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1. INTRODUCTION 

In a recent paper [1] , Brother Alfred Brousseau has obtained a chain 
of formulas of the following kind, 
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As an application he has computed the value of the sum 

oo 

Li s = 
« _ « f n 

n=l 

to twenty-five decimal places* It does not seem to be known whether the sum 
S is a rational number. 

If we define 

_ ^ -vk(n-l) 
S = \ {-1}

 e — — — , (k = 0P 1, 2, •••) , 
k Z-rf F n F n + 1 F n + 2 k 

n=l 
* Supported in part by NSF Grant GP-78558 
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the above special results suggest that generally 

(i .D s k + 1 = ^ + h A , 

where a, , b, are rational numbers. We shall show below that this is indeed 
true and moreover we shall obtain explicit formulas for a, , b, . Also we ob-
tain explicit formulas for the sum 

V ^ ( - i ) k ( n - 1 ) 

X F T 1 ^ ! <k = *' 2' 3> '••) • 
~ n n+l *n+2k-l 

Indeed we shall prove these results in a somewhat more general setting. 
In place of the Fibonacci numbers F we take the numbers u defined by 

v n n J 

u0 = 0, U l = l s u n + 1 = (a+ $ u n - oipan^ (n = 1, 2, 3, • • • ) , 

where a,/3 are distinct, and consider the sums 
oo 

ut =y—>*> 
k JLJ U U 4_1 • • • U n = 1 n n+1 n+2k 

and 

T - V <"& 
k £ f Vn+1 ' ' ' un+2k-l 

We show that 

(1.2) U k + 1 = c k + \ \ » 

where c, , d, are rational functions of a9(3 that are determined explicitly. 
As for T, , we show that 

where cJ , d! are rational functions of a,/3 that are determined explicitly, 
Also it is assumed, in order to assure convergence, that 
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| a | > |j8|, |ar| => 1 . 

2e SOME PRELIMINARY RESULTS 

To begin with9 l e t a9(S denote inde te rmina tes and put 

451 

(2.1) 
n nn 

u = — — f p n a - p v = a + (T 

Then, of c o u r s e , 

(2.2) 
u n+1 n ^ n - 1 

v ,- = (a + j8)v - #/3v 
n+1 r n r n 

Next define 

(2.3) (u)o = 1, (u)n = uju2 . . . u n 

and 

(2.4) 
(u) 

(u). (u) , k n~k 
n 

n - k 

It follows from the definition that 

C lea r ly u v , (u) , If} a re symme t r ie polynomials in a , 0 ; the l a s t as s e r -n n n | K I 
tion i s a consequence of (2.5) 

Le t 
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2k 
(2.6) R (x) =^(-l)jJ2kfM)^U+l)-3kJ 

2k- - ^ - n i 
j=0 

x" , 

2k-l 
(2.7) R2k-! ( X ) 

j=o 

!•/• . (- i) j j 2 k . - 1[«#)*j ( i + 1 H kaJ + 1x j 

Then, by (2.5), 

R2k(x) 
2k 

Y (-l)ha^+1^kJ \j\2k.~ !} + £ 2 M 2 k - lH 
j=o 

2k-l 
2 (VJ^j-HxJ^^^H^J 
j=0 < '' ' 

- (a/3)^J(J+l)(J+2)-(j+l)k^2k-j+lxJ 

2k-1 
V (-i)jj2 k ." iU[^i«+D0+2)-Jk-i^j(j+i)-jk 
j=o ' J ' 

_ /(i+D(j+2)-jk-j ^jO+D-jk-* x ] 

= (a'1 - aVx) 2 (-DJj2Y ^WW-VfiW'^ , 

so that 

(2.8) R?k(x) = (a-1 - a_k^kx)R2k_1(x) 

Similarly, 
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2k+l 

= Y l ( - 1 ) j i 2 k - + 1[i' ( j + : L ) (J+ 2 )- j ( k + 1 ) /3^(J+ 1 )-J( k + 1 )x: i 
R 2 k + l ( x ) 

j=0 

2k+l 
= V * (.DJj-y+Da+^-ilk+D^jO+D-jCk+i)^ 

3=0 

J \2k| _,_ 2k- j+ l \ 2k j 

fh i JJ-M. 
= y (_i)j j 2 k [ x j rj(j+i)(i+2)-jk-j^j(j+i)-jk 

J-(j+2)(j+3)-(j+l)(k+l)+2k-j 

, j8{(j+l)(j+2)-(j+l)(k+l)j 

= y (-l)j j 2 k [ x j [iKJ+D-ik+i pijO+D-jk 
3=0 ' 3 

_ ^i(j+l)-3k+k+2/ 3-lj(j+l)-)k-k 1 

2k 

2k 

i=0 

2k 

and so 

(2.9) 

s=0 

k+1 -k 
R 2 k + 1 ( x ) = (a - aK+lp Kx) R 2 k (x) . 

Combining (2.8) and (2.9) we get 

(2.10) R 2 k (x) = (apr^+ha*-1 - A ) ^ " 1 - akx)B0]r 0(x) (k - 1) 2k-2 v 

and therefore 

*2k 
±h 

(2.11) R9k(x) = (apf^-Vy] (J'1 - ^xHjS3-1 - A ) 
3 = 1 

= M ) 4 k ( k - D - k -^ fW"1 - v2j_1x + (apM 
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with v2. - defined by (2.1). 

