their imaginations, assured a measure of consistency, and taught 
them to free their minds from old and ingrained habits. There was, after 
all, the present danger of falling back into beats without realizing i t 

New techniques are often like this. In diatonic music the key signature 
appears at the beginning of every line of music, while the time signature 

423 
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appears only at the beginning of the piece or at points of change. We are told 
that in the seventeenth century, when diatonic practice was new, musicians 
needed to be reminded of the key signature, while they were familiar with the 
older times signature. It has been suggested that the strictness of early 
"twelve-tone" music springs in part from a similar problem: the composers1 

ears were too well trained in diatonic harmony to be completely consistent in 
the new natonal" medium. 

Although many kinds of manipulations can produce irrational rhythms, 
composers have been most interested in numbers which do things. A random 
number table is just a bunch of numbers. A chart made from various p e r -
mutations of the Fibonacci series (0,1), a great favorite with many composers, 
constantly reveals surprising and provoc ative relationships. In the composerTs 
mind, these are often transformed immediately into musical ideas. 

The following diagram is a simple example given as an exercise by 
Jean-Claude Eloy (elTwahf), a prominent pupil of Pierre Boulez, when he was 
teaching at the Berkeley campus of the University of California. He begins 
with six members of the Fibonacci series (0,1) and multiplies them by the 
numbers one through six so as to produce six rows of differing lengths (Fig-
ure 1). 

He then scrambles the numbers one through six, or "permutes" them 
as he used to say, according to an arbitrarily chosen law, in this case s tar t-
ing with the middle two numbers and working outward by pairing the next 
larger with the next smaller and the largest with the smallest. The numbers 
123456 now read 435261. Beside each of these numbers he now places a row 
from Figure 1, while the four-number row beside the number four of the new 
column, the three-number row beside the number three, etc. (Figure 2). 
These rows, too, are permuted, using the same principles, but alternating 
between starting at the middle and working outward and starting at the ex-
tremes and working inward. He also alternates between placing the larger 
number of each pair first or second. The Roman numerals represent group-
ings based on the position of the number six, the only one which appears three 
times in the array. This grouping is used at this point only to continue the 
alternation of permutation methods on the basis of odd- and even-numbered 
rows. 
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1 2 3 5 8 13 
2 4 6 10 16 
3 6 9 15 
4 8 12 
5 10 
6 

4 
3 
5 
2 
6 
1 

15 
.4 

16 
5 

13 
6 

3 
12 

2 
10 

1 

Figure 1 

10 In 
m 

Figure 2 

The rows are separated in Figure 3, and an integer is placed beneath 
each member. For the row containing four numbers, the numbers one through 
four are permuted and distributed. When all the rows have been treated in 
this manner, these new numbers are used to determine the number of inte-
gers to be placed at each point in yet a third row. (The permutation game 
continues.) When the number one appears in the second row, it simply car -
ries down to the third to produce some long values. 

Now the musical problem is posed. In each vertical group of three, the 
uppermost figure is to represent an amount of time, measured in seconds. 
The second figure represents the number of segments into which this period 
of time is to be divided, and the figures of the third level give the relative 
lengths of these segments. Thus 15/3/324 is fifteen seconds divided into 
three parts whose lengths can be expressed by the ratio 3:2:4. These pro-
portions are to be written in traditional notation, with a quarter note repre-
senting one second ( J = 60). 

Row one is written out in Figure 4. As can be seen, seconds must be 
divided into fifths and tenths to express the three-second and nine-second 
units. The notation p5(«f):4-r means five sixteenth notes in the time of four. 
(Remember that a quarter note represents a second.) 
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15"[ 3 " | 9") 6"| 
F T j i_2j I 4 \l (1234-> 3241) 
1324 | 41 (1234 

(12345-+34251) 

III 1. _5^J 10 

I 21 
1 (12-* 21) 

2. 13" | 1" | 
1 3 4 | j__2j 1 5 j 
(516 15243 136 161524 

II 1. 4^ | 12"| 8" | 

I 2 ; I 1 I 3 , (123 213) 

23 123 

2. 16"| 2" | 10" | 4" | _& 
1 3 I I 4 j i 2 | 1 5 | I 1 
I 514 "2315 | 2 4 135142 

436152 

3. ^ 

Figure 3 

(12 3456-+342516) 

15" | 

LLJ 
1324 1 41 

-3(J ) :2 -

Il423 

-5(J>):4-| ,-5(i):4-r 

• d . «1 • o d d « « . • « «F el . 

