REDUCTION FORMULAS FOR FIBONACCI SUMMATIONS
L. CARLITZ*

Duke University, Durham, North Carolina
1. INTRODUCTION

In a recent paper [1], Brother Alfred Brousseau has obtained a chain

of formulas of the following kind.
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As an application he has computed the value of the sum

0
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n
n:
to twenty-five decimal places. It does not seem to be known whether the sum

S is a rational number.
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the above special results suggest that generally

1.1 Ske1 = A T RS

where s bk are rational numbers. We shall show below that this is indeed
true and moreover we shall obtain explicit formulas for a4y bk' Also we ob-

tain explicit formulas for the sum

k(n-1)
Z: (1) =
T — k =1, 2, 3, ) .

n n+l n+2k——1

Indeed we shall prove these results in a somewhat more general setting.

In place of the Fibonacci numbers Fn we take the numbers u, defined by

uy = 0, uy = 1, un+1 = (a+ﬁ)un - aﬁun—l nh=1,2,3,"°),

where o, are distinct, and consider the sums

o]

nk
- (aﬁ)
U "D T

] n'n+l Un+2k

and

nn+l """ Ypagk-1

We show that
1.2 -
(1.2) Ue+1 I

where Cps dk are rational functions of «,B that are determined explicitly.
As for Tk’ we show that

= ¢! 4+ —
TKC+OZ’

where ci{, di{ are rational functions of «,B that are determined explicitly.
Also it is assumed, in order to assure convergence, that
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lel = ll, fe] = 1.

2, SOME PRELIMINARY RESULTS

To begin with, let o,B denote indeterminates and put

n n
= ad — B = I
(2.1) un m— ) Vn o + Bn o
Then, of course,
Yner @+ flu, - aBu, 4

(2.2)

Vn+1 (o + B)Vn - aBVn

Next define

(2.3) (W = 1, (W, = uty--- uy
and

n) _ (W, ~ n
(2.4) 3k R

1t follows from the definition that

3n : 1§ _ ak%ﬁ} . 6n—k+1$k "
_ ﬁkm +an—k+13k

=]
~—

(2.5)

1B
=
———

Clearly w, Vs (u)n, E% are symmetric polynomials in a,f; thelast asser-
tion is a consequence of (2.5).
Let
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2k
: 1./ . .
(2.6) R, () =Z(_l)J%ijg(aﬁ)*ﬂ(Hl)—kaJ ,
=0
2k-1 ,
@0 RCEDD “”J%zk:‘_ IE‘O‘B)?J'U“’-J'“QJ'“XJ' .
j=0

Then, by (2.5),

2k
_ i oriGHD-jk il jfek - 1 2k-j) 2k - 1
Ry ) = Y (-)iep)tI 00Tk ] [oﬂi ; 2 + B 3{ < 1;]

§=0
2k-1
= (-1)] jZki" 1‘ « [(aﬁ)‘ﬁ(j”)'jkaj
j=0 '
- (@p I (2~ (0 2o, |
2k-1
-3 (_ngzk_- 1%Xj[a%j(j+1><j+z>-jk—1 FiG+D)-jk
J
j=0
_ UG -iked Fit gk
2k-1 ) .
) Z (_I)Jszkj—. 1%0;;(J+1>(J+2>-Jk FiG+-ik
=0
so that
(2.8) R2k(x) = (oz_1 - oz_k#{x)RZK_l(x) .

Similarly,
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2k+1
Z 1)] 32“; 1};;}(j+1>(j+z>—j<k+1)ﬁ%j(j+1)-j(k+1>xj
3=0

Roe1®)

2k+1
Z (c1)ioF (D 2)-3+1) gD -3 e+1)

R GE

2k
=Y ﬁkle [ G0 2)-tket i1
=0

_ A2 (48)- (1) (e) 42k

: B%(j+1)(j+z)_(j+1)(k+1)x]

1l

2k
Z 1) ﬁkixj [a%mm-jkﬂ i~k
—

- C;1';i(J'+1)—jI<+k+2B—%-j(j+1)_jk_k x]

2k
@ - &1 ﬁ-kx)z (_1)k321(}a%j(j+1)-jkﬁ-%j(j+l)—jk J

1l

i
s=0

and so

k+1 -k

(2.9) Rzk+1(x) = (a-a Bx) RZK(X) .

Combining (2.8) and (2.9) we get

-k+1, k-1

(210) B, (0 = (@f) T - 5085 - R, =)

2k~2

and therefore

1 k. : . .
211 By = @) TEEDTTE™ - Pl - oy
. ]=1
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k = 1)

k . .
= (aB)"ék(k_l)T-T [(aB)J“l - Vi gX Y (aB)JxZ] )

=1
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with sz—l defined by (2.1).

The recurrence (2.10) can be generalized in the following way. Let

§ = (X(): X]_’ Xzs "')
denote an arbitrary sequence and define
2k %_
- jy2k j(+1)-jk
Ry = D (1) 3 ; s(am X -
i=0
Then, exactly as above, we have

2k-2
(2.12) R, (&) = @) Z (_1)1‘32jk§(aﬁy}j(j+1)—j(k-1)
=0

k-1 k
o [(aﬁ) xj - VZK—-].Xj—I-l + (aB) Xj+2] .

It follows from (2.12) that

(2,19 Ry p(®) - Ry (6)
2k s
_ Sjlek) AiGrn-ik -k
- Z -1 gj saﬁzﬂ : [“(0‘3) Vok+1%5+1 © aBXj+2]
=0

3. A SECOND PROOF OF EQ. (2.11)

It may be of interest to show that (2.11) can be obtained from a known
result. We recall that
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k
k—l : . o fs .
(3.1) [Ta-do =Y ok FIG-D

where

[k] _ - qk)(l - qk’l) cee (1 - q.k—j+1)
! 1-q@-q)eer 1 -7)
Replacing q by Q/B .

k-l) .

[1;]_*«3“ - &yt oo

.. (ﬁk.—j+1 _ ak—j+1)

(B - a)(B% - @) ev (B - )

_ k| -k
il

Thus (2.1) becomes

sz'jk

%k(k 1) k-1 . . k
R | 0|(BJ—aJX) =

= "

J

In particular, if k is replaced by 2k, we get

2k
2k-1 ., . . s f(511) 04
a2 FEEVTT 1 @ -y = 2:(_1)132;<§j3(3—1)ﬁ3(3+1) 2k
= -
J

1

Now replace x by o -k ﬁkx and (3.2) becomes

2k-1 . .
B—k(Zk—l) T-!; (BJ _ on"kﬂﬁkx)
j:

2k
-3 3 ij}(aﬁ -3k 5

=0

(_1)Wa%j(j—ngj(jﬂ)-jkxj _
=0
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so that
2k-1 . .
Ry = D TT ] - o075k
(3.3) !
2k-1
_ T-(-!' a - —-k+1 k—-] x) = T—(l k _]+1 kx) .
]::

at the last step we have replaced j by 2k - j.

Now on the other hand,
E_ooi1 i g
TTe™ - g™ - oo
J:
i (k-1) K i+1 j -+l
= (@p) TTa - elga - Jpitly
k=1
Hie(le-1) B3 kA1 K- k—j , j-k+1
= (@p) ITT @ - kg - ikl
j=0

k-1
(amg»k(k-l)-[—r(l oKt k; T—(l A ki
j=0

]

(QB)‘%k(k“l) 2k-1 “ - aj—k‘l'l

=0

fo’k'jX)

Substitution in (3.3) gives

k . . . .
Ry ) = () TEEDTT @ - gl - ol
i1

which is the first of (2.11).

4. THE MAIN RESULTS

We consider next the expansion into partial fractions of
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A,
(4.1) X _ A
1 - X - B> - B2x) - (oz2k _ BZkX) Zon

where Aj is independent of x, We find that

- (oD -ik
(4.2) @- pPa; = 1) “"‘fl’ _ ,
2k-j
where, as above,
n j _ j
(u)n = ajz - g °
=1
Thus we have the identity
2k _k
(4.3) Lt K 2K

1-x)@-Bx)- (@ - B7Xx)
2k
j J2k (Q,B)T](]"’l) -jk
- W 2 Z< D ——

o —B]x

For x = a_nﬁn, the left member of (4.3) becomes

n(k+1)ﬂnk

o0 0 ?
a-p Unn+1 Un+2k

while the right member becomes

Z “ 1)]{21{\! (Q’B )‘}J(J"'l) -jk
Zk n+] Bn+]

0 @ - P
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We have therefore the identity

(4.4) ()™ z( 1)132;|$ (ozﬁ)%](”l)']_k
U1 *° Upaok (u)Zk o g0t
Now put
” nk
= ((Yﬂ) = eoe
(4.5) Ug = Zunuml T k=0,1,2, )
n=1

and in particular, for k =

o0
2 : 1
(4.6) -u— .
n=1
To assure convergence, we assume that

lof =18l o] =1

Then, by (4.4) and (4.5),

U = Z (- 1)] ;21{: (Q,B)%"J(J *’D‘sz

ko

2k I
__1 1y 2] e G-I
= (u)ZKZ( 1) {jg(am U

2k

g 2 e Ky
2

n=1 n
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The coefficient on the right is equal to

2k

( ) E (- 1)]32k$( B)Z J(J"’l)—Jk
u,
2k i=0

1l

1
S, (1)
iu$2k 2k

-é-k(k 1)_k . .
- L) TT[(aﬁ)J'l ~Vagep + (@B) |

=1
We have therefore

1
. (p) K1)

k Wo

2k j
1 j {2k +5(+1)-jk 1
gy e
= n=

k 1 i
U g [(aﬁ)i’ - Vo ¥ (aB)]

(4.7)

More generally, if we put

s @ B)nk n+2k
(4.8) U (x) = E —
k =) UnUn+1 *7° Yok
and in particular, for k =
© n
(4.9) UR) = Upx) = Z :’-;; ,