The recurrence (2.10) can be generalized in the following way. Let 

f = (XQ, Xi9 X2, . . . ) 

denote an arbitrary sequence and define 

2k 
R2k^ = E ( - i ) j S ? ^ ) f 3 ( j + 1 ) " j k - j . 

Then, exactly as above, we have 

2k-2 
(2.i2) R91tf> = H O — y ; ( -DJJ^ I^^^W-J* -^ 2k(o = ^)-k+i2](-i)jjfj(^ 

• [ W ) k " l x j " V2k-lXj+l + ^ > k x j + 2 ] 

It follows from (2.12) that 

(2.13) R2 k + 2(f) - R2ktf) 

2k 

E H)j(rpj0+1,-jk[^>-WJ+1
 + «v] 

J=o 

3. A SECOND PROOF OF EQ. (2.11) 

It may be of interest to show that (2.11) can be obtained from a known 
result. We recall that 
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(3.1) 
I—A d 

j=0 

455 

k - 1 . „ 

"ffd - qJx) =X)(-1)J['j]^ 
3~° i=o 

j r k i n ^ ( j - i ) x j 

where 

ra-
Replacing q by a/($ , 

(1 - q )(1 - q ) •«• (1 - q J ) 
(1 - q)( l - q2) . . . (1 - q j ) 

( g k - ^ ) t f k - 1 - ^ - 1 ) - - - t f k - i + 1 - ^ + 1 ) ,j2-jk 
(j8 - a)(j32 - a 2 ) . . . (jS3 - a J ) 

. {*}/-* 
Thus (2.1) becomes 

3=0 ~ H 

In p a r t i c u l a r , if k i s r ep laced by 2k, we get 

(3.2) 0 ,-k(2k-l) 
2k 

f t v - <** =z;<-i>M2f[^j(3"i)^o+i)"23kxi 
1-k k Now rep lace x by a p x and (3.2) becomes 

2 k - 1 ^-k(2k-l) f j 1
 (/3J _ J - k + 1 ^ 

j=0 

2k 

=2>'> ^ 2 k i ^ )^ ( j + 1 ) - j k x j 

i=o 
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so that 

2k-1 
R2k(X) = p-wk-v T7 ^ - «J-k+Vx) 

(3.3) 
2 k - l . ._ , . , . . 2k . . , , . , 

j=0 j=l 

at the las t step we have replaced j by 2k - j . 

Now on the other hand, 

k 
TTV - /Acw3 - A) 
j=i 

= ( c ^ ^ T T a - «-J+1^x)d - aVj+1x) 
k=l 

= (a^-Vfld - oJ-k+1(3k-ix)(l - «k"J^-k + 1x) 
j=0 

= (ap)^k-Vfl (1 - ^-k+1pk~^ • F P 1 - «j_k+1i3k";ix) 
j=0 j=k 

2 k - l = W)lW-D JJ (1 _ J-k+lf-i^ 

Substitution in (3.3) gives 

R2 k(x) = ( a / S ) ^ * " 1 ^ fcj-1 " i^xX/S1'1 - A ) 

which i s the first of (2.11). 

4. THE MAM RESULTS 

We consider next the expansion into partial fractions of 
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/ _ ^ A. 
( 4 e l ) — - —_ ST™ - / J- \ j 

(1 - x)(a - t3x)(o?> - j32x) •• • (a - /TKx) T ^ a3 - ^ x 

where A. is independent of x6 We find that 

2k i (aB)^+1)~ik 

( 4 ' 2 ) ( " " » AJ = ( - 1 ) J (u .(u)? , . 
J j v 2k-j 

where 9 as above 9 

n »._• a - /3 

Thus we have the identity 

(4.3) ( g - & X 

(1 - x)(a - Bx) . . . (a2k - /32kx) 

= 1 y > ,i/2kHQ)3FJti+1Hk 

For x = a nBn, the left member of (4.3) becomes 

an(k+l)^nk 
a - 8 u u •• • u l01 ^ n n+1 n+2k 

while the right member becomes 

2k ,fj(j+l)-jk 

'2k *z£ VJ ' «"'J - ^ 
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We have therefore the identity 

(4.4) 
L)9. JLJ J u u ,- ••• u lOI (u)OI JLmd / j i *i+j /D +̂i 

n n+1 n+2k x 2k T T < J ) a J - £ J 

j=0 
Now put 

oo 

<4-5 ) u k = E ^ r v ^ T — (k-o.i.2....) 
*—r n n+1 n+2k 
n=l 

and in particular, for k = 0, 

oo 

(4.6) U = U0 = ] P ^ . 
n=l n 

To assure convergences, we assume that 

\a\ - |0 | , |ar| - 1 . 

