EQUAL PRODUCTS OF GENERALIZED BINOMIAL COEFFICIENTS

o H.W. GOULD
West Virginia University, Morgantown, West Virginia

In a letter dated 24 March 1970, Professor V. E. Hoggatt, Jr., has
communicated to me the following interesting result: "Choose a binomial co-
efficient (E) inside Pascal's triangle. There are six bordering terms of
Pascal's triangle surrounding E) The product of all six is a perfect
square.' As he notes, the theorem is also true for the generalized binomial
coefficients E discussed in [1]. In alater communication (22 April 1970),
Hoggatt has notéd that a corresponding extension to multinomial coefficients
holds true. (See [2].)

We may arrange the six binomial coefficients as follows:

! | jﬁi%gi}l‘ﬁ |
)\></
ST

Here the braces denote the generalized binomial coefficients studied in [1]

and defined by

@ HEc e

with the generalized factorials given by

[n]t = AnAn_1-°-A2A1, [0}t =1,
where {A;, Ay, -- -} is an arbitrary sequence except that Ai # 0. In the
present paper, we shall abbreviate the factorial notation and agree to write
(n) instead of [n]i.
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Now it is easily seen that

o Pl oy

(0 - 1)m)@ + 1) )2

kE-DRE&+1)0 -1 -kKh - kK + 1 - k)

so that the hexagon theorem is indeed true in general.

Moreover, this is true because in fact two products are equal:

@ gn-lfg n}3n+1§:in—1$; n %{n+1£

k k-1()k + 1 k- 1( )k +1 k
The arrangement of these terms in the original hexagon suggests a Star of
David, and we will refer to this form of the theorem as the Star of David
property. This property motivates the following paper.

Instead of searching for squares in the general Pascal triangle, we will
look for equal products of generalized coefficients. The first such problem
which we solve is to find equal products of five binomial coefficients, just as
Hoggatt's Star of David property gives such a result for equal products of
three binomial coefficients.

First of all, however, we ought to examine into the question of whether
there are any other equal products of three. To keep the problem within
reasonable bounds we will consider only what happens when we make all six
possible permutations of thelower indices k - 1, k, k +1 in a product such
as that in (4). The six possible products of three binomial coefficients yield

the relation (4) and the remaining set of four products are in general unequal.

For example,

n-1){n){n + 1) _ n-1nn + 1)
;k - 1%{]&}21{ + 1% T k-1Dh -kBHh -k + D - k)

%n-l}g n §{n+1$ _ n-1nn + 1)
k+1()k -1 k kK+10n-2-kk-1)oh+1-kknh+1-k)’
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which are two different things. We should remark that the simplest possible

e,

d or both.

Demanding relation (5) is something rather different from the knowledge

s - -

a true identity, because we are concerned solely with permutations of the

case of equal products
n+aljn+b|l _ |n
®) k +cfk + d} = {k

has only the trivial solutions a = b or ¢

+ +

lower or upper indices.

To go ahead with the situation for a product of five coefficients, we note
first that it is not necessary to enumerate all possible products which can be
written. It will be sufficient for our purposes to see first of all in how many
ways the numbers k-2, k-1, k, k+1, k+2 may be added to the num-
bers n-k-2, n-k-1, n-k, n-k+1, n-k+2 soas to yield some
or all of the numbers n-2, n-1, n, n+1, n+2. Now, k-2 may be
paired with n -k, n-k+1, or n-k+2 only, unless we wish to admit
elements such as n -3 or n+ 3. Our paper will exclude consideration of
any numbers in the upper index position other than n -2, ..., n + 2.

A list of possible pairings can be written as follows:

k - n-k, n-k+1, n-k+ 2
k-1|{n-k-1, n-k, n-k+1, n -k + 2

6) k- n-k-2, n-k-1, n-k, n-k+1, n-k+ 2
k n-k-2, n-k-1, n-k, n-k+1
k 2ln-k-2, n-k-1, n-k

If we denote the five numbers n-k -2, n-k-1, n-k, n-k+1, n-k
+2 by, respectively, A, B, C, D, E then we may Set up the chart more
conveniently as follows:
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k-2|{C, D, E
k-1|B, C, D, E
(7) k A, B, C, D, E
k+1|A, B, C, D
k+2(A, B, C

and all arrangements necessary to consider then may be found by choosing
arrangements of the distinct letters in columns, where one letter only may

be chosen from a given row in (7). There appear to be just 31 possible

combinations:
c ¢ ¢ ¢ ¢ €cC ¢ D D D D D D
B D D E E E E B B C C E E
E E E A B D D E E E E A A
D B A D D A B A C A B B C
A A B B A B A C A B A C B
D D D D E E E E E E E E E
E E E E D D D D D D C C C
(8) B B ¢ C A A B B C C D D B
A C A B B C A C A B A B D
C A B A C B C A B A B A A
E E E E E
C B B B B
A D D A ¢
D A C D D
B C A C A

They give a remarkable collection of identities. First of all, there are six
combinations that yield the desired n-2, n-1, n, n+1, n+2: CEBDA,
CDEAB, DBECA, DEABC, EBDAC, and ECABD. The resulting generalized

binomial coefficient product identities are:
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n -1 n+1 n 21 n ¥ n+ 2
k -~ 2 k-1 Jolk+1f lk+ 2]
_ n-2] [n 1] [n + 2
{k 2}{k—1}[ | 1}{k+2f .
n-1 n-2 n+ 2) n+1
k-2 k-1 k 1f k+2f

If we next equate these products in pairs, we find that a common factor can-
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cels out in a number of cases, so that we obtain three different pairs of equal

products of five coefficients:

oot

+ B
[\“]
ey

(10)
SRR RS S R
IR SR ARTULN TS
{e e P A g
IR S E{E S A SN,

(SRS S R HHE A,

These identities are the natural extension of the Star of David property (4).