=]
1l
[y

then as above,
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2k
n+2k
® = @D 1)J§2k§( op) UHD)-Ik
k ZKZ nZ_ n+3
2k .
(_ufl—z 1)} % 2jk %(aﬁ)z JG+D -k 2y o
=0
2

ijzk 2 J(+1)-jk  2k-j
G)_z-l; ‘LOJ( 1) g z(aﬁ) Z
=

Since

2k

. 1./ . .
§ : (_1)] gzjkz (@B)? j(G+1)-jk XZk-—J - XZk SZk(x—l)
=0

= (aB) -2 k(1) ZKU [(ozﬁ)J 1 Zj—lx_l + (aﬁ)jx_z]

1 k . :
(@B)? k“"”T’T [(0!,3)3'1 %2 - Vi1 (aﬁ)J] ,

I

=1
it is clear that

_ (gt -1 j

U (x) = B U(X)T_[ [(aﬁ) K- vy X+ (ozﬁ)]

(4.10)

j
ji2k j(G+1)-jk Zk X
rf;kz”’? o Pis
n=1

It follows from (4.10) that
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Z (aﬁ)kv2k+1x + af
(4.11) U, & - m m Uk(x)
2k+1 “2k+2

2k+2 & 1 2
m 2k+2 (X) [1 - (Q.B) V2k+1 X— + QBX— ]o'zk(x)} ’

2k j
_ 1§2K] (o0)iG+D)-ik
Ty ) = Ef(—l)gj%(am“ ! xJZ:é-

j:O n=1

where

If we now apply (2.13) to azk(x) with

Ju on
(4.12) x, = x 9 x
j z : u

we get

2k

_ ekl oG+ -k

Toap® = Oy (0) = 20 (1) ii g(am A
j:

-k
. [-(ozﬁ) Vo1 xj+1 + osz]+2]

Thus, by (4.12), (4.11) reduces to

2 (aﬁ)_kv2k+1x + of

Uok+1 M2k+2

Uk"’l(X) - Uk(X)

2k+2
i)2k 7 j(j+1)-jk
(4.13) (u)2k+22( -1) ; %“"B )

v -1
- 1 X 1
. [(aB) k ﬁk"' - aB(-——u + ——u ) o
j+1 j+l j+2

In particular, for x = 1, (4.13) becomes
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-k
1 - (eB) Vora1X + af
Uig - u u U
2k+1 “2k+2

k

2k

N _nilek] G-k
(u)zmz (-1) ; ; &(aﬁ)

j=0
%k Vok+1 1 1
L e el |
j+1 i+ Y2

5. APPLICATION TO FIBONACCI SUMMATIONS

(4.14)

We now consider the special case

(5.1) a+p =1, of = -1 .
Then
(5.2) un = Fnt) A Ln ?

the Fibonacci and Lucas numbers, respectively. Also Uk(x) becomes

o0
(5.5 Z (__1)nk Xn+2k

) Fn Fn+1 o Fn+2k
and in particular Uk becomes

o0
nk

(5.4) > e = (s,

n n+l n+2k

n=1

Formula (4.10) reduces to
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% 0
k n+2k Kk n
< )™ x 1 j X
= [T+ L, x—l)-z.__
F n+1 Fn+2k (F)Zk j=1 2j-1 - Fn
n=1 n=1
{5.5)
Z‘ G- 1)-Jk{2kE 2k- JE ,
(F)Zk F
where now
nl _ FnFn—l'“ Fn—j+1
i FiFy oo Iy
and
(F)gy = FiFp o+ Fy .
In particular, for x = 1, -1, (5.5) reduces to
> nk k(k+1) k
> e - S T T
el FnFn+1 Fn+2k (F)Zk j=1 23 -1 Fy
(5.6)
i1
- T Z( iH0-0- ]kfku'F' ’
2k =
2 k-+1) (k-1) k
) D LR E( -
~ FF 1 Fraoe @y j=1 F2j1
n=1

2k
1 +5(+1)-jk { 2k (-1n"
T W,y NS 3 j EE T,
j=0 n=1

For example,
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o0

5 n
2 -1
F_F—(—I?)_-_=—S+3’

— . n o n+l nt+2
n=1

1

_ 2 S + 41
- -9 ey ?
st Fn Fn+1 Fn+2 Fn+3 Fn+4 3 18
o0
E: (1) =£1-S+17749
F F .. 60 28800 °
=1 ® n+l

where

We note also that (4.14) yields

el B n+1 n-+2k+2 2k+1 2k+2

Z (_l)n(k+1) . ( l)lL‘sz_Fl Z (_1)nk
F F s F F Fn+1 “Fn+2k

(5.8) 2%k

[Dec.

— L

A ik § 2k k T2k+1 1

( 1)73(3 -1)-j % E[( 1) + +
2k+2 F

j+1 Fj+1

For example,

0
2 -n" _ 5
Z : SENY__ ) 5
F F --F 3n=1 FnFn+1Fn+2 18

Fj+2]
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=] o0
‘5"‘ -n* L1 1 1 97 97

oo oo - 0 Qe [o Z0 ~ 900 °
Ah_..jJ: F P P 40 En:; FF 1 F ., 25554 3600

in agreement with the special results obtained in [1].

It should be observed that the formulas of this section depend essen-
tially on o = -1. Very similar results can be stated for o = 1. Thus,
in particular we can obtain results like the above for such sums as

EF

2n F2n+2 ©r Fonvax

and
Z F 3nF3n+3 " Faniek
6. SOME ADDITIONAL RESULTS
Returning to the general case, we shall now evaluate the sum
[=e]
nk
G T =) e (= 1,238 ")
=1 B n+1 n+2k-1

Multiplying (4.4) by (o8 "/ U olepe Ve get

u

(aB)n(kﬂ) E( 1)3 321{% (ozﬁ)%j(ﬁl) Jin
Tu)ZK

n'n+1 *7 " Unaktl Ui Ynak+1

g0 that
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k+1
3 e Z( 1) {2 D)
u u ee U (u)
=1 B n+l n+2k-+1 2k
(6.2) w y
Z @)™
=1 un+j “nt2kc+1
Now consider the sum
(=]
n
6.3) A = z (@)
r uu
o1 D onir
Since
_ n
Ynsr™n-1 7 YnYngre1 T (@B) Uy s
we have

n
u u u
n-1  "ndr-1 _ (@B) T
u, W u_u

n n+r

In this identity, take n = 1, 2, +++, N and sum. Then

N n N u u
u 2 : (@B) - n-1 n+r-1
T u u

u
n+r n
n=1 ° n=1

(6.4)

Since we have assumed that
[Continued on page 510. ]



ON THE COEFFICIENTS OF A GENERATING SERIES

M. BERESIN, E. LEVINE, and D. LUBELL
Adelphi University, Garden City, New York

1. INTRODUCTION

Our object of study is the generating series

& TT( +pxu“> - e

n=1

where the coefficients e(n) are polynomials in p, and where {un} is the

sequence defined by

(2) uy =1, u = 2, wo=uo g + W g for n>2 .

Theorem 1. The values assumed by the coefficients €(n) as n = 0,
1, 2, +-+ range over a finite set if and only if p is one of the numbers O,
-1, w, or w?, where w and w? are the complex cube roots of unity.

The theorem has applications to partition theory. It implies the exist-
ence of certain symmetries, which we illustrate in Section 5, among the par-
titions of integers into terms of the sequence {un}, Sections 3 and 4 are
devoted to the proof of Theorem 1. In Section 2, some preliminary recursion
formulas are obtained, which find application in Sections 3 and 4.

For an added comment, see note at conclusion of this article.

2. RECURSION FORMULAS F'OR €(n)

For each natural number n, let v(n) denote the largest index k for

which u = n Thus p{n) is defined by the condition that

@) Y(n) =n= o)1

Writing €(m) = 0 for negative m, we prove that
Lemma 1. For n > 1, €(n) satisfies the recursion

467
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= - - - p2 -
(4) €n) = €M - u,) +0€m - u, ;) - p%€m - 2u, ,),
where we have written v for v(n).
For a fixed natural number n, write f(x) = g(x) if f(x) and g(x) are
formal power series whose difference contains only terms of degree greater
than n. Then (1) and (3) imply that

n

a2
g
B3
B
it
=
=
AN
o
+
kel
W
[
B
S

From (2) and (3) it follows that
u \-1 u -1 u u 2u
(1+va) (1+px”"1> e o S BT, 2t

so that
u u 2u n y-2 u
(1 px Y opx V7l 4 o2 v-1)2 €m)x™ = l | (1 + 0x m) .
m=0 m=1
Equating coefficients of xn, we find:that
. - - 2 -
(5) €n) - p€ - u,) - pen - u, ,) +p’eln 2u, ;)

is the coefficient of x" in

Now from the identity
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1971]
(an immediate consequence of (2)), it is clear that

=n-2,

V-2 u
deg]—r 1+px ™ =w, - 2
m=1

so that (5) vanishes, proving the lemma.
a shall denote a natural number and we shall write o for

In sequel,
v(a). From the inequalities
u0+15 Zuo =a+u_ < uo__|_1+u0 = u0+2 ,
uc_‘_2 = uo + uo‘+1 = a + uo‘+1 < 2110_+;L = uo__‘_3 s
u(y+n =a+ uor+1r1 = u(y+1 + uc;+n = Ulor+n+1 for n=32,
we obtain
_jyo+n+1 if 0 =n < 2
) via + ua+n) g+n if 2 =n
Applying the fundamental recursion (4),

= _ - p? -

(7) e(a + uc) pe(a uo_l) + pe(a) - pe(a uo) )
(8) €(a + u0+1) = pe(a - uo) + pe(a) ,
- oY -

€a +u ,,) = pe(a) +pe(a+u ) -piea-u )

from which it follows that
= _ D3 _
(©) €a+u ) =P +pea) - 0% - uy)
Lemma2. For h =1 and p # 1 we have
h+1
_pd-p" ") h+2
TP €a) -p nE(a—uo_) .