Then, by (4.4) and (4.5), 

2k °° 

j=0 n=l 

2k 

I 
2k 
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The coefficient on the right is equal to 

J=° 

fj(j+D-jk 

T ^ hk" 

-^^trH'-vi*^] 
We have therefore 

M ) 4 k (k-D * 
uk ~ ~ M 2 k 

(4.7) 2 k 

U ."TT [(a/3)i_1 - v2 j + 1 + (a/3)j] 

215 j=0 < ' n=l n 

More generally, if we put 

(4-8) uk(x>=Zin? 
00 nk n+2k • j S p x 

- "n "n+1 J '" Un+2k n=l 

and in particular, for k = 09 

—-^ n 
(4.9) U(x) = U0(x) = > IT ' 

n=l 

then as above, 
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2k 

'2k' 

[Dec. 

j=0 < ' 

j ^ k ) , ^ i ja+D- jkv^x n+2k 

2k 

i^E ( - i ) j ! 2 f l^ ) 2 l j ( 3 + 1 ) " j k x 2 M u ( x ) 
' 2 k * 

j=0 

2 k j=o < ' n=l n 

Since 

2k 

j=0 

(-l)JJ2k|(a/S)2J0+l)-3kx2k-j 
x 2 k s 2 k ( x _ 1 ) 

l k 
= (a j 8) -2 k ( k - 1 ) "TT [ ( a ^ ^ x 2 - v x + («/3)j] 

it i s c lear that 

tospVk-l) k r 
u (X) = K p}. r T T ^ I T l^vftvi-1 

k (U)2k 
(4.10) 

U(x)"pt [(a/3)J 1x? - v 2 j l x + (a/5)j] 

2k j 

- i y (-i)j j2k!(^)j«+l)-jk x2k-j y £ . 
^ 4 ? IM 4*Un 

It follows from (4.10) that 
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7 2 k + r (4.11) U,^(x) 
k+1 IU. ,- u, 

x2 - (ap) v , x + a$ 

2k+l 2k+2 

2k+2 

Uk(x) 

where 

ZR+2 r r _lr _1 91 ) 

= - l ^ ; j < W x > - L1 - ( a ® v 2 k + i x + <** >2k(x>j> 
2k j 

i=o 

If we now apply (2.13) to o°2, (x) with 

(4.12) X. = X 
J 

n=l 

we get 

2k } 

3=0 

[ - (^) - k v 2 k + 1 x . + 1 + ^x . + 2 ] 

T h u s , by (4.12), (4.11) r educes to 

x2 - (a/3) k v 2 k + 1 x + at 
u k + i ( x ) u — T H 2k+l 2k+2 

Uk(x) 

2k+2 2k 

(4.13) = ^ y j 2k 
( u ) 9 . ^ L - i ) }[ 

3^2k) , „ ^ j ( j+ l ) - j k 

'2k+2r 3=0 
'>)' 

W) 
-k v 2 k + l 

Vi 
In pa r t i cu la r s for x = 1, (4.13) becomes 



462 REDUCTION FORMULAS FOR FIBONACCI SUMMATIONS [Dec. 

U, k+1 

1 - ( ^ ) " " k v 2 k + 1 x + afi 

U2k+1 U2k+2 
U, 

(4.14) 

2k 

U ) 2 k - h 2 ^ H I 

(<xp) 
•k v 2 k + l 

5. APPLICATION TO FIBONACCI SUMMATIONS 

We now cons ider the special c a s e 

(5.1) a + p = 1, a$ = - 1 

Then 

(5.2) u = F , n n ' v = L 

the Fibonacci and Lucas n u m b e r s , respec t ive ly . Also U, (x) becomes 

(5.3) 
n=l 

z -Ank n+2k (-1) x 
F F • • • -p 
r n n+1 n+2k 

and in pa r t i cu l a r U, becomes 

(5.4) 
00 

(-I)' 
nk 

^ n n+1 n+2k K 

n=l 

F o r m u l a (4.10) r educes to 
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OO rx-i 

k E (-D 
F F _ , • 

nk n+2k 
x 

n=l n^n+1 Fn+2k ^F'ZK j 

(5-5) 

where now 

2k i=l J J b D D B f n 

(F: 

2k 

9. Z -# 

n=l 

^j(j-l)-jkJ2kl 2 k - j ^ x n 

2k j=0 

:<2kl 2k-j\""^xn 

n=l 

Inf _ n n-1 n-j+1 
J FiF2"--- Fj 

and 

(F)2k = F l F 2 . . . F 2 k . 

In particulars for x = 1, - 1 , (5,5) reduces to 

^ F n r n + r " F n + 2 k " (F)2k J ^ " 1 A * F n n=l J n=l 

(5.6) 2k 

j=0 n=l 

E (-l)n(k+1> = ( - 1 ^ - ^ , f ( ^ 
n = 1

 F n F n + l - " F n + 2 k ' <F>2k | J ^ * ^ Fn 

(5.7) 2k j 

^ j=0 l n=l n 

For example, 
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(-If 
n=l n n+1 n+2 

= -S + 3 , 

~ J ^ F n F n + 1 F n+2 F n + 3 F n + 4 
2 S + i ! 3 S + 18 ' 

(-if 11 Q ^ 17749 

n=l 
Fn Fn4-1 - * * F a_* 6 0 2 8 8 0 0 ' 

n n+1 n+6 

where 

2~d F 
n=l 

We note also that (4.14) yie lds 

(-I)" 
n(k+l) ( " 1 ) k L 2 k + l ^ ( - l ) n k 

~f F n F n + l ' * ' Fn+2k+2 F 2 k + 1 F2k+2 ^ - f F n F n + 1 ' ' " F n+2k n - 1 n=l 