* = 60 or : 

,-5(i*):4-i 

J J j U 

J J ^ J 
<m. m* <®. . o 

[Continued on page 436. ] 

F igure 4 



CONTINUED FRACTIONS OF QUADRATIC FIBONACCI RATIOS 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, St Mary's College, California 

In a previous article [1] the author investigated the continued fraction 
representation of linear Fibonacci ratio s, A s a sequence of this work a study 
has been made of certain quadratic ratios and their representation in contin-
ued fractions. The program as carried out was twofold: (1) Ascertaining the 
pattern or patterns; (2) Proving that these patterns hold in general* We shall 
begin with a couple of elementary examples and then report more fully a case 
of greater difficulty0 Other patterns discovered and proved will then be listed, 

THE RATIO F ^ + 1 /F2 

The pattern in this case can be devined readily from a few examples, 

F2
5 /F | = 25/9 = (2, 1, 3, 1, 1) 

F2
6 /F | = 64/23 = (2, 1, 1, 3, 1, 1, 1) 

F2
7/F2

6 = 169/64 = (2, 1, 1, 1, 39 1, 1, 1, 1) 

It appears that in general 

F2nVFn = (2' W 3' W 
where the subscripts of the l ?s indicate the number of times the quotient 1 
occurs at the point in question, 

We first examine the initial portion of the expansion represented by 
2, 1 0 . Forming a table of convergents: n-3 & & 

0 

1 

1 

0 

2 

2 

1 

1 
3 

1 

1 

5 

2 

1 
8 

3 

1 
13 

5 

1 
21 

8 

1 
34 

13 

we can conclude that 

427 



428 CONTINUED FRACTIONS [Oct. 

< 2 ' W = Fn/Fn-2 • 

If we now adjoin the 3 to the above table we have 

1 1 3 

F - F 3F + F , 
n-1 n n n-1 

F n - 3 F n -2 3 F n -2 + F n - 3 ' 

Additional lTs simply mean that the last two convergents are being treated 
as the first two terms of a Fibonacci sequence. Now if we start a sequence 
with a and b, the n term is 

T = F 0 a + F -b n n-2 n-1 

In the present instance, therefore, we have for the numerator 

F 0 F + F , (3F + F , ) , n-2 n n-1 n n-1 

which can be shown to be equal to F2 ... Similarly the denominator comes 
out F 2 . 

THE RATIO L2 / F 2 

In this case, the pattern can be derived directly from two formulas, 
namely: 

L 2n = 3 F l n + 4 

L ! n + 1 = 3 F l n + l " 4 • 

From the first relation it follows that 

L2 / F 2 = 5 + 4/F2 
2n / 2n ' 2n 

Then if F 2 n = 0 (mod 2), 
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L L / F 2 2 n = <5>F22n/4> • 

If F 2 n = 1 (mod 2) , 

L2n/F22n = (5' [*V4-1 • 4> 

where the square b r acke t s indicate the g rea t e s t in teger function, 

F r o m the second re la t ion , 

Then 
L 2 2 n V F 2 n + l " 4 + <F2n+l " ^ I n + l 

F2n+1 / ( F 2n + l " 4 ) = 1 + ^ L H - I " 4 ) 

If F 2 - = 0 (mod 2) 5 the final outcome i s 

L22n+1 / F 2 2n + 1 = <4' L ^ n + l ~ 4>/4> • 

I f F 2 n + l s l ( m o d 2 ) ' 

L l n + 1 / F 2 2 n + 1 = (4, l , [ ( F | n + 1 - 4 ) / 4 ] , 4 ) . 

THE RATIO F2 / F 2
 Q n ' n - 3 

The ca se we shall cons ider in some detail is the ra t io F 2 / F 2
 Q as i t 

n n~~o 
i s sufficiently complex to br ing out the techniques r equ i red in finding and 

pr iving the patterns, , We l i s t f i r s t the continued fract ion expansions for 

n = 4 to n = 35. (See Table 1.) 

F r o m this t ab le , it appear s that for n > 12, the pa t t e rns a r r ange 

themse lves modulo 6 as follows: 

n = 6k . (17f ( 1 , 1 6 ) k _ 2 , 1, 15 , 17, (1 , 16) k _ 3 > 1, 17) 
n = 6k + 1. (17, (1 , 1 6 ) k _ 2 , 1, 17, 1, 3 , ( 1 , 2 , 1, 3 ) ^ , 2) 

n = 6k + 2. (17, (1 , 16 ) k _ 1 ? l g , 3 , ( 1 , 2 , 1, 3 ) ^ , 2) 

n = 6k + 4. (17, (1 , 1 6 ) k _ r 1, 8, (1 , 16)k) 

n = 6k + 5. (17, (1, 1 6 ) k _ l 5 1, 24, (1 , 16) k ) 
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Table 1 
CONTINUED FRACTION EXPANSION OF F2 / F 2