(10) €a + U +2h)
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For k > 1, Eq. (6) and Lemma 1 imply that

(11) €(a + u = Pe&(a) + P€(a + u

o+2k) o+2k-2)

since the term 02 €(a - ) vanishes. Multiplying both sides of (11) by

P~ and summing,

u0'+2k-3

h -—

h h-1
-k _p T -p” -k
2, Pl * g ) = EEe@ ¢ 30 P T )
k=2 - k=1

so that, for h = 2,

h-1
6(a+u ) =.0(1-P

) h-1
+2h -——T_—p———e(a) +pP €(a +u

a-+2) ’

An appeal to (9) proves the lemma.
Lemma3. For h=1 and p # 1 we have

, - pa - ph*

+2h+1 Top— €@

(12) €la+u

For k =1, Eg. (16) and Lemma 1 imply that

= p€(a) + P€la + u

€a + o2k+1)

ua-+2k+1 )

Treating this in the same manner as (11), we get

) — p(l - ph—l)

= B )

€(a) + ph—le(a + u

(13) &a + u o+3

o+2h+1

for h = 2. But (6), (8) and Lemma 1 imply that

€a + ua+3) = pe(a) + pe(a + uo_+1) - ple(a - ug) = p(1 + p)e(a) .
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Inserting this identity in (13), we arrive at (12), which is seen tohold for h =
1 as well.

3. NECESSITY THAT p = 0, -1, W, or w?

We can now prove that if the coefficients €(1), €(2), €(3), **° range
over a finite set of values, then P must be one of the numbers 0, -1,wW, or
w2,

From (1) and (2), it is clear that €(1) = p and V(1) = 1. Taking a =
1 and ¢ = V(a) = 1 in (12),

, _pa -p™

€+ uy 0 T-p

for h = 1. If these values all lie in a finite set, then 0 must be either zero
or a root of unity.
Taking h = 1 in (12), we get for a = 0,

(14) €(a + uo_+3) = p(1 +p)e(a)
Letting a', a", aM, ..., and ¢', ¢", ¢'"', - be defined by
al = g + u0_+3, o! = V(al) ,
at = ga' + u0'+3, o' = v(m ,
am = a" + u(y"+3 , 0"" = V(a'") ,

etc. , we obtain by iterating (14),
e@®) = ot + p)le(a) ;

since these values all lie in a finite set, P(1 +P) must either be zero or a
root of unity. Thus, either p = 0, p = -1, or both 0 and 1 +0Q are roots

of unity, in which case it is a simple deduction that p = W or p = w?,
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4. SUFFICIENCYOF p =0, -1,w, or w? THE METHOD OF DESCENT

If p =0, itfollows directly from (1) that €(0) = 1 and €(n) = 0 for
n#0. For the case 0 = -1, W, or W%, we shall employ a method of descent.

The next lemma is needed only for 0 = W or w2, It is valid, however,
for all p.

Lemma 4. For each natural number n, €(n) -P €(n - uv) either van-
ishes or is of the form Phe(m) for some h =0 and some m <n.

We define a finite descending chain of natural numbers n(o) = n(l) =

n(z) > ... as follows:

n‘“o)

= n, v =V = V).
If
n(k) = 2u (k) ,
-1
the chain terminates at n(k) ; if, on the other hand,
k) -
n 2u s
1
define n(k+1) and V(kﬂ) by
n(k+1) = n(k) -u & .’ V(k+1) = V(k) - 1.
[ |
First, we show by induction on k that V.(k) = V(n(k)), for if the chain
extends to n(k+1), then
(k) (k+1)
u = Uu < n - u = n
Sy T ) L
and

A (k)

- u =u -u = u =u .
& p® i &) )y
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(k)

Next, applying (4) to n*’, we arrive at

RCR () _

€(

- pe(n ge(n(kﬂ)) - pe(n(k+1)

u ) =0 -u )}
o) () ;
it follows that

€n) - pe@ - u,) = sze(n(k)) - Pe(n(k) -u (k))s
v

If n(k) is the last term in the chain, then (4) applied to n(k) yields

pe(m(k) -u g ) if n(k)<. 2u
v )1
v P {€(u -p0 if n = 2u
V(k)—l v(k)—l
Hence, in the first case,
_ k+1l_, (k)
€(n) - pe(n - uV) =p €(n - uv(k)_l) .
Finally, (4) applied to u, yields
€w,) =p +pew ,) »
50 that
0ift=1o0r t=2
(15) e(ut) -p = pe(ut_z) otherwise
Therefore, the second case results in
{ 0 if V(k) =3
€M) - p€(n - u ) = 9
pk+26(u &) ) otherwise

vr-2
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and the lemma is proved.

Lemma5. If k=2 and p = -1,w, or w?, then e(a+uo+k) either
vanishes or is of the form :tpt €(m) for some t =0 andsome m < a + u0'+k'
If k is odd, the result is a direct consequence of Lemma 3.

If k is even and p = -1, then Lemma 2 implies that e(a+uo_+k)
equals either €(a - uc) or -€(a) - €(a - uo) which, according to (8), inturn
equals €&(a + uo+1) .

If is isevenand p = w or P =w?, then Lemma 2 implies that

p{e(@ -pe@-u)l if k=0 (mod3)
0+k) ={ -€(a) - €(a - uo) if Kk =2 (mod 3)
PE(a - uc) if k =1 (mod 3)

In the first case, Lemma 4 yields the desired form; in the third case, the re-

sult is manifest. Finally, in the second case, Eq. (8) gives

-€(a) - €(a - u ) = P2e(a + Uy

).

To complete the proof of the theorem, we show by a method of descent

that if 0 = -1, W, or w?, then for every n, either
€n) = :t,t
for some t =0, or

€n) = 0 .
Suppose this were false. Then choosing the smallest positive n for which

the theorem fails, we need only apply Lemma 5 to arrive at a contradiction.

Hence, it suffices to show that n admits a representation

= a +
n a+ ug

with k = 2. We may assume that n # u;, since (15) easily implies that



1971] ON THE COEFFICIENTS OF A GENERATING SERIES 475

p(l ~p[%1_]> .

e(ut) =

which is of the required form for p = -1, W, or w2 Taking

we therefore have a > 0. Now

so that

Therefore,

where k = 2,

5. APPLICATIONS AND GENERALIZATION

Theorem 1 can be interpreted as a statement about partitions of natural
numbers as sums of distinct terms of the sequence {un} defined by (2).
Letting Ak d(N) denote the number of ways N can be written as a

sum
N =u + u + coe + U
ny ny l’lh ?

where h = d (mod k) and

n1<n2<"'<nhw

Theorem 1 asserts that
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AZ,O(N) - AZ,I(N) 3
Ag o) = Ay (),

A, (N) - A

3,2
are all bounded as N varies over the natural numbers; moreover, if k = 3,
then there exists d such that the difference

A oM = AL 4(N)

is not bounded.

Theorem 1 can be proven in the same way for any sequence {Vn} such
that

oo o+ .
ny ny Vnp

Lemma 5, however, has more precise consequences for the sequence
{un} defined by (2). It is easy to see that €(N) = 0 or +1 if p = -1, and
that €(N) = 0, +1, 2w, or +w?* if p = W% The partition-theoretic conse-

quence of this observation is that for each N,
| 85,000 - 4, 00| =1
and

A3 0(N) - A, N+ + N - A, N} =1,

Ag 1(N) - Ag 4 (N)

3,1 Ag g 3,0

NOTE: The truth of Theorem 1 for the special case P = 1 is a consequence
of results found in [4]. The special case p = 1 is also a consequence of re-
sults found in later papers (see [5] and [1]). The interest in series (1) for

[Continued on page 511. ]



ON GENERALIZED BASES FOR REAL NUMBERS

J. L. BROWN, JR. :
Ordnance Research Lahoratory
The Pennsylvania State University, State College, Pennsylvania

1. INTRODUCTION

The purpose of this paper is to give an exposition of certain results due
to J. A. Fridy [1], [2], using a somewhat different approach. In [2], Fridy
considers a non-increasing sequence

o0
{x;
of real numbers with

Jim r. = 0
100 1

and defines, for two given non-negative integer sequences

and

the sequence {ri} to be a {k,m} base for the interval (-S*,S) if for each

x € (-S*,8), there is an integer sequence
o0
{aF

such that

477
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with -m, = a; Ski for each 1 =1, where

and

%

I
™
B
H

When the {ki} and {mi} sequences are specialized to k, = n - 1 for
all i =1 and m, = 0 for all i =1, Fridy [1] has termed the resulting
{k,m} base an "n-base' and developed a necessary and sufficient condition
for a sequence {ri} to be an n-base. He also notes in a subsequent paper
[2] that a necessary and sufficient condition for a 2-base had been given by
Kakeya [3] much earlier. The main result of Fridy's second paper derives
from a Lemma which gives a necessary and sufficient condition for {ri} to
be a {k,0} base ([2], pp. 194-196). Since an n-base is a specialization of
a {k,0} base, this latter condition for a {k,0} base subsumes the earlier
result for an n-base in [1]. Moreover, the derivation of the necessary and
sufficient condition for a {k,m} base follows directly ([2], Theorem 1, pp.
196-197) once the condition for a {k,0} base is established.

Our point of departure here is to show that the characterizing condition
for a {k,0} base is itself almost immediate from Kakeya's condition for a
2-base. This follows from the observation that {ri} is a {k,0} base if and
only if a certain augmented sequence (obtained by repeating each T in order
ki times) is a 2-base; the details are given below in Theorem 1. (cf. the
development in [4].)

In order to keep the presentation self-contained, a proof of Kakeya's
result is also given as Lemma 1, where we have emphasized the possibility
of obtaining expansions of the required form with an infinite number of the
expansion coefficients being equal to zero. This particular constraint will
be seen to be important in Section 3, which deals with uniqueness of the ex-

pansions.
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As illustrations of some of the results, we show in Section 4 that the
Cantor expansion is a special case in which unique expansions are obtained.
A Lemma is then established which gives a useful sufficient condition for the
existence of expansions (non-unique, in general), and this Lemma is applied
to show that an arbitrary positive number may be expressed (non-uniquely) as
a sum of distinct reciprocal primes. A similar result holds for the Fibonacci

numbers

{r.°

174

where Fy =F; =1 and F ,=F +F for n =2; that is, any real

number

may be represented (again, non-uniquely) as a distinct sum of reciprocal Fib-

onacci numbers. Along the same lines, we show that any real number

i

0 0
X € —ZF—ll,ZF—l
1 1

has an expansion of the form

[}

(=]
x= 2T
1 i
where each € = ei(x) is either a +1 or -1.
2. EXISTENCE OF REPRESENTATIONS

Lemma 1: (KAKEYA): Let
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©0

{r.}

17

be a non-increasing sequence of real numbers such that

dim r, = 0
1—x ]
and
0
@ rpSZri for p=1,2,38,"""
p+l

o0
Zri=S,
1

finite or infinite, then for each x is [0,8), there exist binary coefficients
@ = ai(x) such that

(2) X = Zai r;
1

and @ = 0 for infinitely many values of i.