(5.8) 

WJ 

2k 
1 V ^ ( 1)fj(.i-D-ikJ2kj 
i k + 2 ^ ( j ) 

j=0 

(-«k^il + F ^ 1 
1+1 V 2 J 

j+1 j+1 j+2 

For example, 

OO 0 0 

y^ (-Dn , y i _ 3 
^ F n F n + l F n + 2 ^ F n ' 
n=l n=l 

E (-Dr V I , 
trFnFn+r '-Fn+4 3^FnFn+lFn+2 1 8 ' n - i n=l 
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oo oo 

E (-l)n 11 \ ^ 1 = 1 97 = 97 
F F . . . F _ 4 0 Z - # F F _,_••• F ^ 2°3°5°8 40 9600 9 

- n n+1 n+6 Jh™"T n n+1 n+4 
n=l n=l 

in agreement with the special results obtained in [1], 
It should be observed that the formulas of this section depend essen-

tially on ajS = - 1 . Very similar results can be stated for a/3 = 1. Thuss 

in particular we can obtain results like the above for such sums as 

£ - F2nF2n+2 s e ° F2n+4k n=l 

and 

z (-D°k 

' F F * • * F 
, r 3 n 3n+3 3n+6k 

n=l 

6. SOME ADDITIONAL RESULTS 

Returning to the general cases we shall now evaluate the sum 

« T k = E u u ( ? . } . „ ( k = 1 , 2 , 3 , . . - ) 
K ^—f u n u

n + l un+2k-l 
n=l 

Multiplying (4.4) by ^P^/^^k+V we get 

( g i S ) n ( k + 1 ) i y ( 1 ) i W w i ^ 
V n + 1 • * • Un+2k+l ^ 4 ^ 1 M. V j V 2 k + 1 

so that 



466 REDUCTION FORMULAS FOR FIBONACCI SUMMATIONS Dec. 1971 

oo 2k 

, n n+1 n+2k+l w 2 k ~ 3 ) 
n=l j=0 

(6.2) 

H f) 
n + j 

~ n+j n+2k+l 

Now consider the sum 

(6.3) A =VJ£^. 
r ^ W r 

11=1 

Since 

u , u - - u u , . = (a(3) u , n+r n-1 n n+r-1 x r r 

we have 

V l V r - l M)a*. r 
V r unVr 

In this identity, take n = 1, 2, • •• , N and sum. Then 

N N N 

u V wf = V — VUn+r"1 

(6.4) 

- n n+r J^"T n *•—r n+r n=l n=l n=l 

r . r 
\ ^ u n - l _ \ ^ UN+n-l 

Since we have assumed that 
[Continued on page 510. ] 



ON THE COEFFICIENTS OF A GENEiATiNG SERIES 
M. BERESli, E. LEVi iE, and D. LUBELL 
Adelphl University, Garden City, Wew York 

1. INTRODUCTION 

Our object of study Is the generating series 

(1) 
n=l \ / 

where the coefficients e(n) are polynomials in p , . and where { u } is the 
sequence defined by 

(2) iii = l s u2 = 2, u = u - + u 0 for n > 2 . 
w J L 9 n n-1 n~2 

Theorem 1. The values assumed by the coefficients €(n) as n = 0, 
1, 2, ° °° range over a finite set if and only if p is one of the numbers 0, 
-1 ,0) , or ooz

? where oo and u)2 are the complex cube roots of unity. 
The theorem has applications to partition theory. It implies the exist-

ence of certain symmetries, which we illustrate In Section 5, among the par-
titions of integers into terms of the sequence {u }. Sections 3 and 4 are 
devoted to the proof of Theorem 1. In Section 2S some preliminary recursion 
formulas are obtained, which find application in Sections 3 and 4. 

For an added comment, see note at conclusion of this article. 
2. RECURSION FORMULAS FOR €(n) 

For each natural number n9 let p(n) denote the largest index k for 
which u, < n„ Thus p(n) is defined by the condition that 

(3) u , v ^ n < u M l 1 

Writing e(m) = 0 for negative m$ we prove that 
Lemma 1. For n > 1, e(n) satisfies the recursion 

467 
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(4) €(n) = p€(n - u^) +p€(ri - u ^ ) - p2€(n - 2 1 1 ^ ) , 

where we have written V for v(n). 
For a fixed natural number n, write f(x) = g(x) if f(x) and g(x) are 

formal power series whose difference contains only terms of degree greater 
than n. Then (1) and (3) imply that 

i/(n) 
€(m)xx±l = 

m=0 

From (2) and (3) it follows that 

n , v 
_ . V(R) / u \ 

n m=l \ ' 

(I^P^I^XM-1. 1 - px V - f)K V'X + p 2 x ^ 

so that 

(i - PXU" - p.""-' • P * > - I ) X ; «•»),•». f t (i • o > ) 
^ m=0 m=l * ' 