 Q 
n ' n-3 

n 
4 (9) 

5 (25) 

6 (16) 

7 (18,1,3,2) 

8 (17,1,1,1,3,2) 

9 (18,16) 

10 (17,1,8,1,16) 

11 (17,1,24,1,16) 

12 (17,1,15,18) 

13 (17,1,17,1,3,1,2,1,3,2) 

14 (17,1,16,1,1,1,3,1,2,1,3,2) 

15 (17,1,17,15,1,17) 

16 (17,1,16,1,8,1,16,1,16) 

17 (17,1,16,1,24,1,16,1,16) 

18 (17,1,16,1,15,17,1,17) 

19 (17,1,16,1,17,1,3,1,2,1,3,1,2,1,3,2) 

20 (17,1,16,1,16,1,1,1,3,1,2,1,3,1,2,1,3,2) 

21 (17,1,16,1,17,15,1,16,1,17) 

22 (17,1,16,1,16,1,8,1,16,1,16,1,16) 

23 (17,1,16,1,16,1,24,1,16,1,16,1,16) 

24 (17,1,16,1,16,1,15,17,1,16,1,17) 

25 (17,1,16,1,16,1,17,1,3,1,2,1,3,1,2,1,3,1,2,1,3,2) 

26 (17,1,16,1,16,1,16,1,1,1,3,1,2,1,3,1,2,1,3,1,2,1,3,2) 

27 (17,1,16,1,16,1,17,15,1,16,1,16,1,17) 

28 (17,1,16,1,16,1,16,1,8,1,16,1,16,1,16,1,16) 

29 (17,1,16,1,16,1,16,1,24,1,16,1,16,1,16,1,16) 

30 (17,1,16,1,16,1,16,1,15,17,1,16,1,16,1,17) 

31 (17,1,16,1,16,1,16,1,17,1,3,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,3,2) 

32 (17,1,16,1,16,1,16,1,16,1,1,1,3,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,3,2) 

33 (17,1,16,1,16,1,16,1,17,15,1,16,1,16,1,16,1,17) 

34 (17,1,16,1,16,1,16,1,16,1,8,1,16,1,16,1,16,1,16,1,16) 

35 (17,1,16,1,16,1,16,1,16,1,24,1,16,1,16,1,16,1,16,1,16) 
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To establish these patterns, it is first necessary to examine various portions 
of the expansion and prove that their forms continue to hold for all values of 
k. For the first portion, we have Table 2. 

Table 2 
FIRST PORTION OF THE EXPANSION 

Quotient 

17 

1 

16 

1 

16 

1 
16 

1 

N u m e r a t o r 

17 

18 

305 

323 

5473 

5796 

98209 

104005 

Denominator 

1 

1 

17 

18 

305 
323 

5473 

5796 

Numera to r 

F 9 / 2 

F f i /8 
F i s /2 
F i s /8 

F21/2 
F 2 4 / 8 

F 2 7 /2 

F30/8 

Denominator 

F3/2 

F 6 / 8 

F9/2 
F12/8 

F i 5 / 2 

F I B / 8 

F21/2 

F 2 4 /8 

th 
Let p /q be the partial quotient for the n step in Table 2. Then assum-
ing that for n odd 

% = F 3 n / 2 > 
Pn +1 = ( F 3 n + 9 ) / 8 • 

V l = ( F 3 n + 3 ) / 8 • 

it would follow that 

Pn+2 = 1 6 ( F 3n + 9 ) / 8 + «W/2 

Similarly, for qn+25 

Pn +3 = ^ + 1 2 ^ 2 + (F3n+^8 = ^ + 1 5 J / 8 
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Similarly for qn+3-
Thus, the pattern is seen to hold by mathematical induction. Consider 

next the portion (1,16), . 

Quotient 

1 

16 

1 
16 

1 
16 

1 
16 

Table 3 

PORTION (1, 

N u m e r a t o r 

1 

17 

18 

305 

323 

5473 

5796 

98209 

,16)k 

Denominator 

1 
1 

17 

288 

305 

5168 

5473 

92736 

It appears that for n odd, 

n = ( F3n+3>/8 

\ = F 3 n / 2 ' 
K n+1 °W/2 

V l = ( F3n+6>/2 F 3 n / 2 

Again, this pattern can be shown to hold by mathematical induction. Another 
part of some of the patterns is ( 1 , 2 , 1 , 3), . (See Table 4). 