Of those cases in (9) where a common factor cancels out, we appear to

get twelve equal products of four binomial coefficients:
(13)
n+1 n—l}{n+2 ﬁf n
k+1f{ Jk+2

e e e fedd
o o Py et - Lo e e el
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S A SR S A I
SHEHECHEANE
SHERN SR
S SN R
I SRS SR

e o ) -
P ) -
SHESPE )
R AT IS S
SRS R SHICIE

foir et et foodh
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But these twelve are not all distinct. In relation (13) replace k by k-1
and n by n - 1. This shows that (13) is equivalent to (22). Similarly, (14)
and (24) are equivalent and (17) and (23) are equivalent. Thus we obtain nine
distinct relations. Of these, only the first, relation (13), has consecutive
integers in both the upper and lower index positions, and is thereby an ele-
gant companion to (4). It is an octagonal equivalent of the original Star of

n-1 n-1 n-1
k-1 k k+1
//..\\\\

David property:

(25) // ‘~\\\\\
/// \\\‘\
-~
R e
// n e
- k e
k - 1 P k + 1 o n
/// e k + 2
/// ///
/// ) //
o n+1 n+1 i
- - i n+ 1
e k k + 1 g e
- ol e
~e_ .
~o z
n+1 NN —
k - 1 \\\\ - /////
A// ~a 7~
S~

{n + 2 n+ 2 n + 2

i K 2 3 k + 12 %k + 22
We return next to the 31 permutations in (8). There are 25 of these
which yield products having some repetitions among the numbers n- 2, n -
1, n, n+1, n+2. Itis worthwhile to explore these. Three of these stand
alone: CEADB, DBEAC, and EDCBA. Three pairs give equal products of
five coefficients: CBEDA and EBADC; DCEAB and DEBAC; CEDAB and
DEACB. Four trios give inequalities: CDEBA, EBCDA, EDABC; DCEBA,
ECBDA, EDBAC; DEBCA, DECAB, ECDAB; CEDBA, EBDCA, EDACB.
Finally, there is a set of four equalities of products: DECBA, ECDBA,
EDCAB, EDBCA. Exploring all the possible pairings, case-by-case, we

find first of all three sets of equal products of five coefficients, as follows:

(26)

TS [ NI N R i 26
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(27)
{E:g}{ﬁfi ﬁfn;i}‘rkh}{k?z} - { {k 1}{n 2}{k+1}{k+2}
(28)

SHHEHS - A

and these form interesting geometric patterns when marked in the Pascal
triangle. The left and right members in each identity are symmetrical with

respect to as a central point.

n
k
Next, we obtain five sets of equal products of four coefficients:

(29)

SRR R TR ST A SN R

(30)

HARHSH AR N S N S A

B 00 ) fod - Lol 3 e
B o) P L) - L) B B g

(SHERSEHE RN SR SN SR RN S (RS

The remainder of the relations found are equal products of three co-
efficients. The most interesting of these results from equating the permuta-
tions CBEDA and EBADC:

L) - fed e

(34)
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This is an extension of Hoggatt's original Star of David, and within the Pascal
triangle it forms a Star of David with each point movedout one unit further in
each direction. What is more, it is easily verified that we have a quite gen-
eral Star of David formula:

(35)

R S SN PN S R 3

lk - a k k + a k - af k k+al ?
where a is an arbitrary integer. Some similar extensions of other relations
developed in this paper are possible. It should also be possible to find multi-
nomial extensions.

Relation (34) also follows upon equating permutations CDEBA and

EDABC.

Relations equivalent to Hoggatt's original formula are obtained in five

cases. Finally, there are six remaining cases:

T ST N S RN
TR e ey - ey
Tt hnd - L et i
B EIR S IRRERANS T 13
P LA e} - e En e
IR EI IRRER NI E]

These offer various geometric patterns because they do not involve consecu-
tive integers for the upper and lower indices. As a matter of fact, they all

represent Star of David patterns, rotated differently than the original pattern.
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Each of the formulas (36) — (41) represents a Star with two points in

346 Oct. 1971

common with the original Star. From these relations, by means of the sub-
stitutions k+1 for k, or a+1 for n, etc., it is easy to see that rela-
tions (36) and (40) are the same, and relations (37) and (39) are the same.
The others are distinct from each other and from these. The result is that
relations (36), (37), (38), and (41) are the four distinct relations given. One
can easily find, as we did in the case for products of five coefficients, whether
there are any other distinct such relations.

It would seem to be possible toc program the entire procedure for a
modern digital computer, which could tirelessly check out all possible cases,
and this would make it very easy to tabulate all possible equal products of
binomial coefficients within any specified range of parameters. A program
could evidently be written along the lines of the procedure used here. Some
results, such as formula (35), would not be immediately evident to a com-
puter program, but even here a computer can be programmed to look for
certain patterns.

Finally, it would be interesting to find out whether any of the products
of the type studied here could be studied inthe context of generating functions,

as coefficients in power series.

REFERENCES

1. H. W. Gould, "The Bracket Function and Fontene-Ward Generalized Bi-
nomial Coefficients with Application to Fibonomial Coefficients," Fibon-
acci Quarterly, Vol. 7 (1969), Feb., No. 1, pp. 23-40, 35.

2. V. E. Hoggatt, Jr., and G. L. Alexanderson, ""A Property of Multinom-
ial Coefficients," Fibonacci Quarterly, Vol. 9, No. 4, pp. 351-356.




THE LEAST REMAINDER ALGORITHM

J. L. BROWN, JR., and R. L. DUNCAN
The Pennsylvania State University, University Park, Pennsylvania

Lame's theorem [1] asserts that the number of divisions n required
to find the greatest common divisor (a,b) of a and b (a =b) using the
Euclidean algorithm does not exceed five times the number of digits p in b.
More precisely,

_1+ 45

2

D
n < Tog Z + 1, where ¢

It is also known [2], [3] that the number of divisions required to find (un 41’

],Ln) is n and that

EEE PN

where Py is the number of digits in o and pq = 1, py = 2 and L
Tl o (n = 2) are the Fibonacci numbers. Thus the upper bound given by
Lamé's theorem is about the best possible and it has been shown [3], [4] that
the upper and lower bounds in (1) are attained for infinitely many n.