Proof. The case S = +w» is straightforward and left to the reader. It
is also apparent that the Lemma holds for x = 0.

Now, for S finite, let x be given in (0,8). Choose n; asthe smallest
positive integer such that n, = x. If equality holds, the lemma is proved

for x; if not, choose ny as the smallest integer >ny for which
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Again, equality at this stage implies the result. Otherwise, we continue the

process, and in general, n is the smallest integer >0 for which

-1

k
rnksx-zrn_ .

1

The process either terminates with an equality sign after a finite number of

steps, or else we obtain an infinite series
T,
1

we focus our attention on the latter case. Clearly,
converges since

for any choice of p. Let

1

B=Zrn. .
1

First, we show n., = n,
i i-1

exists a smallest integer k such that Dieyj = o+ ] for j=1,2,---.

Then n, > 1, since

+ 1 for infinitely many values of i. If not, there
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If k=1,

0
xzﬁ:zrizrni-l’
n4

thereby contradicting our choice of ny. Hence, k >1, and we write

k-1 o0
B = rni + Z ri
1 nk

with no>n. 4 + 1 from our definition of k. Then

k-1 k-1

- (=)
l"n.zﬁ—zrn.zzrizrn—l’
1 i i n k

X -

which implies no=n g 1, a contradiction. We conclude n, >n, 4+ 1
for infinitely many i.
Lastly, we show B = x. For, if not, B <x and there exists N such

that p = N implies

O

p
r, <X—B=x—2rnisx—zlrn. )

p 1 1

=n_ +1 foreach p= N, a contradictionto our
ptl  p

previous assertion. q.e.d.

which in turn implies n

The principal Lemma in Fridy's paper ([2], pp. 194-196) may now be

derived quite simply from Lemma 1:
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Theorem 1. Let

i

1
be a non-increasing sequence of real numbers with ilim r, = 0 and let
— o0

o0

h

iy

{k

be an arbitrary sequence of positive integers. Then every real number x in

(2]
0, z ki r;
1

can be expanded in the form

3) X = Eﬁi r
1

with Bi integers satisfying 0 = ,Bi = ki for i =1, 2, --- if and only if
(2]

(4) I'pSZl&ir'i for p=1,2,3, - .
p+1

Further, the expansion in (3) can be accomplished such that Bi < ki for in-
finitely many values of i.

Proof. To show necessity of (4), assume there exists m > 0 such that

[=e]
T > E k, r,
m 11

and choose x such that
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0
E k.r, < x =1 .
11 m

m+1
If x has an expansion of the form (3), we must have By = B = --+ = Bm =
0 since x < T but then
P ©
xzzﬁiriSZkr <X ,
m-+1 m-+1

a contradiction.

Conversely, assume (4) holds and consider the sequence

defined to consist of each term o in order, repeated ki times; that is

)
{g1}1 = Iy, Iy, Ty, Yo, Y9, Yo, Tgy, **°, rn’ rn’ rn, e

ky times ky times k, times

Using (4), we observe

[e]
=2 g

p+1
for p=1, 2,3, ** . Thus, Lemma 1 guarantees binary coefficients a;
such that any x in

©0

0, Egi

1
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has an expansion of the form

(5) X = Eaigi
1

with- @ = 0 for infinitely many i. Replacing (5) in terms of the T, and
noting

[~e] 0
Zgi :Zkiri ’
1 1

we have that any x in

can be written in the form

o0
x = D b
1
with 0 = Bi = ki and Bi < ki for infinitely many i. q.e.d.

3. UNIQUENESS OF REPRESENTATIONS

Thus, condition (4) is both necessary and sufficient for the existence
of expansions in the form (3). We give a result next in Lemma 2 concerning
the uniqueness of such expansions independently of the existence question.

Definition. Let

{r, 7"

17
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be a non-increasing sequence of real numbers with i1.1_1f*n0 r, = 0 and let

{k.¥°

iYy
be an arbitrary but fixed sequence of positive integers. Let

.Y ad {y.F

1%y i’y

be two sequences of integers which satisfy 0 = ’Bi = ki and 0 = v = ki for
i=1,2, 3, ***. Further, let Bi <ki for infinitely many i and Y <ki

for infinitely many i. Then

{r.T°

17

will be said to possess the uniqueness property [Property U] if and only if

the equality

0 0
2Bt s L
1 1

implies Bi =Y for each i = 1.

Lemma 2. Let

{n 7 ad g

be given as in the preceding definition. Then

{r; "

17

possesses Property U if

o0
6) rpzz:kiri for p =1,2,3, -
p+1
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Proof. Assume (6) holds and that

(=] o0
Eﬁiri = ZYiri
1 1

with {Bi} and {}'i} as in the definition. If the two representatives are not
identical, let m be the smallest positive integer i such that /Si # 12 Then

0 0
erm+ E ﬁiri - Ymrm+2 ity o
m-+1 m+1

or assuming Bm >Ym without loss of generality,
) By - ) = 20 Oy - B

Now, Vi - 'Bi < ki for some i = m +1 (otherwise Y = ki forall i = m +

1, contrary to choice of {yi}), and therefore, from (7),

[=e]
'm = (ﬁm'ym)rm <E kiri i
m-+1

contradicting condition (6) for p = m. We conclude Vi = Bi for all i =1,
giving Property U. q.e.d.
Lemma 3. Take

{mF awd g}

as before. If
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0
rpS Zkiri

p+l
for p=1,2, 3, -+, then
©0
®) ro= 2k (=1,238""")
p+1

is a necessary and sufficient condition for {ri} to possess Property U.
Proof. Sufficiency follows from Lemma 2. To show necessity, assume

that there exists an integer m > 0 such that

[
r, < Z ki s
m+1
and choose x to satisfy
o0
r, <X < Z ki ri
m+1

By Theorem 1, x has an expansion of the form

with 0 = ﬁi = ki for i =1 and ﬁi < ki for many i. Further, at least one
of the coefficients By, B3, *°*, Bm must be different from zero.

Since the sequence
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ix,F°

m-+l

also satisfies the conditions of Theorem 1 and

o0
x<§ k. r, ,
i7i

m+1

the number x has an expansion of the form

o0
x = Yy
m-+1

with 0 =y; = ki for i =zm-+1 and vy < ki for infinitely many i. Thus
[=e] o0
D IRTEAD DA
m+l 1
and Bi =Y does not hold for all i =1, showing Property U does not hold.
q.e.d.
Theorem 2. Let
o0 (o]
{ri}i and {ki}1

be sequences as in Theorem 1. Then every real number x in
(=]
0, E ki TS
1

has one and only one expansion
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o0

(8) x = Z B
1

with 0 = Bi = ki for i= 1 and ﬁi < ki for infinitely many i, if and only
if

(9) DI

p+1
for p =1, 2, 3, -=-, or equivalently,
P
_ 1
(10) ™ = S U 1 +K
i=1 i

for all p= 1, where

o0
S = Zkiri .
1

Proof. From Theorem 1, we must have

for p =1, while from Lemma 3 and the uniqueness requirement,

o]
rp =Zkiri

p+l
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for p = 1. Equation (10) follows on noting

[2e]
Thtl = 2k = T = Ko Tpar o
p+2

or

(11) r = P

for p = 1. Since

we have

and iteration using (11) leads to (10). g.e.d.

4, APPLICATIONS

CANTOR EXPANSION ([5], Theorem 1.6, p. 7): "Let aj, ay, ag, "°*

be a sequence of positive integers, all greater than 1, Then any real number

a is uniquely expressible in the form
0
‘i
12 o = Cp + e —————
(12) o El B g

with integers c; satisfying the inequalities 0 =c, = a, -1 for all i =1

and c, <8 - 1 for infinitely many i."
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Proof. In Theorem 2, identify

1
r. T e e
i agag - 8

and ki =g - 1 for i = 1. Then condition (11) is clearly satisfied. Now,

[a/] » the greatest integer contained in «, so that

for given «, let cy

o ) 1
a, -
_ _ 1
05(}’—[&]<1—-Zkiri—z-aia—2“—.—?i"
1 1

Then Theorem 2 implies a unique expansion in the form (12) as required.

q.e.d.
Next, we give a useful sufficient condition for the existence of expan-

sions as specified in Theorem 1.
Lemma 4. A sufficient condition for

(2]
rpszkiri =1
p+1
is
(13) Ty = Koy ¥ DTy
for all p = 1.

Proof. Assume (13) is satisfied. Then

o0 [>e] (=] (=]
2 o= 2 ejpg + V15 = 2 Kiva Ty Z Tit1

p+l p+1 p+l p+l

Thus,
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(=] [~ (=] 0
Totl = Z ry- Z Tiv1 = Z Kitg Ty = E KiTi = Kop Tpaa

p+l

or

Since r =(1 +kp+1)rp+1,

p+1 p+1 p+l
o0
1+ kp+1)rp+1 = ki r, .
p+1
we have

o0
rp sZkiri

pt+l

for all p =1 as required.

Example 1. Let x be an arbitrary real number satisfying

where Fy = Fy =1,

numbers. Then

o
OSX<Z?1— ’
1 1

493

nt1 = Fn n-1 for n = 2 specify the Fibonacci

with @ = ai(x) a binary coefficient for each i = 1. Further, o = 0 for

infinitely many i.

Proof. Here ki =1 for all i = 1. Clearly
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is non-increasing and

1
111—1.;1100-:5-‘: =0 .