This pattern continues leading to assumed values for n = 0 (mod 4) as 
follows. 

Pn = ( L 3 + 6 k ) / 4 " F 6 k / 2 ' 

Jn+1 <L3+6k>/4 

From this assumption, 
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Table 4 
PORTION (1, 2, 1, 3)k 

Quotient 

1 

2 

1 
3 

1 

2 

1 

3 

Numerator 

1 

3 
4 

15 

19 

53 

72 

269 

Denominator 

1 
2 

3 

11 

14 

39 

53 

198 

Numerator 

L3/4 
F6/2 - L3/4 

F6/2 
L9/4 - F6/2 

L9/4 
F12/2 - L9/4 

F f i /2 
LIB/4 - F12/2 

Denominator 

Fi + F0/8 
(3L3 + 4F2)/8 
•F6/2 - L3/4 

11 F6/8 
F 7 + F6/8 

(3L9 + 4F8)/8 
F^ /2 - L9/4 

HFffi/8 

= L 3 + 6 k - F 6 k / 2 - ( L 3 + 6 k ) / 4 

= F4+6k + F2+6k " F6k / 2 " (L3+6k>/4 

= F4+6k + ( F 3 + 6k } / 2 " ^SH-Sk^4 

= ^ e k * / 2 - ( L 3 + 6 k ) / 4 ' 

which agrees with the observed pattern. 
From this, 

Pn+3 = ( F 6 + 6 k
) / 2 " ( L3+6k) / 4 + S+ek^4 = <W>/2 

Then 

Pn+4 = 3 ( F 6 + 6 k ) / 2 + ( F 6 + 6 k ) / 2 " ( L 3 + 6 k ) / 4 

= 1 0 ^ k ^ 4 " ( L 3 + 6 k ) / 4 " ( F 6 + 6 k ) / 2 

= ( F 9 + 6 k ) / 4 + 2 ( F 8 + 6 k ) / 4 " ( F 6 + 6 k ) / 2 

= ( L 9 + 6 k ) / 4 " ( F6+6k>/2 

Finally, 
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Pn+5 = ( L9+6k>/4 " ( F 6+6k ) / 2 + F 6 + 6 k ) / 2 = ( L 9 + 6 k ) / 4 ' 

Similar considerations show that the qfs follow the observed pattern. 
The next step is to put the pieces together for the six given cases. For 

n = 6k, the first part is given by the partial quotients (17, (1,16), ,1). 
The last part can be remodeled to this same form by changing the final 17 to 
16,1. Between these two sets of quantities is 15. Thus, the numerator and 
denominator can be evaluated from Table 5. 

Table 5 

15 + aw'1"** Quotients 
Numerator 
Denominator 

16 

o W 2 
F 6k-9 

1 

F 6 k / 8 

( F 6k-6>/ 8 

The numerator would therefore be 

1 5 F 6 k / 8 + ( F 8 k - 6 ) F 6 k / 8 F 6 k + ( F 6 k - 3 ) / 2 

= 1 6 F 6k / 8 F 6 k 
The denominator evaluates to 

15 {F6k-6)/8 + Flk-6 + {F6k-9)/2 • 

which after some calculation gives 16 F | . „ /8Ffi , . Thus, the ratio repre-
sented is F2, / F L O. Similar considerations apply to the other five cases, 6k ' 6k-3 

SUMMARY OF RESULTS 
1. F2 - / F 2 . Pattern already given. 
2. Patterns of F2 / F2 „ . 

n ' n-2 
F 4 k + 1 / F 4 k - 1 = (6> ( 1 . 5 ) k _ r 3, d . 5 ) k _ 2 . 1. 6) 

F 4 k + 2 / F 4 k = ( 6 ' ( 1 ' 5 ) k - 2 ' *' 6> 8 ' ^ W 1 ' 6 * 
F 4 k + 3 / F 4 k + l = < 6 . < l . « k - r l 5 3 , 5 , ( l , 5 ) k _ 2 , 1,6) 

F 4 k + 4 / F 4 k + 2 = (6> ( 1 ' 5 ) k - l ' 1 ' 8 ' 6 ' ( 1 ' 5 )k-2> ^ • 



1971] OF QUADEATIC FIBONACCI RATIOS 435 

All these results hold down to k = 2, 
3„ Patterns of F2 / F 2 _„. Already given. 
4„ Patterns of L2 /L2 ., . n n-1 

L n / L n - 1 = (2 5 L n _ 5 5 2 ,9 expansion of L n _ 3 / L n _ g ) ' for n 9. 