We recall that the remainders in the ordinary Euclidean algorithm are
always positive but that shorter algorithms may be obtained by allowing neg-
ative remainders. A well known result of Kronecker [1] asserts that the
least-remainder algorithm (L. R. A.) is neverlonger than any other Euclidean
algorithm. The purpose of this note is to derive results analogous to (1) for
the L.R. A. To do this, we define v; 1, vy, = 2 and vy = 2vip-1 + V9
(m> 2). This sequence has been applied to a similar problem by Shea [5].

Let

1l

bqy + eg by
b = bin + ezbg

Pm-2 = Pm-1%m " °mPm
bm—l = bmqm+1
347
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be the L. R. A. for (a,b), where a =1 (k=1,--+,m) and a >b = 2by
= 4by = o = Zmbm > 0. Then the required number of divisions is m + 1
and [1]

b = 1= vy, b 1= 20, =2 =vwv,
m-2 = 2bm—1 + bm = 2vy + vy = Vg, °
Hence
bm—kz v 1 and b = Vit
Now let N = 1 + ~2. Then
N < .%‘.- 5 = %V3 )
N2 = 2N + 1 < %(Zv;,\ + V) = —21-v4,
Hence,
m-1 1 1
N 3 Vmi1 T 3 b

If p is the number of digits in b, then b < 10P and

moaclosbolort oot ooz [RplE]
Also,
N>2=1v, N =2N+1> 2vy + vy = vy,
Hence Nn_1 > Vi If dy is the number of digits in Vo then
v = 1001“_1

n
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and

qg -1
n-1> -2
log N
The L. R. A. for (Vn+1, vn) is
Vol 2v._ + Vi1
Vn - ZVn—l * Vn~2
Vs = 2vy + Wy
Vy = 2V1

and the required number of divisions is n. Thus

q -1 q - log2
(2) [i—]sn-Zs[_n——__]
log N log N

and the upper bound for the required number of divisions in the L.R. A. is
about the best possible.

We now show that both the upper and lower bounds in (2) are attained
for infinitely many n. Using standard difference equation techniques, it is

easily shown that

v.o=—— [+ ND)" - -]

and it follows that

Let d’n be the fractional part (mantissa) of log vy Then, since
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q, = 1+ [logvn] ,

we have
q, = 1+1ogvn—¢n .
Hence
(3) q, = 1+nlogN-log2N/-2_—¢>n+o(1)

But (3) implies that

] =

q, - log 2 q§n -

>
n log N i log N

for all sufficiently large n. Thus

q - log2
n-2 = i_____.._
[ log N ]

If ¢n = 1/4 +log N and n is sufficiently large. Also, (3) implies that

[N

Q-1 ¢ -

log N " log N

n <

for all sufficiently large n. Thus

-1
n_zgg}l—_—
log N

if ¢ =2logN - 1/2 and n is sufficiently large.

The desired results will follow when itis shown that the sequence {log vn}
is uniformly distributed modulo one [6]. The proof is almost identical to that
of a similar result [3] and is therefore omitted. Also, further discussion of

such results occurs elsewhere [ 7].
[Continued on page 401. |



A PROPERTY OF MULTINOMIAL COEFFICIENTS

V. E. HOGGATT, JR.
San Jose State College, San Jose, California
and
G. L. ALEXANDERSON
University of Santa Clara, Santa Clara, California

ABSTRACT

The multinomial coefficients '"'surrounding" a given multinomial coef-
ficient in a generalized Pascal pyramid are partitioned into subsets such that
the product of the coefficients in each subset is a constant N and such that
the product of all the coefficients ""surrounding' a given m-nomial coefficient
is N™. The result is then generalized to other numerical triangles or

pyramids.

1. INTRODUCTION

In the paper by Hansell and Hoggatt [1] the following is proved:

Theorem. The product of the sixbinomial coefficients surroundingeach
binomial coefficient gi%, (n =2; 0 <k=<n), in Pascal's triangle is a
perfect integer square, N2, Further, each triad formed by taking alternate
binomial coefficients has product N.

Further results in the plane are obtained by Gould in [4].

In this paper, we generalize this theorem to generalized Pascal pyra-

mids in m-space.

2, SELECTING THE MULTINOMIAL COEFFICIENTS

Let us expand (x; + Xy + x5+ -+« +x)7, (M =2 n=0,1,2, )

— Ky + ky + 0 +k
n Y 1 2 mY k. k
(Xi 4 oees o an) = z <k1, kz, L K Xilxzz... xmkm,

m

351
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ky + ky + - +km (k1+k2+... +km)z
ki, koo ey kp/) T T RAKIKG ces Kt

The recurrence relation is
m
ky + kg + cor F KRy ki + kg +oee +kpy -1
R = .
® Nk, kyy covs ki Z ky - 8150 kp ~ Bajs v+ 05 Ky - Oy

where 61j=01fi%jandéij=1ifj=j.

Given a multinomial coefficient (inside the pyramid, i.e., ks =1,

ky + kg + oev + Ky
A = ki’ kZ’ e, km

there are m multinomial coefficients

s =1, 2, --.,m)

k1+k2+k3+---+km—1 , (j:l’z,ano,m)
ky - 8155 kg - 8255 *++5 k- Oppj

which ""contribute to A" by means of recurrence relation (R); that is, lie di-
rectly above A in the pyramid. These same m multinomial coefficients

contribute to m(m - 1) multinomial coefficients

( k1+k2+u-~+km_1+km

» Gok=1,2,+-.,m;j#k
ky - 815 + O1k» ko - 02 + B2k "'skm-ﬁijrﬁmk) ! 7K

which are all on the same level as A. There are also m multinomial co-

efficients which are contributed to by A, namely those of the form

ky + ky + +k +1
m ) (j=1,2,---,m)
ky + 8455 kg + By55 ¢+, km + O
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Thus there are m above A, m(m - 1) on the same level as A and m be-
low A. These m(m + 1) multinomial coefficients we say are adjacent to A,

and geometrically surround A.