Equating coefficients of x , we find that 

(5) €(n) - p€(n - u^) - p€(n - u ^ ) + p2£(n - 2u ) 

is the coefficient of x in 

V-2 ( u \ 
r r ( i + p x m ) . 
m=i \ / 

Now from the identity 

V-2 

m v ' 
m=l 
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(an immediate consequence of (2)), it is clear that 

V-2 / u \ 

EH") cleg [ 1 I 1 + Px J = Uy - 2 =£ n - 2 , 
m=l \ / 

so that (5) vanishesj proving the lemma. 
In sequel 5 a shall denote a natural number and we shall write a for 

i>(a). From the inequalities 

u , . < 2 u ^ a + u < u , . + u = u , o 5 a+1 a a a+1 a a+2 
u l 0 = u + u i 1 < a + u l i ^ 2 u i 1 < u , o 9 a+2 Q a+1 a+1 a+X cr+3 

u , < a + u , < u . - + u , < u , , - for n > 2 , a+n a+n a+1 cr+n a+n+1 

we obtain 

m\ „/ . \ i or + n + 1 if 0 < n < 2 
<6 ) y ( a + Vn» = a + n if 2 , n 

Applying the fundamental recursion (4), 

(7) c(a + u ) = p€(a - u x ) + p€(a) - p2c(a - u^) , 

(8) €(a + u 1 ) = P€(a - u^) + p€(a) , 

€(a + u ) = p€(a) + p€(a + u ) - p2c(a - u ^ ) 

from which it follows that 

(9) €(a + u a + 2 ) = p( l + p)€(a) - p3€(a - ua) 

Lemma 2„ For h ^ 1 and p / 1 we have 

h+1 
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For k > 1, Eq. (6) and Lemma 1 imply that 

(11) 6(a + u a + 2 k ) = pe(a) + P€(a + V 2 f c _ 2 ) 

since the term P2 €(a - u
a + 2k_3) vanishes. Multiplying both sides of (11) by 

P and summing, 

h -1 -h h " 1 

Sp_kc(a + w> = eri^~e (a) + Sp "ke(a + W • 
k=2 -1 ~ p k=l 

so that, for h — 2, 

€(a + W = P(1i"-Pph"1} 6(a) + p h _ l £ ( a + V2> 

An appeal to (9) proves the lemma, 
Lemma 39 For h ^ 1 and p / 1 we have 

h+1 
(12) €( a + « W u > = P ( 1 l - p } €<a> ' 

For k > 1, Eqe (16) and Lemma 1 imply that 

€( a + V2k+1> = P C ( a ) + P 6 ( a + V 2 k + 1 ) • 

Treating this in the same manner as (11), we get 

(i3) «a + v2h+i> = p ( 1 r p p " 1 ) e(a) + ph_le(a + v3> 

for h ^ 2. But (6), (8) and Lemma 1 imply that 

€(a + u a + 3 ) = p€(a) + P€(a + u ^ ) - p2€(a - u^) = p( l + p)€(a) 



1971] ON THE COEFFICIENTS OF A GENERATING SERIES 471 

Inserting this identity in (13), we arrive at (12) 9 which is seen to hold for h = 
1 as well. 

3. NECESSITY THAT p = 0, - 1 , 00, or 0* 

We can now prove that if the coefficients €(1), €(2), €(3), 9 9 e range 
over a finite set of values, then p must be one of the numbers 0, -1,CL) , or 
co2,. 

From (1) and (2), it is clear that €(1) = p and v(l) = 1. Taking a = 
1 and a = ^(a) = 1 in (12), 

€ ( i + u ) =pq-ph +i i 
€ U U2h+2; 1 - p 

for h ^ 1. If these values all lie in a finite set, then p must be either zero 
or a root of unity. 

Taking h = 1 in (12), we get for a ^ 0, 

(14) €(a + u 3 ) = p ( l +p)€(a) . 

Letting af, a", aftf, • • • , and o*, or", a!?f
5
 eo° be defined by 

af 

a" 

am 

etc. , we obtain by iterating (14), 

€(a( t )) = p\l +P)te(s) ; 

since these values all lie in a finite set, p ( l + p) must either be zero or a 
root of unity. Thus, either p = 0, p = - 1 , or both p and 1 +P are TOOtS 
of unity, in which case it is a simple deduction that p = a) or p = w2. 

= a + u a + 3 , af = Ka?) , 

= a ? + u
a t+3 ' a ? ? " ^ ( a ? ? ) s 

0?!+o 
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4. SUFFICIENCY OF p = 0, - 1 , CO , or CO2; THE METHOD OF DESCENT 

If p = 0, it follows directly from (1) that €(0) = 1 and €(n) = 0 for 
n f 0. For the case p = - 1 , cos or co2, we shall employ a method of descent. 

The next lemma is needed only for p = co or co2. It is valid, however, 
for all P . 

Lemma 4. For each natural number n, €(n) -P €(n - u^) either van-
ishes or is of the form P €(m) for some h — 0 and some m < n. 

We define a finite descending chain of natural numbers n > n > 

n > • • • as follows: 

nt°> = n, ^( 0 ) = V = „ ( „ ) . 

If 

n ^ < 2u 
" Vk)-1 ' 

(k) the chain terminates at n ; if, on the other hand, 

n(k) * 2>u ' 
, „. (k+1) , „(k+l) u define n and v by 

n*+1> = n ( k ) - u ^ , , ( k + 1 ) = , ( k ) - 1 . 