5. Patterns of L2 /L2
 0 . 

n ' n-2 
/ (L ) / 3 \ 

L 4 k / L 4 k - 2 = ( - 6 , ( l , 5 ) k _ 2 , l , 4 , 2 , 3 3 , expansion of ^ D 1 

L4k+1 / L 4 k - 1 = ( M l » 5 ) k _ 2 , l , 6 , l , l , 2 , l , 3 , 3 3 , expansion of 
( L 4k -10 / 3 ) / L 4k - 15 ) 

L4k+2 /L4k = (6»(1>5)k_i» 1 ,1 ,1 ,1 ,2 ,3 ,2 ,1 ,3 ,33 , expansion of 

L 4k+3 / L 4k+l = ( 6 ' ^ ^ - l ' 1 ' 1 9 , expansion of (L4 k + 2 /3 ) /L 4 k _ 3 ) 

6. Pattern of L2 /F . Previously given. 
7. Patterns of L2 /F 2 _ r 

L k + 5 / F k + 4 = <13' U k ' 2> 4> "k> d o w n t ° k = ° -
L 2 5 k + 6 / F k + 5 = (13> n k - l ' 10> !• 24> 1 1 k ) d 0 W n t 0 k = 1 -
L k + 7 / L k + 6 = ( 1 3 ' nk> 7> 9» 1 1k ) d 0 W n to k = 0 . 

L k + 8 / F k + 7 = <13' n k ' 14> 12> 1 1 k ) d 0 W n t ° k = °" 
L k + 9 / F k + 8 = ( 1 3 ' n k ' 10> 3> !• 10> 1 1 k ) d 0 W n t 0 k = °-

REFERENCE 

1. Brother Alfred Brousseau, "Continued Fractions of Fibonacci and Lucas 
Ratios/1 Fibonacci Quarterly, Dec. 1964, pp. 269-276. 
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The question always arises: 'Is it music?" Well no, not yet, no more 
than a few geometric shapes sketched on canvas constitute a painting. The 
composer can use his numbers to build up larger structural units as well as 
using them to "control11 other elements such as texture, timbre, dynamics, 
and even pitch. In this example, Eloy used his groupings designated by 
Roman numerals to suggest further development. If the patterns suggested 
by the numerical scheme do not produce the kinds of sounds and structures 
the composer desires , however, he must either depart from them or try a 
new scheme. It is not surprising that many composers use the results of 
such an exercise simply to stimulate their imaginations, without resorting 
to thorough-going applications. 

Regardless of the techniques employed, composers, having already 
passed through a period of re-evaluation concerning pitch structures, have 
launched into a far-reaching reconsideration of time and its musical organi-
zation. In this endeavor, Fibonacci proportions have been among the most 
favored and most useful tools, providing an alternative both to the old tech-
niques and to randomness. 

[Continued from page 412, ] 

nA Symmetric Substitute for Stirling Numbers," 
Professor A. P. Hillman, University of New Mexico, Albuquerque 

"A Bouquet of Convolutions," 
Professor V. E. Hoggatt, J r . , San Jose State College, San Jose, Calif. 

"On a Generalized Catalan Sequence," 
Richard Jow, Graduate Student, San Jose State College 

"On a Theorem of Suryanarayana," 
Professor Hugh Edgar, San Jose State College 



SOME MORE FIBONACCI DIOPHANT1NE EQUATIONS 
V.E.HOGGATTJR. 

San Jose State College, San Jose, California 

It i s well known that the Quadratic Diophantine equation y2 - 5x2 = ±4 
has solutions in in tegers i£ and only if y = L and x = F , n an in teger . 

F o r a proof by infinite descen t see [ 2 ] . The underlying identi ty is 

L2 _ 5 F 2 = 4 ( - l ) n , n n ' 

The re a re o ther quadrat ic Diophantine equations which a r e F ibonacc i -

re la ted . In "Fibonacci to the Rescue" [ 1 ] , t he re occu r s 

(1) x2 + x(y - 1) - y2 = 0. 

The proof that solutions in posi t ive in tegers a re poss ible if and only if x = 

F2p+1 md y = F 2 p + l F 2 p + 2 a p p e a r S n o v e L 

Solve quadrat ic equation (1) for x. In o r d e r for x to be an in teger , 
the quadrat ic d i sc r iminan t 

(y - I)2 + 4 / = k2. 

Set y - 1 = m2 - n2, 2y = 2mn, and k = m2 + n2 so that 

m2 - mn - n2 = - 1 , 

which, when solved for m yields 

2p+l 

n ±W 5n2 - 4 m = g . 