3. THE PRINCIPAL RESULT

Theorem. The product of the m(m + 1) multinomial coefficients adja-
cent to A is a perfect integer mth power.

Proof. In the following, s =1, 2, ---, m. On the level above A,
the number ks - 1 appears once; on the level with A the number ks -1
appears m - 1 times; ks - 1 does not appear in the level below A. (In the
level with A, ks appears (m - 1)(m - 2) times; and on the level below A,
ks appears m - 1 times. On the level above A, ks + 1 does not appear;
on the level with A, ks +1 appears (m - 1) times; and on the level below
A, ks + 1 appears once. Thus, in the denominator of the product, (ks -1
appears m times, (ks)! appears m(m - 1) times, and (ks + 1)! appears
m times. The product, therefore, of all m(m + 1) multinomial coefficients

adjacent to A is:

m(m-1) m

m m m

Ek.—l'. Ek.! §k.+1!
1 1 1 .

i=1 i=1 i=1 |

P = - —

1:_{1 [k, - 2™ 0e 1™V g + 0™

- m-1 am
m \ m m
k., - 1]J! k. §! k., + 1}!
Z i Z i 2 i
_ i=1 L\ i=1 i=1 _ Nm

o m-1
TT (e = D)™ Tl + D
i=1

N.B. N is an integer, since (p/q) reduced to lowest terms with q # 1 is
not an integer when raised to the mth power. But the product is an integer,
since each multinomial coefficient factor is an integer.

We next prove the following rather surprising result.
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Theorem: The m(m + 1) multinomial coefficients adjacent to A with
product N™, can be decomposed into m sets of (m + 1) multinomial
coefficients such that the product over each set is N. Furthermore, the con-
struction yields sets of (m + 1) multinomial coefficients such that permuting
the subscripts cyclically on any one set m - 1 times produces all the other

sets. Thus the m sets are congruent by rotation.

Proof. We now describe a construction for the sets. Recall that the

product within each set must be

m m m-1 m
. (1{:1 k; - 1)'. <§1 ki>! (1;1 k; + 1)1

m m-1
) (l<:i - 1)!(ki!) (ki + 1)!

For convenience, we introduce the fcllowing notation for the multinomial

coefficient

k1+k2+...+km
K by e )= ©0,0,500,0)

m

so that by introducing -1 or +1 as entries in the m-tuple, we can raise or

lower one of the ki and thus represent adjacent coefficients. For example:

ky + kg + +o- +km— 1
kl_l’ kZ’k3"..3km =("1’ 0:03.'.’ 0)
and
k1+k2+"' +km
ki’ kZ’ kS + 1’ k4, s, km_]_’ km -1 = (09 0: 19 0: R O, "'1)

Thus a subset of multinomial coefficients of the type desired could be repre-
sented as an (m + 1) x m matrix, where each row is a vector as described
above, each row representing one of the adjacent multinomial coefficients.

Each subset, in order to have the proper numerator in the product, must have



1971] A PROPERTY OF MULTINOMIAL COEFFICIENTS 355

one coefficient from above, one from below, and m - 1 from the same level
as the given coefficient. We shall adopt the convention that the first row rep-
resents the coefficient above and the (m + 1)St row the coefficient below.
Let the (m + 1) x m matrix have entries aij‘ It is necessary to consider
two separate cases.

For m odd, let

a,, = -1
R & S N R R |
m+2-j,j j=1,2, c,
aij = 0 otherwise
We illustrate with m = 5:
-1 0 0 0 0
0 -1 0 0 +1 3
c = 0 0 -1 +1 0 1 Spacing between -1 and +1

0 0 +1 -1 0 4 on the middle m -1 rows.
0 +1 0 0 -1 2

+1 0 0 0 0

This corresponds to six multinomial coefficients whose 5 lower arguments
are given in rows of this matrix. The other four sets are obtained by rotat-
ing cyclically the column vectors of matrix C. We note that (kS -1)! appears
once, ks! appears m - 1 times, and (ks + 1)! appears once in each of the
five sets, s =1, 2, «-+, m.

For m even, let

ajj=_1 j =1, 2, c*e, M

ak+1 m+1-k = +1 k =1,2, -, (m/Z) -1
’

am+1kk=+1 k =1, 2""’(m/2)+1
-K,

Am+l, (m/2)+1 !

. i =1, 2, ce-« + 1
a,. = 0 otherwise 51 T ;1

1) lj=1’2"-.’m
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We illustrate for m = 6:

Spacing between -1 and
+1 on the middle

m -1 rows .

Q
1l
(=]
[e)
’i_'
|
[ary
=]
[en)
= W O N B

In both matrices C and C' a cyclic permutation of the column vectors does
not produce a duplicationbefore m steps. Thus each set of m + 1 elements
are distinct and the m sets exhaust the collection of m(m + 1) multinomial
coefficients adjacent to A.

It should be noted that the above construction does not yield the only
possible partitioning. There exist other partitionings into subsets with the
desired property in both the even and odd cases. For example, for m = 3,

the above construction yields

-1 0 0 0 -1 0 0 0 -1

0 -1 1 0 -1 -1 1
-1 -1 0 -1 0

0 0 1 0 0

but
-1 0 0 0 -1 0 0 0 -1
-1 1 0 -1 -1
1 -1 -1 0 -1
1 0 0 0 1 0 1

also have the desired property.