(k) (k) 
Firs t , we show by induction on k that P - v(n ')? for if the chain 

extends to n^ , then 

< (k) (k+1) 
„<k+i) ^(k)^ v.(k)_1 

and 

(k+1) (k) 
i;(k)_1 „(k)+1 j / k ) ^ ^(k) „(k+i)+1 
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Next, applying (4) to n , we arrive at 

. ( .«) - Pe<»« - uv(w, . p je,n<«», - p . ^ D - ,, >{ , 

it follows that 

€(n) - pe(n - uu) = pkJe(n( k )) - pe(n(k) - u ( k ))f . 

If n is the last term in the chain, then (4) applied to n yields 

€(n(k)) -pe (n ( k ) - u ( k ) ) ={ 

p€(m(k) - Vk>V if n(k)* 2>u 
P l e ( > - i ) " p } if n<k) = 2>>-i 

Hence, in the first case, 

€(n) - p€(n - uv) = p k + 1€(n ( k ) - u (fe) ) 

Finally, (4) applied to u, yields 

€(ut) = p + P€(ut_2) , 

so that 

(15) ( 0 if t = 1 or t 
p€(u t_2) otherw 

= 2 
otherwise 

Therefore, the second case results in 

€(n) - pe(n 
( 0 if P{k) < 3 

U ) = 1 k+2 ) otherwise 
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and the lemma is proved. 
Lemma 5. If k ^ 2 and p = - l , co , or co2, then €(a + u , ) either 

vanishes or is of the form ±p €(m) for some t ^ 0 and some m < a + u ,, . 
0"+K 

If k is odds the result is a direct consequence of Lemma 3. 
If k is even and p = - 1 , then Lemma 2 implies that €(a + u , ) 

equals either €(a - u .) or -€(a) - €(a - u ) which, according to (8), in turn 
equals £(a + u - ) . 

If is is even and p = <JO or p = u>?, then Lemma 2 implies that 

€(a + u a + k ) 
p |e(a) - p€(a - u )} if k = 0 (mod 3) 
-€(a) - 6(a - u ) if k = 2 (mod 3) 
-pe(a - u ) if k = 1 (mod 3) 

In the first case, Lemma 4 yields the desired form; in the third case, the r e -
sult is manifest. Finally, in the second case, Eq. (8) gives 

-€(a) - €(a - u a ) = -P2e(a + u ^ ) . 

To complete the proof of the theorem, we show by a method of descent 
that if p = - 1 , k>, or co2, then for every n, either 

€(n) = rtp* 

for some t ^ 0, or 

€(n) = 0 . 

Suppose this were false. Then choosing the smallest positive n for which 
the theorem fails, we need only apply Lemma 5 to arrive at a contradiction. 
Hence, it suffices to show that n admits a representation 

v 
with k ^ 2. We may assume that n f u^, since (15) easily implies that 
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L,m) eW) — r - r p -

which is of the required form for p = - 1 , CO, or co2
8 Taking 

a = n - u^ , 

we therefore have a > 09 Now 

so that 

a = n - u , < V l - u , = V l , 

a = i/(a) < i/ - 2 . 

Therefore, 

n = a + u = a + u j , 

where k > 2e 

5. APPLICATIONS AND GENERALIZATION 

Theorem 1 can be interpreted as a statement about partitions of natural 
numbers as sums of distinct terms of the sequence {u } defined by (2). 

Letting A, ,(N) denote the number of ways N can be written as a 
sum 

N = % + Un2
 + - " + U n h ' 

where h = d (mod k) and 

nt < n2 < • • • < nh f 

Theorem 1 asserts that 
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A 2 , 0 ( N ) " A 2 , 1 ( N ) ' 
A 3 , 0 ( N ) " A 3 , 1 ( N ) • 
A 3 , 0 ( N ) " A 3 , 2 ( N ) 

are all bounded as N varies over the natural numbers; moreover, if k ^ 3, 
then there exists d such that the difference 

Ak,o( N ) - \ , d ( N ) 

is not bounded. 

that 
Theorem 1 can be proven in the same way for any sequence {v } such 

V = V ., + V 0 , 
n n-1 n-2 

and can be interpreted as an analogous assertion about partitions of the form 

N = v + v + nt n2 + v, n h 

Lemma 5, however, has more precise consequences for the sequence 
{u } defined by (2). It is easy to see that €(N) = 0 or ±1 if p = - 1 , and 
that €(N) = 0, ±1, ±0J9 or ±co2 if P = to2. The partition-theoretic conse-
quence of this observation is that for each N, 

A2,0<N) A2>1(N) 

and 

A3,0(N> " A 3 , 1 ( N ) A3>1(N) A3)2(N) A 3 , 2 ( N ) - A3,0<N)I S l -

NOTE: The truth of Theorem 1 for the special case p = 1 is a consequence 
of results found in [4], The special case p = 1 is also a consequence of r e -
sults found in later papers (see [5] and [1]). The interest in series (1) for 

[Continued on page 511. ] 
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1. INTRODUCTION 