Thus m is an in teger if and only if 5n2 - 4 = s2. It follows that n = F 

and s = L 0 , - for some in teger p . 2p+l & ^ 
It follows that m = F 2 p + 2 or - F 2 p since L 2 p + 1 = F 2 p + 1 + 2 F 2 p . 
Thus y = mn = F 2 p + 2 F 2 p + 1 or - F 2 p + 1 F 2 p . Since k = m* + n ' , it 

follows that , for 
m = F 2p+2 ^ n = F2p+1 ' 

X = - F 2 P + 2 ° r F 2 p + 1 a n d 3r = F 2 p + 2 F 2 p + l ' 

while for m = - F 2 p > n = F 2 p + 1 > 

x = - F | p or F 2
2 p + 1 and y = - F 2 p + 1 F 2 p . 

These a re the only in tegra l solutions to x2 + x(y - 1) - y2 = 0C 

[Continued on page 448. ] 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. H!LLMAS\I 
University of S\!ew Mexico, Albuquerque, l\Sew Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics* University 
of New Mexico? Albuquerque, New Mexico 87106, Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

DEFINITIONS 

F0 = 0, Fi = 1, F _,_0 = F ^ + F ; L0 = 2, Li = 1, L , = L ,- + L . u ' I n+2 n+1 n u 1 n+2 n+1 n 

PROBLEMS PROPOSED IN THIS ISSUE 

B-214 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let n be a random positive integer. What is the probability that L 
has a remainder of 11 on division by 13? [Hint- Look at the remainders 
for n = 1, 2, 3, 4, 5, 6, 8 o e . ] 

B-215 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Prove that for all positive integers n the quadratic q(x) = x2 - x - 1 
is an exact divisor of the polynomial 

p (x) = x - L x + (-1) *n n 

and establish the nature of p (x)/q(x). [Hint; Evaluate p (x)/q(x) for n = 
X , Z ; O j 4t , D» J 

438 
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B-216 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Solve the recurrence D ( i = D + L n - 1 for D , subiect to the 
n+1 n 2n n J 

Initial condition Dj = 1. 

B-217 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

A triangular array of numbers A(n,k) (n = 0, 1, 2?
 e • *; 0 ^ k — n) 

Is defined by the recurrence 

A(n + 1, k) = A(n, k - 1) + (n + k + l)A(n,k) (1 ^ k < n) 

together with the boundary conditions 

A(n,0) = n! , A(n,n) = 1 . 

Find an explicit formula for A(n?k)„ 

B-218 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + \/5)/2 and show that 

oo oo 

A r c t a n E ^l/(aFn+l + F n } ] = E A r c t a n ( 1 / F 2n + 1 ) ° 
n=l n=l 

B-219 Proposed by To mas Djerverzon, Al brook College, Tigertown, New Mexico. 

Let k be a fixed positive integer and let a^ ai, e s ° 9 % be fixed r ea l 
number s such that , for all posi t ive In tegers n9 

ao at a. 
n n + 1 n + k 

Prove that ao = ai = 8 e e - \ ~ ° * 
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SOLUTIONS 
INVERTING A CONVOLUTION 

B-196 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let ao> ai, a29 • • • , and b0, b^, b^, ••• be two sequences such that 

bn = ( s k + (;)vi+ (n
2)v2

 + •••+ (ih a = °'x*2> - • 
Give the formula for a in terms of b 9 • • • , b 0 . 

Solution by A. C. Shannon, New South Wales, I. T., N.S.W., Australia. 

We are given 

n 

\ - £ M> 
r=0 

and so 

n 
X > n x n / n ! = £ £ ^ x n / r . (n - r>! 
n=0 n=0 r=0 

oo 

= eX 12 an xI1/n! ' 
n=0 

Thus 

2^ an xn/nS = e~X ^ \ xn/ni 
n=0 n=0 

oo n 

£ 2 b r ( - x ) n " r x r / r ! (n - r)! 
n=0 r=0 
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which gives 

\ - z : «-»>"; K 
r=0 

- ( ! K - ( i K i + ( ; ) v . + - + <-«"i:K-
Also solved by J. L Brown, Jr., T. J. Cull en, Herta T. Freitag, M. S. K/amkin, and the Proposer. 

AN IM-PELL- ING FORMULA 

B-197 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let the Pell Sequence be defined by P0 = 0, V\ = 1, and P + 2 = 
2P + 1 + P e Show that there is a sequence O such that 

Pn+2k = % P n + k - ( - 1 ) k p n ' 

and give initial conditions and the recursion formula for Q , 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

We have 

n a - p 9 

where a9 /3 are the roots of 

a2 = 2a + 1 . 