For m = 4, the following is a partitioning different from that yielded

by the above process:
[Continued on page 420. ]



GENERAL IDENTITIES FOR RECURRENT SEQUENCES OF ORDER TWO

DAVID ZEITLIN
Minneapolis, Minnesota

1. INTRODUCTION

Let Wy, Wy, a # 0, and b # 0 be arbitrary real numbers, and define

L) W ., =aWw ., -bW, a®-4b #0, m=20,1,-"),
(1.2) U, = @ - pN/e-p (@ =0,1,-) ,

(1.3) v, =d + g m=0,1,),

(1.4) W = WV, - w_)/b" @=0,1,:),

where o # B are roots of x2 —ax+b =0, If Wy =0 and Wy = 1, then
WnEUn, n=20,1,.c.; andif Wy = 2 and W; = a, then WnEV , D =
0, 1, -+, Our first result is

Theorem 1. Let W, and W’;‘l be solutions of (1.1). Let r, m, and

n be integers (+, -, or 0). Then, for k =0, 1, **°,

r+m r n+rk+Him

@5 Y -1 (‘;)wk’l W W
i=0

k . .
_ brkUl:n ZO (_1)J (%)Wlf—JW%W*
J:

n+j

Special cases of (1.5) are given by
Corollary 1.

k
— ifky. k-i _i _ rkUk
(1.6) 1%6 (-1) (i)Ur+mUrUn+rk+im =b mUn '

357
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k i _ vk
@7 E -1) () r+m Ve Wirktim ~ P Ufnwn ’
i _.rk
(1.8) Z D (L) rim Or VnirkHm - P Ufnvn ’
2k 2k 2k-1 i I, 2kr 2k
- 2
(1.9) 12::0 -1) ( i )Vrﬂn Vr Un+2kr+im (a* - 4b)"b m Un ?
2k 2k ke 2kr 2k
— (a2
(1.10) 1§0 -1) ( i )vrﬂn Vr Wn+2kr+im (@ - 4b)"b Um n’

2k
2k-i a2 k. 2kr. 2k
(L.11) :__L(‘) -1 (1 )Vr+m Vr Visgkrsim © @ - 40DTU Vo
zgrl( 1) 2k+1 2.k+1— V v
= r+m r n+Qk+1)r+im
(1.12)
- _(a? - 4b)k+1b(2k+1)rU2k+1U ,
m n
szl 1) (Zk + 1>V2k+1—i viu
b i r+m r n+@2k+1)r+im
(1.13)
_ @2k+1)r _ 2k+1
= —(a? 4b) b U, TV, -

Our next result related to Theorem 1 is
Theorem 2. Let Wn be a solution of (1.1). Let r, m, and n bein-
tegers (+, -, or 0). Then, for k = 0, 1, .-+, we have
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k
Vle«:r+n
_ Ly2]
2 _ )] p2imyk-2j ;2] -
( )(a b)"b +mUr (W n 2jm bWOUn—ij—l)
(1.14)
k-1)/2
. [( )/]( . )(az _ 4b)Jb(2J+1)m k-2j-1 2J+1(W
=) 2j +1 Veim 1 n-(2j+1)m
bWOVn (2j+1)m-1 )
(1.15)
)
= 2 jp2im kZJ 2j
Von Ykran = (2j)(a - 4b)’b rim U Un_2jm
[(=1)/2] o
k 2j+1)m_ k-2j-1_2j+1
- 2 _ 41y (20 i j
jgb ( 2 + 1) (a2 - apylp Iy 2i-1,2 Vo 2i+1)m *
(1.16)
k L2l 2jm k-
2 Jp2im k=2j ;2]
Vm kr+n ; ( )(a 4b)"b r+m Ur Vn—ij
k-1)/2
[( Z:)/] k )(a2 - 4b)jJrl b(zjﬂ)mvk_zj_lejﬂU
=0 2j+1 r+m r n-(2j+1)m °
2. PROOF OF THEOREM 1
Let W; = Slan +Szﬁ\rl and Wn = Ciozn +Czﬁn, n=0,1, .-, where

5 and Ci’ i =1, 2, are arbitrary constants. Since W; = C; + C; and
Wy = Cia + CyB8, we readily find that

k . L.
@) - pd = - )t - 5 (-1>J(§)W'f'3w8 g
p2

2.2) @-B%CE = @w, - w)* =

||[v]w

1)3( )Wk wid .
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Let L denote the left-hand side of (1.5). Then, using the binomial theorem

. 'k
and representation of Wn, we have

k k
_ n+rk m n+rk
@3) L =S (W, - W) +8F W - fTW) .
Since
m = m, ¢
rm ~ ¢ Wr—(ﬁ’m—a)ﬁcz
and

o m m, r
Wosm = B W, = @7 - g™l

we obtain, using o = b, (2.1), (2.2), and (1.2),

Kk k
L = sp 5™ - ™) oF + 5, p™ g @™ - ) cf

(2.4) b UL {8, 1M@ - pFcy + 5,8 - pFch}

1

brkUlrcn % (_1)1(1;)“,1{1—]“]% 80" + 5, 4M) = R,
= :

where R denotes the right-hand side of (1.5).
If Wr = U_ and W; = Un’ then Wy = 0 and (1.5) gives the special

T
case (1.6), noting that all terms in the right-hand sum of (1.5) vanish except
for j = 0.

Since’
(2.5) Wn = WOUI'H'l =+ (W1 - aWO)Un ’

we obtain (1.7) from (1.6); and (1.8) from (1.7) when Wn = Vn.

It w, =V, (i.e., Cy =Cy = 1), then (2.4), with k = p, gives
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(2.6) L =bP 0 (@- pPse-DP + 56" .

Noting that (@ - )% = a® - 4b, then (2.6), for Wr=TU (e, 85 =-8 =
1/l - B)), gives (1.9) for p = 2k and (1.13) for p = 2k+ 1. Using (2.5),
we get (1.10) from (1.9); and (1.11) from (1.10) when Wn = Vn

If W;“l = V][1 (i.e., Sy =8y = 1), then (2.6) gives (1.12) for p = 2k
+ 1,

If a=-b=1, then Un = Fn’ and (1.6) gives the identity of Halton
[1, p. 34] as a special case.