The purpose of this paper is to give an exposition of certain results due 
to J. A. Fridy [1], [2] , using a somewhat different approach. In [2] , Fridy 
considers a non-increasing sequence 

{r.f 

of real numbers with 

.lim r. = 0 
1 —•oo 1 

and defines5 for two given non-negative integer sequences 

{k.} 

and 

the sequence {r.} to be a {k5m} base for the interval (-9|S,S) if for each 

x £ (-S*,S), there is an integer sequence 

K>; 
such that 

J^ a. r. 
Z-i i i 

1 

477 
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with -m. ^ a. ^ k. for each i ^ 1, where 
1 1 1 5 

oo 

S = V* k. r. 
t-j 1 i 

1 

and 
00 

^ = ]C mi ri • 
1 

When the {k.} and {m.} sequences are specialized to k. = n - 1 for 
all i ^ 1 and m. = 0 for all i ^ 1, Fridy [1] has termed the resulting 
{k,m} base an ffn-base?? and developed a necessary and sufficient condition 
for a sequence {r.} to be an n-base. He also notes in a subsequent paper 
[2] that a necessary and sufficient condition for a 2-base had been given by 
Kakeya [3] much earlier. The main result of Fridy!s second paper derives 
from a Lemma which gives a necessary and sufficient condition for {r.} to 
be a {k,0} base ( [2] , pp. 194-196). Since an n-base is a specialization of 
a {k,0} base, this latter condition for a {k,0} base subsumes the earl ier 
result for an n-base in [1], Moreover, the derivation of the necessary and 
sufficient condition for a {k,m} base follows directly ([2] , Theorem 1, pp. 
196-197) once the condition for a {k,0} base is established. 

Our point of departure here is to show that the characterizing condition 
for a {k,0} base is itself almost immediate from Kakeya1 s condition for a 
2-base. This follows from the observation that {r. } is a {k,0} base if and 
only if a certain augmented sequence (obtained by repeating each r . , in order 
k. times) is a 2-base; the details are given below in Theorem 1. (cf. the 
development in [ 4] . ) 

In order to keep the presentation self-contained, a proof of Kakeya1 s 
result is also given as Lemma 1, where we have emphasized the possibility 
of obtaining expansions of the required form with an infinite number of the 
expansion coefficients being equal to zero. This particular constraint will 
be seen to be important in Section 3, which deals with uniqueness of the ex-
pansions. 
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As illustrations of some of the results , we show in Section 4 that the 
Cantor expansion is a special case in which unique expansions are obtained* 
A Lemma is then established which gives a useful sufficient condition for the 
existence of expansions (non-unique, in general), and this Lemma is applied 
to show that an arbitrary positive number may be expressed (non-uniquely) as 
a sum of distinct reciprocal primes, A similar result holds for the Fibonacci 
numbers 

r -100 

{ F i } i 

where F4 = F2 = 1 and F +- = F + F - for n ^ 2; that i s , any real 
number 

c E ^ 

may be represented (again, non-uniquely) as a distinct sum of reciprocal Fib-
onacci numbers. Along the same lines, we show that any real number 

( oo oo ^ 

"Lf S T. 
i x i \ 

has an expansion of the form 

XJ FT 9 

1 * 

where each €. = €.(x) is either a +1 or - 1 . 

2. EXISTENCE OF REPRESENTATIONS 

Lemma 1: (KAKEYA): Let 
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(r.f 
i i 

be a non-increasing sequence of real numbers such that 

and 

.lim , r . = 0 
l -*« I 

(1) r
p - Z) ri f o r P = 1. 2, 3, 

p+1 

If 

Zri = S • 

finite or infinite, then for each x is [0,S), there exist binary coefficients 
a. = a. (x) such that i l 

(2) x = E ai ri 
i 

and a. = 0 for infinitely many values of L 
Proof. The case S = +oo is straightforward and left to the reader. It 

is also apparent that the Lemma holds for x = 0. 
Now, for S finite, let x be given in (0,S). Choose nA as the smallest 

positive integer such that r n — x. If equality holds, the lemma is proved 
for x; if not, choose n2 as the smallest integer >% for which 

r < x - r , n2 n* 
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Again, equality at this stage implies the result. Otherwise, we continue the 
process, and in general, n, is the smallest integer >n. - for which 

k-1 
< x - J^ r n, Z^ n. 

k 1 i 

The process either terminates with an equality sign after a finite number of 
steps, or else we obtain an infinite series 

4-j n. 
i i 

we focus our attention on the latter case. Clearly, 

L^j n . 
1 * 

converges since 

P 

i x 

for any choice of p. Let 

JLmd n . 
1 l 

Firs t , we show n. > n._- + 1 for infinitely many values of i. If not, there 
exists a smallest integer k such that n , + . = n, + j for j = 1, 2, ••• . 

Then n, > 1, since 
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^ x < y^ r. = S 
1 

If k = 1, 

n r 
iii 

thereby contradicting our choice of rij. Hence , k > 1, and we write 

k-1 <*> 

' = E v+ E r. 
1 ' \ 

with n. > n. - + 1 from our definition of k. Then k k-1 

k-1 k-1 °o 
x - E v - f* - E v = E ri * V 1 5 

1 * 1 * a k 

k 
which implies n, = n, - + 1, a contradiction. We conclude n. > n. - + 1 

^ k k-1 i l - l 
for infinitely many i. 