Since afi = - 1 , 
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, n+2k 0n+2k , , n 0n 
P + 9 1 + ( - l ) k P = -2 ~-4 + a

kf°L-ZJ-
n+2k n a - fi ^ a - p 

= fak + ^ ) ( a n + k - f + k ) 
a - /3 

Thus if we put 

we have 

% = ak + 

Pn+2k = % P n + k " ( - ^ n 

Clearly, 

SkH-2 = 2\+l + \ 9 Qo = Ql = 

Also, 

00 ' ' 2 - 2x 
jL . " * 1 - ax 1 - 0x J _ 2 x _ x , 

>4/s0 solved by Clyde A. Bridger, T. J. Cull en, Herta T. Freitag, M. S. Klamkin, and the Proposer. 

PERMUTATIONS, DERANGEMENTS, AND THESE THINGS 

B-198 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let c be the coefficient of x^x2 • • • x n in the expansion of 

(-xt + x2 + x3 + • • • + xn)(Xi - x2 + x3 + • • • + xn)(x1 + x2 - x3 + • • • + x n ) 

• • • (Xj + X2 + X3 + • • • + X n _ l - X n ) . 
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For example, 

Cj = - 1 , c2 = 2, c3 = - 2 , c4 = 8 and c5 = 8 . 

Show that 

c ^0 = nc ,., -i- 2(n + l)c , c = nc . + (~2)n , n+2 n+1 n n n-1 9 

and 

__2 lim (c /n!) = e 

Solution by M. S. Klamkin, Ford Motor Company, Dearborn, Michigan. 

Letting x * Sx l s the given produce is a special case of (L e., for a = 
2) 

(x - axi)(x - ax2) ••• (x - axn) = 

n n-L- , 2 n-2^ 3 n - 3 ^ 
x - ax ^x. + a x ^x.x. - a x ^x.x.x. + • • • . 

Then by the multinomial theorem, the coefficient of xtx2 • • • x n is given by 
the sum 

ni - a ( ; ) [ ( n - 1)!] + a » ( 5 ) [ < A - 2)t] 

o ( a ) = n ! a - a + | - ^ + - +
( - a ) 

n w J 2! 3! n! 

It now immediately follows that 

c - nc - = (-a) , n n-1 
c f0 - (n + 2)c ,- = -afc , - - (n + l)c 1 
n+2 n+1 L n+1 nJ 
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Also, since 

-a ., , a2 a3 , 
e = X - a + 2 T - 3 f + 

lim c /n! = e" 
n —• oo i r 

Now let a = 2 to give the desired special case. 

Also solved by L Carlitz, Herta T. Freitag, Graham Lord, David Zeitlin, and the Proposer. 

A FIBONACCI-PELL INEQUALITY 

B-199 Proposed by M. J. DeLeon, Florida Atlantic University, Boca Raton, Florida. 

Define the Fibonacci and Pell numbers by 

Fi = 1, F2 = 1, F ^Q = F ^ + F n ^ 1 ; 
1 ^ ' n+2 n+1 n 

Pi = 1, P2 = 2, P ± = 2P ± 1 + P n ^ 1 . 
1 > & ' n+2 n+1 n 

Prove or disprove that P f i i< F i i k "^or ^ ~ 1 D 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let a, (3 be the roots of x2 = x + 1, and A,B the roots of x2 = 2x + 1. 
Now, 

Yk = F n k = (allk - (3llk)/(a - |8) 

satisfies 

(E - or")(E - iS11)Yk = 0, or YR+2 - 199Yk + 1 - Yfe = 0, 

and 
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Z k = P 6 k = (A 6 k - B 6 k ) / ( A - B) 

sa t i s f ies 

o r 

(E - A6)(E - B 6 ) Z k = 0 , 

Z k + 2 - 1 9 8 Z k + l + Z k = °> 

where EnR. = R. , . k k+n 
Let 

W k s Z k " Y k 5 P 6 k " F l l k ' 

Then 

« W k + 2 = Zk+2 " Y k+2 = 1 9 8 ( Z k + l - W ' Y k + 1 - Y k " Z k ' 

o r 

and thus 

Wk+2 " 1 9 8 W k + l °> k = °> *> " 

W, < (198)k X Wi k = 2, 3 , 

Since 

W4 = P 6 - F u = 70 - 89 = -19 < 0 , 

w = p / , l - F ^ , < 0 for k = 1, 2 , • • • . T h u s , the s ta ted inequality is 
k 6k i l k 

t rue . 