By condition (13) of Lemma 4, a sufficient condition for Theorem 1 to be ap-

plicable is r =2r

o 41’ or equivalently,

= = 2 ®=1,

P Fp+1

where

L

1

But this is merely the condition Fp +1

and the result follows from Theorem 1.

= 2Fp, which is obvious for p =1

Example 2. Let x be an arbitrary real number satisfying 0 = x <:eo,

Then

ooai
X=z:'b—',
1

1

where

{pi}°: = {2,3,5,7,11, --- }
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1971]
a/i(x) is a binary coefficient for each i

is the sequence of primes and @
1. Further o, = 0 for infinitely many i.

Proof. Again, we apply Theorem 1 with

>

for i =1 and ki =1 for all i = 1. Condition (13) reduces to Pjq = 2pi,

and this latter inequality holds for all i =1 by Betrand's postulate ([6], p.

171). Since

oo
P; :
is non-increasing and
lim + = o,
11— pi

the result follows from Theorem 1 and the well-known divergence of the series
o0
25
T 0

([6], Theorem 8.3, p. 168).
Example 3. Let x be an arbitrary real number with

(14)
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where each € = ei(x) is either +1 or -1.

Proof. For

*ﬁiH

0 (<]
ce(-Z4 T#)
1 1

we have

so that by Example 1,

[

|
™
+
N
I
vk
"dl_@

where each @ is a binary digit. Equivalently,

0
Za/i -1
x = Z F, ’
1
and we note that Zai -1 is either +1 or -1 depending on whether @ = 1

or a; = 0, respectively; this establishes the expansion in the stated form.
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ON MODULI FOR WHICH THE FIBONACCI SEQUENCE

CONTAINS A COMPLETE SYSTEM OF RESIDUES

S. A.BURR
Bell Telephone Lahoratories, Inc., Whippany, New Jersey

Shah [1] and Bruckner [2] have considered the problem of determining
which moduli m have the property that the Fibonacci sequence {un}, de-
fined in the usual way, contains a complete system of residues modulo m.,
Following Shah we say that m is defective if m does not have this property.

The results proved in [1] include: () If m is defective, so is any
multiple of m; in particular, 8n is always defective. (II) if p is a prime
not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (II) If p is a
prime =3 or 7 (mod 20) and is not defective, thenthe set {0, =1, #ug, tuy,
Flg, oo 0y '_Hln }, where h = (p +1)/2, is a complete systemlof residues
modulo p. In [2], Bruckner settles the case of prime moduli by showing that
all primes are defective except 2, 3, 5, and 7.

In this paper we complete the work of Shah and Bruckner by proving the
following result, which completely characterizes all defective and nondefective
moduli.

Theorem. A number m is not defective if and only if m has one of

the following forms:

55, 2.55, 455,
3.5, 65,
k k

757, 145,

where kK =0, j =1,

Thus almost all numbers are defective. We will prove a series of lem-
mas, from which the theorem will follow directly, We first make some use-
ful definitions.

We say a finite sequence of integers (ay, &, °*+, a,) is a Fibonacci

cycle modulo m if it satisfies a; + 8. 5 modm), i =1, ¢, r -2,

i+2
aswell as a, ; +a, = a (mod m) and a,+ta; = g (mod m), and further-

more (aj, a, *++, ag) does not have these properties for any q <r. (As

497



498 ON MODULI FOR WHICH THE FIBONACCI SEQUENCE [Dec.

the name implies, it is convenient to regard the cycles as circular.) We say
r is the length of the cycle. For any m, we also call (km) a Fibonacci
cycle modulo m of length 1. We call two Fibonacci cycles equivalent if one
is congruent termwise modulo m to a cyclic permutation of the other. Fin-

ally, we define a complete Fibonacci system modulo m to be a maximal set

of pairwise inequivalent Fibonacci cycles modulo m. Note that the total num-
ber of terms appearing in such a system is m?.

The idea behind this definition is simple; it is a compact way of repre-
senting all possible Fibonacci sequences modulo m. Forexample, the follow-

ing are complete Fibonacci systems modulo 2, 3, 4, and 5, respectively:

{0, 1, 1), 0},
{(0’ 1’ 1, 2’ Os 2: 23 1)9 (0)},
{0, 1,1, 2, 3, 1), (0, 3, 3, 2, 1, 3), (0, 2, 2), (0},

{(O’ 1, 1’ 2, 3’ 03 3a 3: 1, 4’: O’ 49 4’ 3: 2, 03 23 2, 4: 1), (19 3: 4, 2)9 (0)} .

For larger m the structure of these systems can become quite intri-
cate and is worthy of study in itself. We will not undertake such a study here.
Instead, we will proceed to thelemmas. The first lemma gives another proof
of the result of Bruckner; it is included to illustrate the above ideas..

Lemma 1. If p is a prime which is not defective, then p = 2, 3, 4,
or 7.

Proof. Assume the contrary, and let p = 7 be a nondefective prime.
Then p = 3 or 7 (mod 20), and (II) holds. From this it is easily seen either
directly or from (5.5) and (5.6) of [1] that

Cy = 0, 1,1, *°,u

h-2’ Yp-17 Yh? “Up-1? hepe T b 7D

0, -1, -1, -u

h-1? “Uh Yho1? pepe 7t 71 D

H "'uh_z,
is a Fibonacci cycle of length 2p + 2 modulo p.

Let Cy, k=1, ««+, (p-1)/2, be the finite sequence formed by mul-
tiplying the terms of C; by k. Clearly each Ck is a Fibonacci cycle mod-
ulo p. But they are all inequivalent, since Cj equivalent to Ck implies
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j = tk (mod p), which implies j = k. Since all the (p - 1)/2 sequences C
are inequivalent, the set

k

{Cis f00y C(p—l)/z’ (0)}

is a complete Fibonacci system (modulo p) because the total number of terms
appearing is

p;1-(2p+2)+1=p2.

Consider the finite sequence of integers 5, -2, 3, 1, 4, 5. This satis-
fies the Fibonacci difference equation, and hence must be congruent term-by-
term to a portion of some Ck (possibly wrapped end around). Thus some
Ck has two congruent terms five steps apart. Therefore, multiplying each
term by the inverse of k, we see that C; hastwo congruent terms five steps
apart. But examination of the definition of C; shows that this implies that
for some 3 =j =h either uj = +1 (mod p) or u.j = :l:uk (mod p) for some
k #j, 3=k =h. (Note that here we have used p > 7.) But this contra-
dicts (III), so the lemma is proved.

By property () it suffices to consider moduli divisible only by 2, 3, 5,
and 7. We first deal with the powers of 3.

Lemma 2. No power of three is deficient.

Proof. We begin by determining a complete Fibonacci system modulo
3%, 1t is well known that the rank andperiod of 3" are 4 - 3h-1 and 8. 301
respectively. That is, the smallest m = 0 for which 3" W is 4. 3n,—1’

and for all m,

(mod 3t ) .

el
i
[

m-+8. 3n—1

Thus
C =1(0,1,1,2, -, us’sn_l)

is a Fibonacci cycle modulo 3", But it is eagsily from the above facts that
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u = -1 (mod 3"),
2301

so that

Cy (0, 1,1, 2, 00, 0, =1, =1, =2, +o+, ug.sn_1_1>
is an equivalent Fibonacci cycle.

For each integer k prime to 3 in the range 0 <k'< %-311, let Ck
be the sequence formed by multiplying each term of C; by k. As inthepre-
vious lemma, the Ck are all inequivalent Fibonacci cycles. The total num-
ber of such C, is -%-(l)(Sn) = 301

the total number of terms appearing in the C

» where ¢ is the Euler function. Hence,
| is 8- 3™-2 Consider also
the sequences formed by multiplyingby 3 every term of a complete Fibonacci

n-1

system modulo 3 This clearly forms a set of inequivalent Fibonacci

cycles modulo 3n, and the total number of terms appearing in the cycles is
32n—2. Furthermore, none of these cycles is equivalent to any Ck' There-

fore, these cycles, together with the C,, form a complete Fibonacci system

k!
modulo 3n, since the total number of terms is then

2n-2 + 32n—2 _ 3211 .

8¢3

It is well known that the expression |a® + ab - b?|, where a and b
are two consecutive terms of a sequence satisfying the Fibonacci difference
equation, is an invariant of the sequence. Consequently, an invariant of any
such sequence modulo m is the pair of residue classes corresponding to
+(a% + ab - b?), and the same applies to Fibonacci cycles.

We now show that any Fibonacci cycle modulo 3" with invariant cor-
responding to +1 is equivalent to Cy. Certainly such a cycle must be equiva-
lent to some Ck’ since the invariants of the other cycle are divisible by 3.
Such a C, must satisfy K? = 41 (mod 3"). But

K2 = -1 (mod 3%)

is impossible, so (k + 1)k ~ 1) = 0 (mod 3n), so that k = 1 and the cycle

is equivalent to Cj.
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From this, we see that thelemma will be proved if it can be shown that

for any a there is a b such that

2 +ab - b% = 41 (mod 3%).
In fact, we will even show this for
a2 +ab - b2 = -1.

This is obvious for n = 1. Now suppose the above to have been proved for
some value n 2 1, and let b be such that

a2 + ab - b?

let

a’ + ab -

We will determine an x = 3nt + b

a® + ax - X

We have

a* + ax - X

Il
W
—~
0

1]
wW
[=]
—_
[

]
B
+

= -1 (mod 3%) ,
o= A3t -1
such that

= -1 (mod 3n+1) .

+ 2b)t + 3"A - 1(mod 3

3%t + ab + 2.3%bt + b2

+ 2b)t + (a2 + ab - b?)

Thus x will have the desired property if

(a + 2b)t +

But 3 # a + 2b, for otherwise a

A

b,

0 (mod 3) .

and
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22 = g% +ab - b = -1 (mod 3) ,

which is impossible. Therefore, the above congruence has a solution and the
lemma is proved.

We now consider the effect of the prime 5. We will prove a general
lemma which is of some interest in itself.