3. PROOF OF THEOREM 2

Our method is a generalization of a proof used in the unpublished Mas-

ter's thesis of Vinson [2, PP- 14—16]. If we treat o' and Br as the un-

knowns in the system (o - ,B)Ur =a' - ,Br and Vr+ = ™oF + ,b’mﬁ , wWe
obtain
r _ r _ m.
Voo =V .+ e-pF U, and VB =V - (@-fe U,

k k
Since W, = = " @) + Cy8M(B°) , we obtain

kr+
k n k m. K
Vi Wiepan = C1@ (Vo * @ - ﬁ)ﬁmUr) + Czﬁn(Vr+m - le-p)d u)
@1 S i k-1 n—m n-mi
-2 (%) - o' v hen™ 10" + cvic, 84

Now
Cian—mi + (_1)1 Cy ﬁn—mi
[w, - W)™ & Chlew, - w) B~ ™1/ @ - B

(an-mi ~ (-1) ‘Bn—ml bW (a,n -mi-1 - (=1 ‘Bn—ml 1
o - B - a - B

11

1l

Wy
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Since (@ - f)?> = a% - 4b, we obtain (1.14) from (3.1) for i = 2j and i = 2j
+ 1.

It W, =0, then Wy = 0, W; = 1, and thus (1.14) gives (1.15). If
Wn = Vn’ then Wy = 2, Wy = a, and thus (1.14) gives (1.16), noting that
Vn = aUn - 2bUn_1 and that :

- = - = 2 _
aVn 2an_1 2Vn 41 aVn (a 4b)Un .

4. EXTENDED RESULTS
Our next class of results are of a higher level order than Theorem 1,

since we now essentially replace WI"I‘ in (1.5) by its cross-product with itself.
Theorem 3. Let Wn and W;‘l‘ be solutions of (1.1). Let r, m, p,
and n be integers (+, -, or 0). Then, for k = 0, 1, -~

* (@2 - 4b)

k
ifk) ki Ay
Z—% -1 ( i) W1;'+2m Wy Wp+im Whtim

k
rk I\ wS-Iwid (war W
b UIZ{mJE 1) ( j) 1 Wo (W Vp+n—rk+j'2bW° i"vp+n—rk+j—l
22k
+ bW Vp+n-rk+j—2)

(4.1)
2% 17k 2 k
- (W5 - aWFWF + bWg )lonvp_nUlI‘n WiV = bWe V. J)
Corollary 3. In special cases of (4.1), we have
S ifk Wk—i i
?;:0 -1 (1) r+2m W;Vp+im Vatim
(4.2) o 3 (K)o wiy
: 2m ~ 7 \j) 1 0 Yp+n-rk+
j=0
k

WiV = DWo Vo )

R k
+ b Vp—nUm



1971] RECURRENT SEQUENCES OF ORDER TWO 363

2, () bt

r+2m r p+Hm nt+im
4.3)

_ .rk.k k
=b UZmVp+n rk bnvp—nUlI{nVﬁ-m ’

2k o
> (-1)1<zik)v2k'1 ViV

=0 r+2m r p+imvn+im
(4.4)

2rk UZk 2k, n 2k .2k
= 2 - 2 — "7 'U' ‘U’
@ 4]0) b 2m p+n -2rk * (@ - 4b)™"Db p-on m r+m’

2k+1 A
2k + 1 2k+1-i i
i{—"‘% (-1) ( i )Vr+2m Vrvp+imvn+im

(4.5) - 4b)k+1 (2k+1)U2k+1U

2m pin-r(2k+1)

G D Y A i Sl

4b2(1)<) 21wy

=0 r+2m r p+im Un+1m

= pin-rk+j

)k
r+m-1 ’

1
o‘ti
<
=B

0 Um W1V, = BW0Y,

- 4b) Z (-1) ()Uk"l

20 r+2m " r p+1m Un+1m
4.7)

= brkUk " Sty R R

mn-rk ~ p-n m 'r+m ‘’



364 GENERAL IDENTITIES FOR [Oct.

2k Zk i,
1}: D <1> r+2mV;"Up+imUn+im
(4.8)

_ k-1 Zrk 2k 2k- 1 2k
= (a - 4b) UZmVp+n—2rk (a® - 4b) Vp—n (UmUr+m) ’

2k+1
2k + 1\ ., 2k+1-i
:éb (- 1) ( \Vr+2m Vr Up+1m Un+1m

(4.9) k b1“(2k+1) U2k+1 U

=1 — 2 —
@ - 4b) 2m pton-r(2k+1)

a2 2k, n 2k+1  2k+1
(a 4b)™ b Vp_nUm Ur o

Closely associated with Theorem 3 is
Theorem 4. Let W be a solution of (1.1). Let r, m, p, and n be
integers (+, -, or 0). Then, for k =0, 1,

k i
i
ig() -1 ( )W1;+2m W, p+1mvn+1m

_ otk ok ; iwly
(4.10) = v Uy <)Wk LA

n k

U Um(W1V - bW, V.

)

r+m-1

Corollarz 4. As special cases of (4.10), we have

i
E D ( ) +’)m Ur Up+1m Vn+1m

_ ,rk .k n k k
=b Uom Up+n—rk *+ b Up—nUmVr+m ?

4.11)
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2k .
if2k\.  2k-i i
jg) -1 (i )Vr+2m Ve Up+im Vatim
(4.12)
k, 2rk . 2k 2k, n 2k _ 2k
= (42 _ 2 _
G - 4p) B UG UL @ - an P Rl
2351 (—1)i 2k +1 V21<+1—i Vi U v
=0 i r+2m r “pHm ‘n+m
(4.13) o k. r(@k+1) . 2k+1
= -(@® - 4b)" b U‘;m vp+n—1'(2.][«;+1)
+ (@2 - 4b)2k+1 B 17 U2k+1 2k+1

p-n “m T+m

Remarks. Since UZn = Unvn’ we note that for p = n, (4.10), (4.11),
(4.12) and (4.13) reduce to special cases, respectively, of (1.5), (1.6), (1.9},
and (1.13).

5. PROOF OF THEOREM 3

We readily find that

+ S%Bp“Ln 62m1 + 85, anp_ P

(5.1) W* . W* = Sa N

pHm n+im

Let (@% - 4b) - L denote the left-hand side of (4.1). Then, the binomial

theorem, using (5.1), gives

L = Sziapm W _ aszT )k + S% ﬁp+n(W

2m k
r+2m g

T+2m Wr)
(5.2) m. ok
- b Wr) .

n
-+ Si SZ b Vp—l‘l (Wr+2m

Since Wn = Ciozn + Cy ﬁn, we have, using (2.1) and (2.2) for k = 1,

k _ .k
= Uy Wi Vi — PWo Vs,

k

m Y =Y .