Also solved by Wayne Vucenic and the Proposer. 
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A CLOSE CALL 

B-200 Proposed by M. J. DeLeon, Florida Atlantic University, Boca Raton, Florida. 

With the notation of B-199, prove o r d isprove that 

F l l k < P6k+1 f 0 r k ^ X ' 

Solution by Phil Mana and Wayne Vucenic, University of New Mexico, Albuquerque, New Mexico. 

Let 

a = (1 + <s/5)/2, b = (1 - AS/5 ) /2 , c = 1 + sj2, and d = 1 - N/2 . 

Then 

_ . I l k . H k v / J-E -̂  / 6 ^ + l , 6 k + l W o /7r 
I l k = ^ " b " ^ 5 » P 6 k + 1 = *C ) /2V2 . 

Since |a | > | b | and | c | > | d | , i t can eas i ly be seen that as k—>oo the l imi t 

of F - - . / P 6 k - i s a posit ive constant t imes the l imi t of ( a ^ / c 6 ) . Since 

a11 = (Ln + F l t \ / "5) /2 = (199 + 8 9 ^ 5 )/2 99 + 7(W2 = c6 , 

( a ^ / c 6 ) -++°° as k—>«> and so ul t imately F - - . > P ^ . i - Computer c a l -

culation shows that when k = 128, F - - . > 8X 10293 > PC I , - . 
I l k 6k+l 

Also solved by the Proposer. 

PARITY OF n 

B-201 Proposed by Mel Most, Ridgefield Park, New Jersey. 

Given that a ve ry l a r g e posi t ive in teger k i s a t e r m F in the F i b -

onacci Sequence, de sc r ibe an operat ion on k that will indicate whether n is 

even o r odd. 
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/. Solution by F. D. Parker, St. Lawrence University, Canton, New York. 

Undoubtedlys t he re a r e many poss ib le tests* Here is only one tes t , 
F r o m the ident i t ies 

F 2 = F - F ^ - ( - l ) n 
n n - 1 n+1 

F _Ll = F + F 1 , n-fl n n - 1 9 

we get 

F + 2F - = V 5 F 2 + 4 ( - l ) n 
n n - 1 n 

There fo re n is even if 5F2 + 4 is a perfec t square ; o the rwise , n is 

odd, with the single exception of n = 1 o r n = 2. In this c a s e , no t e s t p r e -

va i l s s ince FA = F 2 = 1. 

VI.Solution by Wayne Vucenic, Student, University of New Mexico, Albuquerque, New Mexico. 

The ra t io between consecutive t e r m s of the Fibonacci sequence , F - / 

F , approaches a by osci l la t ion as n approaches infinity, where a i s the 

Greek golden r a t i o , o r \ (1 + \ f5) , which is 1.61803 •• • . Thus , if n i s 

even, 

F 
(1) ^ • = a + A , and A decreases as n increases; N F n n 

if n i s odd, 

F 
(2) J^+' = a - B , and B d e c r e a s e s as n i n c r e a s e s . 
v ' F n n 

n 

If n is even, from Equation (1), 

F ,- = F (a + A ) n+1 n n 
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F _,_- = aF + A F 
n+1 n n n 

\ 
aF = F • .L - A F ; 

n \n^X n n 
if n is odd, from Equation (2), 

aF = F , - + B F . n n+1 n n 

These equations show that aF will be less than F ,- if n is even, and 
n n+i 

will be greater than F , - if n is odd. 
to n+1 As n increases, A and B decrease fast enough that, if n ^ 2, n n & 

A F < 0.5 and B F < 0.5. n n n n 
Thus, if n ^ 2, it is possible to determine whether n is even or odd 

by multiplying F by a, then seeing if the product is greater than or less 
than the nearest integer which will be F -. For example, given that F = 
21, 21X1.618 = 33.978. This is less than the nearest integer, 34, thus a 
is even. 

Also solved by the Proposer. 

[Continued from page 437. ] When X and Y a r e - v e i n t e g e r s , 

X = ( 2 - L ^ k ) / 5 , I = (X - F 4 k ) / 2 , k = 1 , 2 , 3 , . . . . 

And tfhe g e n e r a l s o l u t i o n i n +ve i n t e g e r s i s : 

X - (2 + \ k . 2 ) / 5 = i f ^ j y= (X + 1^/2^2^1*2* 

Tim a u t h o r found t h e f i r s t s e t o f i n t e g r a l s o l u t i o n s w h i l e 

otherLS were found by Guy G u i l l o t t e 
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