Lemma 3. Suppose that the Fibonacci sequence {un} has period k
modulo m, and that it has period 5k modulo 5m. For some n and a let
u

n k+n’ *
cee, 4m + a (mod 5m) in some order.

a (mod m). Then u,u tes Uy are congruent to a, m + a,

Proof. We consider two cases, depending on whether or not 5|m. We
first assume 5 £ m. Then the period of 5m is the g.c.d. of k and the per-
iod of 5, which is 20, Since this period is to equal 5k, we have k = 4, 8,
12, 16 (mod 20). Now, a cycle modulo 5 which corresponds to the standard

Fibonacci sequence is

(0, 1’ 1! z’ 3’ 09 3? 3’ 1’ 4’ 0! 4, 4’ 31 2’ 0’ 21 2, 4’ 1)'

From this it maybe verified that w. are congruent mod-

Yean® "7 70 Yaip
ulo 5to 0, 1, 2, 3, 4 in some order. For instance, if n = 0 (mod 20) they
are congruent respectively to 9, 3, 1, 4, 2. Since each of theseis congruent
to a modulo m, they are congruent in some order to a, m +a, =+, 4m +
a. This completes the first case.

We now assume 5|m. Since the Fibonacci sequence has period k mod-

ulo m, are all congruent to a modulo m and hence

Yo’ Yk T Mk
are each congruent to im + a modulo 5m for some choice of 0 =i = 4,
Our object is to show that the value of i is differentfor eachof the five terms.
Set Wo.q = b (mod m). Then Wit Ynanet? 0 Ymantd
gruent to jm +b for some 0 = j =4. Speaking in terms of the concept we

are each con-

have defined, there are 25 pairs congruent modulo 5m to (im + a, jm + b)
appearing within a complete Fibonacci system modulo 5m, of which 5 ap-
pear in the cycle corresponding to the standard Fibonacci sequence. Our ob—
ject isto show that each of these 5 gives a different value of i.

Since
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a® +ab - b2 = +1 (mod m) ,
we may set
a® +ab - b = mA +1.
Applying this same invariant to the pair (im +n, jm +b), we have

(im + 2)? + (im + a)(jm + b) - (jm + b)?

1l

Zm? + ijm? - #m? + ((2a + b)i + (a - 2b)j)m + 2% + ab - b?

m?(i® + ij - ) + m((2a + b)i + (a - 2b)j) + mA + 1 .

Il

This last expression will be congruent to +1 (modulo 5m) if and only if
(2a + b)i + (a - 2b)j + A = 0 (mod 5).
However, 2a+b # 0 (mod 5) since otherwise
41 = 2% - ab - b = a - 2a% - 422 = 0 (mod 5);

similarly a - 2b # 0 (mod 5).

Consequently, for each of the 5 possible choices of i, there is exactly
one j satisfyingthe above congruence. Hence onlythese 5pairs could appear
as consecutive pairs in the Fibonacci sequence. Since i is different in each
case, the lemma is proved.

We now deal with the other primes, and combinations thereof.

Lemma 4. The numbers 8, 12, 18, 21, 28, and 49 are deficient; the
numbers 4, 6, 14, and 20 are nondeficient.

Proof. The arithmetic involved in verifying these facts is left to the
reader.

We now can easily prove the main result.

Proof of Theorem. Lemmas 1 and 4, along with (I), show that the num—

bers of the theorem are the only possible nondeficient numbers. All numbers
3 are nondeficient by Lemma 2. Furthermore, the periods of 6, 14, 20,
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and 30 are 24, 48, 60, and 8- 3j—1, respectively, so that by Lemma 3,
all numbers 6 - 5k, 14 - Eik, 20 - 5k, Sj . 5k are all nondeficient.  Apply-
ing (I) again we see that all numbers of the theorem are nondeficient. Thus,
the theorem is proved.

It would be interesting to extend this work by considering more general—
ly the problem of characterizing, at least partially, the residue classes that
appear in the Fibonacci sequence with respect to a general modulus, as well
as their multiplicities. A small start on this large problem has been made
by [1], [2], and the present work, especially Lemma 3. Also of interest,
both as an aid to the above and for itself, would be a systematic study of com—
plete Fibonacci systems, whose structure can be quite complicated. In par-
ticular, it would be useful to know the set of lengths and multiplicities of the
cycles. Considerable information, especially for prime moduli, bearing on
this problem exists in various places; see for instance [3], [4]. Of course,
these problems can be generalized to sequences satisfying other recurrence

relations.
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COMBINATIONS AND THEIR DUALS

C. A. CHURCH, JR.
University of North Carolina, Greenshoro, North Carolina

In [3] this author gave derivations of certain results for restricted
combinations by simple extensions of the first problem in Riordan [4, p. 14].
In these derivations k-combinations of the first n natural numbers were ob-
tained by one-one correspondence with arrangements of plus signs and minus
signs on aline. In what follows '"dual' results are obtained by the symmetric
interchange of the pluses and minuses.

For notation, terminology, and basic combinatorial results we follow
Riordan [4]. By k-combinations will be meant k-combinations of the first n
natural numbers.

To establish the correspondence, consider the arrangements of p pluses
and g minuses on aline. I p =k and q = n -k, each arrangement cor-
responds in a one-one way with a k-combination of the first n natural num-
bers as follows. Arrange the first n natural numbers on a line in their
natural (rising) order; place a plus sign under each integer selected and a
minus sign under each integer not selected.

It is well known that there are
(p + q
p

arrangements of p pluses and q minuses on a line. With p =k and q =

Cln,k) = (E)

k-combinations. The dual in this case gives nothing new since

n - k we get the familiar

C(n,k) = C(n,n - k) .

505
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Starting with the first problem in Riordan [4, p. 14], with pluses and

minuses interchanged, there are

g+ 1
)

arrangements of p pluses and g minuses on a line with no two pluses to-
gether [3]. With p =k and g = n -k we getKaplansky's result [4, p. 198]
that there are

@) (H"E”)

k-combinations with no two consecutive integers in the same combination.
To get the dual in this case, interchange p and g in (1). Then with

p =k and q = n -k we have that there are

k+1
(3) (n _ k>
k-combinations with no two consecutive integers omitted from the same com-
bination (n - 1)/2 =k = n.

In [3] we also rederived the circular case of Kaplansky's lemma [ 4, p.
198]. That is, there are

p*t4qfa
)

arrangements of p pluses and q minuses on a circle with no two consecutive

n n -k
n -k k

circulark-combinations with no two consecutive integers, where n and 1 are

pluses, and

taken to be consecutive. The dual in this case is that there are
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()

circular k-combinations with no two consecutive integers omitted, n/2 =k

= n.

In rederiving (5) below, a result :of Abramson and Moser [2], which

generalizes (2), we got that there are

() ()

arrangements of p pluses and q minuses on a line with exactly r blocks of
consecutive pluses. With p = k and q = n - k there are

® E-) ey

k-combinations with exactly r blocks of consecutive integers. This reduces
to (2) when r = k. The dual in this case is

n-k-1)(k+1
r -1 r
k-combinations with exactly r blocks of consecutive integers omitted. This
reduces to (3) when r = n -k,
There are circular k-combinations corresponding to (5), see [2] or

[3], and the appropriate dual.

Another generalization of (2) is that there are

(q+p—bp+b)
p

arrangements of p pluses and q minuses on a line with at least b minuses

between any two pluses [3], and

n-bk +b
)
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k-combinations such that if i occurs in a combination, none of i +1, i+ 2,
*,i+b can [4, p. 222]. Here the dual is

n-nbn-k) +b
n-k

k-combinations such that if i is omitted, none of the i + 1, i+ 2, ***, i+ b
are, b(n-1)/(b+1) =k =n.

For the circular k-combinations corresponding to (6) see [3, (5b)] or
[4, p. 222]. The dual follows readily from [3, (3b)].

Combining the restrictions in (5) and (6), we have

(p - 1)<q— b - Dir - 1) +1>
r -1 T

arrangements of p pluses and g minuses on a line with exactly r blocks
of pluses, each block separated by at least b minuses. Thus there are

k-1I\fn-k-(bO-Dr-1) +1
(r_].>< T )

k-combinations with r blocks of consecutive integers with atlease b consec-
utive integers omitted between each block [3, (4b)]. The dual is

n-k-1\(k-@0-1)(r-1) +1
(e

k-combinations with r+1 blocks of at least b consecutive integers in each,
since there are only r gaps.

Clearly, additional results of the type we have considered above can be
obtained from similar enumerations in the literature. Additional enumera-
tions for which the duals are immediate appear in [3].

In closing, one enumeration and its dual should be mentioned. Expan-
sion of the enumerating generating function

. g+l
@ +t+ 8+ e+ t))
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gives

P
[j+1] '
fp,q j + 1) = }: (_1)r<q : 1) <q +p -qr(J + 1))

=0

the number of arrangements of p pluses and g minuses on a line with at
most j pluses between two minuses, before the first minus, and after the

last. With p =k and g = n -k we get Abramson's [1]

k
[j+1] k 1 ( 1)
_ rfn - + n-r{j +
Aj+1(n’k) B E : (-1) ( T )( n —Jk > :

=0

the number of k-combinations with blocks of at most j consecutive integers.
Its dual is

5] |
Z (_1)1‘(1{ ;r 1) <n - rg + 1)> ’

r=0

the number of k~combinations with blocks of at most j consecutive integers

omitted.

4

See alsc {").
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REDUCTION FORMULAS FOR FIBONACCI SUMMATIONS

510
[Continued from page 466. ]
le| = |81, lof =1,

it is evident that

lim N1 1
N=oo uNiFn a
Thus (6.4) implies
00 T
(6.5) u A =u E (aﬁ)n = In-1 -k
' r'r T o u u o
=< “n n+r - n
n=1 n=1
Returning to (6.2), we have
2k n
T E (- 1)3321{;(015)-2-](‘] -1)-jk E ____ﬁg_@_)_
C jzk 1 Yn n+2k—]+1

j=0

n=1

2k
1N pifek] . diG-D-jk @B)
R D D e ECT) b
u 21{27)‘ 3 J } z:un un+2k -j+1

Therefore we have

2k

1 S ilek] o diG-D-ik
Tiyr = Wy 254 (-1) g j $("‘B ) Agkoj+1
=
2k ,
= 1 z : j\2k Ti(i-1)-jk @B"
= (-1) i . ;(ozB)
Wy - ! Z Un Un-2k-j+1

=1, af = -1, (6.6) reduces to

In particular, when o + B
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00 2k
Z (—l)n(k+1) _ 1 Z (_l)zij(j+1)—jk 2k|
— P P 1 Fragisr (gl i) 2k-jHl
n"‘l J=0
2k ,
o1 o\ diG+) ik (2K
(6.7) TFTzEZ; (-1) zj i
J:
j
T
=1 Fn Fn+2k-3+1

2k
where now g § ; and Azk-j+1 are expressed in terms of Fibonacci numbers.
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[ Continued from page 476.]