(5.3) (W - b W)

r+2m r +m-1

Noting the relations cited after (2.3), we have
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rkap+n-rk k 2m aZm)k

L = Sib Cy B™ -

brk Bp+n-rk le (QZm _ BZm )k

2 n
(5.4) + s + 8§V Y

brkUlzim Siap+n—rk (—l)k(a/ _ B)kcf + S%Bp+n—rk(a B B)kcliii

n
+88b"V ¥

Recalling (2.1) and (2.2), we now have

Kk . o . .
L = pE Ulz{m ;) (-1)J(l;>wlf'3 W} (sgapﬂl-rkﬂ + 8 -k )
J:

(5.5)

n
+ 545, b Vp_nY

Since (@ - B)S; = Wi - BW; and (o - B)S, = aW, - Wy, additional simpli-
fication of (5.5), using af =b, @+ =a, and (@-p)% = a’- 4b, yields
(4.1).

If W=V, then Wf =2 and Wy = a, and thus (4.1) gives (4.2),
noting that

2 - 2 = 2 _
a VC 4ach_ + 4b Vc-z (a 4b) Vc .

1
We get (4.3) from (4.2) when Wn = Un .
If Wn = Vn’ then (4.2) gives (4.4) and (4.5), which are also obtained
from (5.4), where S; = § = Cy = Cy = 1.
If W’B = Un’ then (4.1) gives (4.6), which gives (4.7) for Wn = Un.
If Wn = Vn’ then (4.6) gives (4.8) and (4.9), which are also obtained from
(5.4), where now C; = Cy =1 and S = -S; = (@ - B)_l.

6. PROOF OF THEOREM 4
We readily find that

p-+n

(6.1) U v =«

goin
pHim n+tim o -B T a-

2mi mi n mi
—_— + b U b .
“« B ¢ p-n
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Let L denote the left-hand side of (4.10). Then, the binomial theorem,
using (6.1), gives

p+n p+n
_ o 2m k B 2m k
L= a7 Wenom -9 W) - a-p Wesom —F Wp)
n m k
+hb Up-n(Wr+2m -b Wr)
(6.2)
= b™Uy @) e - gl - e gl e - g
n
+b Up—nY .

Using (2.1) and (2.2) in (6.2) gives the desired result (4.10).

We obtain (4.11) from (4.10), where Wrl = Un‘ If Wn = Vn’ then
(4.10) gives (4.12) and (4.13), which are also obtained from (6.2), where Cy =
02 = 1.

7. ADDITIONAL SUMS
Closely related in proof to the above theorems are the following results:

Theorem 5. Let Wn and WI"; be solutions of (1.1). Let m, p, and

n be integers (+, -, or 0). Then

2k if2k
Z(—l)(. W WF . & > 0)
P i pHm n-im
(7.1)
= P v @ - ) Tzl
where
* % *
WoWIV, g pe1 = ®WoWs + WiWDV, oo o
(7.2) * - :
T OWe WiV oimop-1 = Zi(m,j) )
2k+1 .
if2k +1 % = cos
i}:_o (-1) ( ; >Wp+imwn—im =0,1,:")
(7.3) B
= pr12111<+1 @ - 40)5 . Zym,k),

where
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* * *
Wo Wy Un-—(2j+1)m-p+1 - bWo Wy + Wy Wy )Un—(2j+1)m—p
(7.4)
+ b W; Wil @j+1)m-p-1 = Z2(0:])

Corollary 5. As special cases of (7.1) and (7.3), we have

2k .
i f2K _ p.2k k-1
(7.5) 120 1) (i)Up+imUn—im -b Um (@ - 4b) Vn—ka—p ’

2k b2k
(7.6) 1‘:-(:) -1) (1) p+1mvn -im b ( 4b) V -2km-p °’

2k p, 2k k
—3 - 2 —_
(7.7) 1_5_:0 (-1) (1 ) i Vn—i b*U " (a 4b) Un—Z] o’

2k = P U @2 - ) U ,

(7.8) Z -1) (1) p+1mUn im

n-2km-p

2k+1
2k +1 — _pPy2ktl o k
(7.9) 1§0 -1) ( )Up+imUn im = P Uy @ -4b) Un—(2k+l)m—p ’

(7.10) >

2k+1
2k+1 _ .br2k+1 o k+
o -1) ( )Vp+imvn—im = b0 (a* - 4b) Un—(2k+1)m—p ’

2k+1
2k +1 _ _pPr2ktl
(7.11) EE} (- 1) ( ) p+1mvn—im = -b Um (a® 4b) V -(2k+1)m-p°
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Theorem 6. Let Wn and W;: be solutions of (1.1), Let m, p, and
n be integers (+, -, or 0). Then, for k = 0, 1, «-.,

& (K K k
(7.12) Z,(i>w W )(a2-4b) = 257, +prmZ4 ,

i=0 p+im n-im

where

- * B * * 2 *
(1.13) Zg = WiWy Vo) - bW Wy + WoWEV ) g +DPWoWo Vo o

= ZS(p3n)

_ * * ;
(7.14) Z4 = Wo W1 Vn—-k:ln-p+1 - (bw()Wo + Wiwl )Vn—km—p
k
+ bWo Wivn—km—p—l

Corollary 6. As special cases of (7.12), we have

S
iz::o (i)Up+imUn-im )(a2 - 4b)

(7.15)
_ .k P+ K
= 2V - PV
= fk k pk
(7.16) i‘;—é(i)vpﬁmvn—im = 2 Vo F P Vi Vomep
£ (i k pk
(7.17) E)(JUP imVacim = 2 Ypin P Vin Unmkep

Remarks. Special cases of (7.5, (7.6), (7.9), and (7.10) for Un = Fn

and Vn = Ln were given, using matrix methods, in the paper by Hoggatt
and Bicknell [3].
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8. PROOF OF THEOREMS 5 AND 6

We readily find that

(8.1) Wp+im W;--im = §1C, o PRI C15, QP gh-im
8.1

+ €481 4 Cys, PR
For r > 0, we obtain, using the binomial theorem,

r .
Y *
.2::0 -1 (i)vaﬂmwn—im

(8.2) S1C, "B (1 - & ™ F™)T 4 €,8,0PE( - )T

1l

prll;l @ - BT(8;C, ™ IP 4 (L1)Tes, 0P |

Using (2.1) and (2.2), (8.2) gives (7.1) for r = 2k and (7.3) for r = 2k + 1.
Special cases (7.5), «++, and (7.11) are readily obtained from (7.1) and
(7.3) for the choices indicated.
Using (8.1), we readily find that

K
Z k k +n +n
i O(i)wp+imw;:—im = 27018187 + 0y A7)
1:

(8.3)

+ bP Vli (8,C, A EP 4 ¢, g, gAKDP)

Using (2.1) and (2.2), (8.3) reduces to (7.12). Special cases (7.15), +++ ,
(7.17), are readily obtained from (7.12).

9., MORE SUMS
Introduction of new integer parameters requires that we redefine cer-

tain identities by notationally including parameters previously suppressed

for simplicity. Thus, we define Z;m, j, p, n) by (7.2); Zy(m,j,p,n) by
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(7.4), and Zgz(p,n) by (7.13). Using (8.1), we can obtain the following re-
sults, whose lengthy details are omitted.
Theorem 7. Let Wn, W;"l and W;‘l"" be solutions of (1.1). Let m, p,

n, and r be integers (+, -, or 0). Then, we have

2k ifox
> ok
i=}"0 -1 <i Wr+21me+1m Wh-im (> 0)

k-1 -ka UZK
= 2

©9.1) (a® - 4b) r+2kmz3(p’n)
k-1 Zk

Uy [Wo' Zp(4mk, 0,p + 1 - 1,n)

+ bPHT (a2 ~ 4p)

- WT*ZZ(‘Lm-ks 0, p+ r,n)],

2k+1 )
2k + 1 ok *
12% - 1) ( / b Wr+21mwp+1m Wn im & =0

k-1 b-m(2k+1) k+1

= (@ - 4b) [ bWe*V.

r+m{2k+1)-1
9.2
-2 - Wit Vr+m(2k+1)]z3(p’n)

+ P (a2 - an)TUZE (W 2y, 2k + 1L,p +x - 1,m)

-WH¥Z,m, 2k+1,p+r,n)],

- 4D) Z( > ;121mwp+1mwn im = 0)

= Zkbp[Wi*Zz(O, k, p-r, n) - bW(TkZZ(O, k, p-r+1,n)]

(9.3
+ Py, k [Wo Z,(@2mk,0,p +r - 1,n) - WT*ZZ (2mk, 0, p + r,n)]

-mk k % %
+b TV WEE L Z3(psn)

Remarks. As a typical special case, we get from (9.1),
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2k if2k\, -mi
i=ZO v (i )b Ur+ZimUp+im Un_im k > 0)
(9.4) = (a2 _ 4:b)k-1 b—ka UZk

m “r+2km p+n

ptr, 5 k-1..2k
+b" T(at - 4b) U2m Un—4mk—p—r
Theorem 8. Let W W;, and WI”;" be solutions of (1.1). Let m,
p, 0, 4, and r be integers (+, -, or 0). Then

2k if2k
; * *
:L:% (-1) ( i )Wp+im Wq+im Wn—im Wr—im >0
= pP 3k @ - 4b)k'221(m, k, p, n)Z3(q, 1)
(9.5) m
+ quilf (a? - 4b)k'221(m, k, q, 1)Z3(p,n)
T et - 4b) U, AV S amk)
where

A(WER) = (Wo Wi W, - 2Wy Wi (bWo Wg' + Wy W Wi
(9.6) + [DE(Wo Wg')? + 4bW,o Wy Wi Wi + (W, W W
- 2b Wy Wy (bW Wi + W, W)W, + b2W, W)W,

2k+1

if2k + 1) . .
;1:6 (-1) ( i /b Wp+iqu+imWn—imWr—im (k2 0)

2k+1

9.7) = DPU " @ - 40z, m, K, p, 0)Zs(a,m)

2k+1

o a? - 40717, m,k, 0,25, n)

+ by

+ bp+q(a2 _ 4b)k_1U2k+1

om AT

n+r-p-g-2m(2k+1) )
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Remarks. As a special case of (9.5), we have
2k
Z(l)(ZK) .U .U .U . k > 0)
by i p+1m g+Hm n-im- r-im
p,2k
-b U (a? 4b) n -2km qu+r
9.8) Zk
- pduZK @2 ap)-
r 2km-q p+n

m
pta, o k-2_2k
+b" Ha* - 4b) UZmVn+r—p—q—l K *

we obtain from

For Fibonacci, Fn’ and Lucas, Ln’ sequences,
(9.8), with a = -b =
2k
2k
Z%)( 1) (1>Fp+1m Fq+1m Fn+1m F1c‘+1m >0
(9.9) = T+l k 2 2k
-1) Fan+2km+p q-r
n+1 k 2.2k k-2_2k
+ 1) Fm1‘r"r+2k1'n+q]-“p—n +5 FZan+r+p+q+4mk :
Theorem 9. Let Wn, WI’;, and W** be solutions of (1.1). Let m,
p, n, g, r, and t be integers (+, -, or 0). Then
* W* | k > 0)

2k . .
if2k), -mi.
(9.10) Z: (-1) (i )b Wt+Zime+iqu+imWn—im r-im
k-2 Zk ok
m [Wo Zo(4mk,0,p+t-1,n) - Wi Z,(4mk, 0,p +£,0)] Z3(q,T)

= PPz - ap)
o [W5 2y (4mmks, 0,q +t - 1,7) = Wi*Z o(4mk,0,q+t,1)]Z3(p,n)

+ b1 (a2 - 4p)
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