P = 1 stems from its application to the partitioning of integers into distinct
Fibonacci numbers. These applications are investigated in the papers listed
in References. When P is a root of unity, series (1) again has partition —

theoretic congruence which we exploited to some extent in Section 5.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745, This department especially welcomes
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate
their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problems.

H-186  Proposed by James Desmond, Florida State University, Tallahasse, Florida.

The generalized Fibonacci sequence isdefined by the recurrence relation

Un—l * Un - Ur1+1 ’

where n is an integer and U, and U; are arbitrary fixed integers.

For a prime p and integers n, r, s and ¢t show that

Unp+r = Usp+t (mod p)

if p= %1 (mod5) and n+r = s +t, and that
_ r+t
Unp ir = (-1) USp it (mod p)
if p=+2(@mod5) and n-r = s-t.

H-187 Proposed by Ira Gessel, Harvard University, Cambridge, Massachusetts.
Problem: Show that a positive integer n is a Fibonacci number if and

only if either 5n% + 4 or 5n® - 4 is a square.

512



Dec. 1971 ADVANCED PROBLEMS AND SOLUTIONS 513
H-188  Proposed by Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.
Prove that there are no even perfect Fibonacci numbers.

SOLUTIONS
A NORMAL DETERMINANT

H-168  Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, Canada.

o o= [iti-2
ij i-1

for i, j = 1, 2, *+~, n, show that det aij =1

If

Solution by F. D. Parker, St. Lawrence University, Canton, New York.

It will be convenient to denote the given matrix by Mn, and its deter-
minant by d(Mn), and then to prove the result by mathematical induction.

_(i+-2
%j i-1 ’

Since

we have the two identities

4 7 %-1,5 0 %,5-1 0

and

%j 7 %51 T %15

If we subtract from each column (except the first) of Mn the preceding

column, the second identity shows that

d(Mn) = d(Cyy» Cy g 90 Ciog,50 "



514 ADVANCED PROBLEMS AND SOLUTIONS [Dec.

where Cis represents a column whose elements are givenby ai].. We notice
that the first row of this new matrix is (1, 0, 0, ***). Now if we subtract
from each row (except the first) of the new matrix the preceding row, the first

identity produces the matrix

1 0
Mn'" =
(I Mn—l)

where 0 is a row vector of zeros, I is a column vector of ones. The de-

terminant has not been changed by these operations so that we have
d(Mn) = d(Mn") = d(Mn - 1) .
Thus d(Mn) is a constant and, since d(ml) = 1, then d(Mn) = 1.
Also solved by C. B. A. Peck and M. Yoder.

PRIME TARGET

H-169  Proposed by Francis DeKoven, Highland Park, lllinois. (Correction).

Show n? +1 is aprime if and only if n # ab +cd with ad - bc = #1

for integers a, b, c, d > 0.

Solution by Robert Guili, San Jose State College, San Jose, California. (Partial)

Note: Z denotes the set of positive integers.

Solution by contradiction: If
n = ab + cd; ad - bec = 1 ,
then
n? = ab? + 2abed + A ; 1 = a’d® - 2abed + b2c? .

So
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n + 1 = 22b% + a2d2 = 232 + bie?

1l

2 + d) + 2@ + p2)

(2 + )2 + @)

which is not true.

EDITORIAL COMMENT

The second part of this proof intended here was not complete.
The late proposer made the same logical oversight. However,
the second proof he submitted was more complete and can ap-
pear at a later date.

Editor V. E. H.

Also solved by the Propaoser.

NON-EXISTENT

H-171 Proposed by Douglas Lind, Stanford University, Stanford, California.

Does there exist a continuous real-valued function f defined on a com-

pact interval I of the real line such that

If fo"dx = T .

What if we require f only be measurable ?

Solution by the Proposer.

We claim that such a measurable function f does not exist. By the

Binet formula,
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_,n  ,n,, =
F o= (a - b)/NG ,

where

a = (1 +~B5)/2, b =@ -n~NB)/2 .

For any measurable real-valued function g definedon I and any p =1 we
define

1/p
lell,, ¢ = lel, = (If |g<x>lpdx)

which is taken to be +o if |g[° is not Lebesgue integrable. Also, let
: -1
lelay = gl = ess sup {lgtals x €1} = inf {t: wig ™ e=) = 0 ,

where pu denotes Lebesgue measure on the real line. It is well known that

since p (I) <o ,

lim . lell, = lel, -

where ||g||  is possibly .
Now suppose that f is a real-valued function on I such that

F,o= J fax
I

for n=1,2, *°* . Then

e, = tm 6, = L T/ = o
Let
A={xerfx = a},
B = {xEL{kx = -a} .
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Then for n = 2k we have

2%k 2k
A7 =BT PRgae = o)+ u@1eX ¢+ [ Peax
N5 I I-(AUB)
so that
2k 2k
(%) — - B(A) - u(B) = —1—(2) + [ﬂzl] dx .
N5 NG I-(ALB) L 2

Since [f(x)/a| <1 for almost all x €I - (AUB),
{52 /a} 2 — 0o

a.e. on I-(AUB) as k —», so by Lebesgue's Dominated Convergence
Theorem, the right-hand integral approaches 0 as k— «, Since

b/al <1, (/2% -0
as k— o, goletting k — o in ¢¢) shows
w(A) + u(B) = 1/N5 .
Now if we put n = 2k +1, we have

2k+1 2k+1
£ cb ) - wea e J g
NI I-(AUB)

and the same reasoning as before shows

p(@A) - p® = /N5 ,

Hence p(B) = 0 and u(A) = 1/N5. Letting K =1 - A, we thus have
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n
b f Pwax .
NG K
Now

ol = Lm0, o = el g
so
loll = Pl
for almost all x € K. Let
C = {x&K:f(x) = b},

D = {x=K:f(x) = -b} .

Then
2k
iot = {u(C) + u(D)}bZK + f f.ZK(x)dx,
N5 K-(CUD)
so that
—)zk
Lowo rum = - S B ax
N5 K-(CUD)

[Dec.

Reasoning as before, we see by dominated convergence that the right-hand

integral approaches 0 as k — «, But this contradicts the fact that the left

side is strictly positive. This contradiction shows that such an f does not

exist.

We remark that the situation is different for Lucas numbers.
1=1[0,2], f(x) =a if 0 =x<1, f(x) =b if 1 =x =2. Then

For let
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ffn(x)dx= b+t =L .
I

However, one can show using the methods above that f cannotbe replaced by
a continuous function.

Editorial Note: Robert Giuli noted that

a n-1

nx =
bfﬁdx F,

although this does not satisfy the proposal. It might be interesting to recon-
sider the proposal with restrictions on f, such as boundedness, etc.

HISTORY REPEATS
H-172  Proposed by David Englund, Rockford College, Rockford, lllinois.

Prove or disprove the "identity,"

(7]

_ (n+1)(t+1) [k - t), k-2t+1
D D ] ) T
t=1

where Fn and L][1 denote the nth Fibonacci and Lucas numbers, respect-

ively, and [x] denotes the greatest integer function.

Solution by Douglas Lind, Stanford University

This is Problem H-135 (this Quarterly, Vol. 6, 1968, pp. 143-144:
solution, Vol. 7, 1969, pp. 518-519), and appears as Eq. (3.15) in "Compo-
sitions and Fibonacci Numbers" by V. E. Hoggatt, Jr., and D. A. Lind (this
Quarterly, Vol. 7, 1969, pp. 253-266).

Also solved by Wray Brady and L. Carlitz.
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FIBONACCI VERSUS DIOPHANTUS

H-173  Proposed by George Ledin, Jr., Institute of Chemical Biology, University of San Francisco, San
Francisco, Galifornia
Solve the Diophantine equation,

% +y +1 = 3xy .

Solution by L. Carlitz, Duke University, Durham, North Carolina.

The equation
*) 2 +y: +1 = 3xy
can be written in the form
(ax - 3y)? - 5y* = -4,

where a = 2. We recall that the general (positive) solution of

xt - 5y% = -4
is given by
=\2n+1 u + v B
+
(_1__2V_5) -2 _n =012 ),
so that
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On the other hand, the Fibonacci number Fn 41 satisfies
_ 1 n+1
Z 2r + 1 ’
2r=n
so that v, = F2n+1' Moreover,
un + vn = 2F2n+2 ’
which gives
Uy = 2F5n10 = Fongg -

Since

it follows that

2x = Uy + 3Vn = 2F2n+2 * 2F2n+1 = 2F2n+3 ’

so that x = Fonta® Hence we have the general solution of (*) with x > y:

x = F y=TF m=20,1,2, ).

2n+3° 2n+1

The solution x = y = 1 is evidently obtained by taking n = -1.

Also solved by W. Barley, M. Herdy, C. B. A. Peck, C. Bridger, J. A. H. Hunter, and the Proposer.

SUM PROJECT

H-175 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Put
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00
1+z+ ézz)_n_1 = E a(n,]&)zk
k=0
Show that

(1) a(n,n) =

n
n-s\f2n-s 1Y% 258 ..+ (3n - 1)
(D E( s )( n )('5) B n!

©
(IID) Z(n ; r)(Znn— r) o)t = (@3N 2+5:8 n' (Bn - 1)

where

Solution by the Proposer.

[Dec.

(1) If z = wi(z), f(0) # 0, where f(z) is analytic about the origin,
then (Polya-Szegd, Aufgaben und Lehrsatze aus der Analysis, Vol. 1, p. 125)

X®. nr n-1

_ w d n
n=1 x=0
00

n+1 n
W d n+1
FESV [dx———n (f(x)) ] i
x=0

n=0

Take
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fz) = (1 -2z +4iz)7"

2

so that

n
) [ dn (f(x))“+1] = n!a(n,n) .
dx
x=0

On the other hand, z = wf(z) becomes
2l -z +322) = w

?

which reduces to

(1-28%=1- 3w .

It follows that

1
z =1 - (1~ 3w)®

s 1
Z (_1)n —3 |3,
n

n=1
ad \an_n
_ nf-4\3"w
B Z(_l) <n>n + 1
n=0
o0
_ 20548 «e¢ (3n - 1) _n
B @+ 1) W
n=0
Comparison with (¥) gives
_ 20580 (3n - 1)
a(n,n) =

n!
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(m). Since
00
-z eda)y™h = 37 ( : r>zr“ i
r=0
0 r s
B EQ
r=0 s=0

it follows that

a(n,n) =

|
=)
=]
[
\_w/
S
N
5
B
\_m/
o
o
[}

(I). Put
1—z+-31-z2 = (1 - az)@ - Bz) .

It is easily verified that

Then

1 -z +-%z2)—n"1

I
—~
[

|
I
=2

]
s
N
=
= o+
\.)1/
Q
a1
N
R
[M]e
N
=]

n +
\UJ/
N
1}
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so that

a(n,n) =

|
TN
=
H o+
=
N’
AN
[
n +
\.m/
Q
=
™
[}

]
[V]s
=]
=+
\:j/
TN
D
(=]
P 1
\’1/
1
-
H
’e
[=]
1
~

[Continued from page 496. ]
GENERALIZED BASES FOR REAL NUMBERS

3. S. Kakeya, '"On the Partial Sums of an Infinite Series,' Sci. Reports
Tohoku Imp. U. (1), 3 (1914), pp. 159-163.

4, J. L. Brown, Jr., '"On the Equivalence of Completeness and Semi-
Completeness for Integer Sequences,' Mathematics Magazine, Vol. 36,
No. 4, Sept.-Oct., 1963, pp. 224-226,

5. I Niven, "Irrational Numbers," Carus Mathematical Monograph No. 11,
John Wiley and Sons, Inc., 1956.

6, I. Niven and H. S. Zuckerman, An Introduction to the Theory of Num-
bers, John Wiley and Sons, Inc., 1960.

R
CHALLENGE

"In what way does the subie eongruenge

2 - 15x + 25 = 0 (mod pl,p a prime
relate to the Fibhonascei numbers?

Generalize to other reeurring series.t

John Brillhart and Emma LehmeT



THE SUM OF THE FIRST n POSITIVE INTEGERS —GEOMETRICALLY

FREDERICK STERN
San Jose State College, San Jose, California

The familiar formula 1+2+ ... +n =4n( +1) follows from count-
ing in two ways, the number of intersections of (n + 1) lines in the plane,
assuming that no two of these lines are parallel and no three intersect at the
same point. On the one hand, since any two of the lines intersect at a point
distinct from the point of intersection of any other pair, the number of points

of intersection is the same as the number of distinct pairs of lines:

(n;-l) =dnn + 1) .

On the other hand, suppose the lines are numbered, completely arbitrarily,
from 1 to (n+ 1). Counting the number of intersections sequentially, the
second line intersects the first at one point. The third line intersects each of
the first two at two distinct points — giving a partial total of 1 + 2 intersec-
tions. The fourth line intersects each of the first 3 at three points — giving
a partial total of 1+ 2 + 3 intersections. Thus, the (k + 1)St line inter-
sects the first through the kth
numbered 1 through (k + 1) intersect at 1+ 2+ .-+ +k distinct points.

Finally, we see in this way that the n + 1 lines intersect at 1 +2 + ... +n

lines at k distinct points so that the lines

distinct points. Thus, we have counted the same number of points in two

ways and have arrived at the familiar formula.

) PP
[ Continued from page F»< .]

Afternoon Session

Phyllotaxis: The Facts and the Theory
Dr. Irving Adler, North Bennington, Vermont
Telephone Grammars: An Elementary Example in the Mathematical Theory
of Context-Free Languages
George Ledin, Jr., Institute of Chemical Biology, University of S. F.
The Periodic Properties of a Linear Recurrent Sequence over a Ring
Prof. Donald W. Robinson, Brigham Young University, Provo, Utah

Free Discussion Period
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SOME STRIKING PROPORTIONS IN THE MUSIC OF BELA BARTOK

EDWARD A. LOWMAN
200 Santa Clara Avenue, Oakland, California

Unlike the techniques discussed in aprevious article*, relatively simple
Fibonacci proportions can be used in the organization of larger units of mu-
sical time. In common diatonic practices the lengths of phrases and sections,
expressed in measures, are generally some power of two: four, eight, six-
teen, and thirty-two. Fibonacci numbers, as numerical expressions of the
golden mean, offer other ways of creating proportion which largely avoid
these divisions. Naturally, just asthe older phrases could be sometimes ex-
tended, shortened, or grouped in unusual ways without destroying the overall
sense of balance, Fibonacci proportions need not always be exact or consis-
tent to achieve their intended effect.

Many contemporary composers are using Fibonacci proportions in this
way, but some of the most striking examples are found in the music of an
earlier master: Bartdk. Bartdk's use of Fibonacci proportions evidently
springs from an interest in the golden mean. Ern6 Lendvai, in his book

Bartdk: sa vie et son oeuvre (Budapest, 1957), has pointed out many examples

from Bartdk's music where the golden mean is the major dividing point of a
piece. -

If a unity is divided into two parts according to the golden mean, the
larger part will be 0.618 and the smaller will be 0.382. The first movement

for the Sonata for Two Pianos and Percussionhas 443 measures, and its gold-

en mean is therefore 443 x 0.618 = 274, The recapitulation (the return to
material from the beginning) begins in measure 274. In the first movement

of the Divertimento for String Orchestra, the recapitulation begins at the

golden mean (measured in ternary units instead of measures to compensate
for meter changes), as it does also in the first movement of Contrasts.
Three examples are cited from the sixth volume of Mikrokosmos. In "Free

Variations, ' the golden mean comes at the molto piﬁ calmo; in "From the

Diary of a Fly," it falls at the climax (which is marked with a double

¥7An Example of Fibonacci Numbers Used to Generate Rhythmic Values in
Modern Music,'" this Quarterly, Vol. 9, No. 4, pp. 423-426.

527
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IN THE MUSIC OF BELA BARTOK

sforzando), and in "Divided Arpeggios," the recapitulation begins at the gold-
en mean.
It is only one step further to casting subdivisions in Fibonacci propor-

tions. The first movement of Music for Strings, Percussion, and Celeste is

88 measures long. If we allow a measure's silence at the end, we have 89.
The fff climax of the movement arrives after 55 measures, of which the
strings play the first 34 with mutes, removing them for the last 21. The first
34 measures are subdivided further, as the exposition (the movement is a
fugue) is 21 bars long. The 34 measures following the climax are divided in-
to 13 and 21 by the replacement of the mutes at measure 69, and the final 21
measures are divided againby a change of texture into groups of thirteen and
eight. The following diagram illustrates these divisions. It will be noted al-
so that before the climax longer units are followed by shorter ones, while the
reverse tends to be true after the climax. Thus pace becomes a major factor

in shaping the movement.

T 89 |
34
r 55 I 5 o1 '
18 e
| 34 0 21 I I !
l i | | | 1 |
! 21 13 ' 21 ' 13 13 5|

First Movement of Music for Strings, Percussion, and Celeste

A diagram of the third movement of Music shows considerable, but not
exclusive use of Fibonacci porportions. Here the smaller units are cast
mostly in the familiar fives, eights, and thirteens, but the overall balance of

the movement is less obvious, and highly individual.

g g
k= =]
7] o
21 13y o 8 e 8 13 g 13 8
I T I THI (B3] S T
L3 55 35 3 ! 2, 8 .5 (4,28 34 i
meter: 3 ] 3 E I
‘4 2 4 4
one imeas.
of 2/4

Third Movement of Music for Strings, Percussion, and Celeste

[Continued on page 536. ]



A PRIMER FOR THE FIBONACCI NUMBERS: PART IX

MARJORIE BICKNELL
A. C. Wilcox High School, Santa Clara, California
and
VERNER E. HOGGATT, JR.
San Jose State College, San Jose, California

TO PROVE: F_ DIVIDES F
n nk

For many years, it has been known that the nth Fibonacci number Fn
divides Fm if and only if n divides m, n > 2. Many different proofs have
been given; it will be instructive and entertaining to examine some of them.

Some special cases are very easy. It is obvious that F divides FZk’
for For = FkLk' If we wish only to prove that Fy divides Fok when k is
a power of 2, the identity

F. =F L L, L

N
ol n n2n 4n —1n

)

suffices.

1. PROOFS USING THE BINET FORM

Perhaps the simplest proof to understand is one which depends upon
simple algebra and the Binet form (see [1]),

_ad -8
(1) Py ==
where

a = (1+5)/2, B = (1-n~B)/2

are the roots of x2 -x -1 = 0. Then

nk nk k k
o - _ (e -8B -
F o= ﬁ —<Q_B)(M)—FkM,

529
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where

_ a(n-—l)k + a(n—z)k

M gk 4 om-Bkg2k
+ akﬁ(n-z)k + ﬁ(n—l)k
If M is an integer, Fk divides Fnk’ k # 0.

Since of = -1, if (n - 1)k is odd, pairing the first and last terms,

second and next to last terms, and so on,

M = (a(n-l)k + B(n—l)k) 4 (_1)k(a(n—3)k + B(n—S)k)
+ (_1)2k(a(n-5)k + B(n—5)k) i
k 2
= Lgge * D L _gy + (D kL(n_5)k beee

th

where the n™ Lucas number is given by

(2) Ln=an+Bn.

Thus, M is the sum of integers, and hence an integer. If (n - 1)k is even,

the symmetric pairs can again be formed except for the middle term which is

(aﬁ)(n—l)k/z _ (_1)(n—1)k/2

again making M an integer. Thus, Fy divide<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>