Lastly, we show ft = x. For, if not, /3 < x and there exists N such 
that p ^ N implies 

oo p 

rn * * - 0 = * - 2>n. * * - £>n_ • 

which in turn implies n - = n + 1 for each p ^ N, a contradiction to our 
previous assertion, q. e. d. 

The principal Lemma in Fridy's paper ( [2] , pp. 194-196) may now be 
derived quite simply from. Lemma 1: 
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Theorem 1. Let 

483 

be a non-increasing sequence of real numbers with .lim r. = 0 and let 
1 — ¥ CO 1 

be an arbitrary sequence of positive integers. Then every real number x in 

°> E k i r i 

can be expanded in the form 

(3) 
i 

with jS. integers satisfying 0 < /3. < k. for i = 1, 2, • • • if and only if 

(4) r < y k. r. 
p < " i i 

p+1 

for p = 1, 2? 3, 

Further5 the expansion in (3) can be accomplished such that 0. < k. for in-
finitely many values of i. 

Proof, To show necessity of (4), assume there exists m > 0 such that 

r > m y k. r. 
m+1 

and choose x such that 
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E v, < x < r m 
m+1 

If x has an expansion of the form (3), we must have ft = ft = • ° • = £ = 
m 

0 since x < r , but then 

x = Zvi s Z kiri 
m+1 m+1 

< x , 

a contradiction. 
Conversely, assume (4) holds and consider the sequence 

i%>: • 

defined to consist of each term r. , in order5 repeated k. times; that is 

hif = ri> r4, ri> r2> *2> *2, r2, °-8 > V r n , r n , 

kj times k2 times kn times 

Using (4), we observe 

?p < Zw g i 
p+1 

for p = l , 2 , 3 , ° " „ Thus, Lemma 1 guarantees binary coefficients a. 
such that any x in 

°. X>i 
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has an expansion of the form 

485 

(5) x = £ ai h 
i 

with- a^ = 0 for infinitely many i. Replacing (5) in terms of the r.9 and 
noting 

we have that any x in 

E g i = E ki ri > 

>. E v i 

can be written in the form 

x = E ^ ri 
i 

with 0 < /3. < k. and j3. < k. for infinitely many i. q. e. cL 

3. UNIQUENESS OF REPRESENTATIONS 

Thus s condition (4) is both necessary and sufficient for the existence 
of expansions in the form (3). We give a result next in Lemma 2 concerning 
the uniqueness of such expansions independently of the existence question. 

Definition. Let 
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be a non-increasing sequence of real numbers with ,lim0 r. = 0 and let 

be an arbitrary but fixed sequence of positive integers. Let 

{ft }°° and {y. f 
1 1 i i 

be two sequences of integers which satisfy 0 ^ /3. ^ k. and 0 ^ y. ^ k- f ° r 

i = 1, 2, 3, • " . Further, let /3. < k. for infinitely many i and y. < k. 
for infinitely many L Then 

will be said to possess the uniqueness property [Propertjf U] if and only if 
the equality 

E Pi ri = E n ri 

implies j3. = y. for each i ^ 1. 
Lemma 2. Let 

{ r . } and {k.} 
L i J i L i J ! 

be given as in the preceding definition. Then 

{',>; 

possesses Property U if 

(6) r 2= S^ k. r. for p = 1, 2, 3, 
p i -^ i i ^ 

p+1 
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Proof. Assume (6) holds and that 

E^iri = Er^i 

with {p. } and {y.} as in the definition. If the two representatives are not 
identical, let m be the smallest positive integer i such that p. f y.. Then 

B r + J> B. r. = y r + / y. r. , r m m JLJ ' I I #m m L^J §i I J 

m+1 m+1 

or assuming p > y without loss of generality, 

(7) (j8 - y ) = Y\ (y. - jS.) r. 
m+1 

Now, y. - p. < k. for some i ^ m + 1 (otherwise y. = k. for all i ^ m 
1, contrary to choice of {y.}), and there fore, from (7), 

r < (p - y ) r < } J k. r. , 
m m #m m x—4 \ \ 

m+1 

contradicting condition (6) for p = m* We conclude y. = p. for all i ^ 1, 
giving Property U* q. ee d, 

Lemma 3e Take 

{ r . } and {k.} 
i J i i i 

as before. If 
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r 
P S k. r . i 1 

for p = 1, 2 , 3 , • •• , then 

(8) r
p

 = S k i r i (p = 1, 2f 3, ••• ) 
p+l 

i s a n e c e s s a r y and sufficient condition for {r . } to p o s s e s s P r o p e r t y U. 

Proof, Sufficiency follows from L e m m a 2. To show neces s i t y , a s sume 

that there ex i s t s an in teger m > 0 such that 

r < V^ k. r. , m L-J i i 
m+1 

and choose x to satisfy 

r < x < m ^»^ I I E k. r . 
I I 

m+1 

By Theo rem 1, x has an expansion of the form 

= 2>iri x 
1 

with 0 < p. < k. for i ^ 1 and p. < k. for many i. F u r t h e r , at l e a s t one 

of the coefficients j31? /32 9 • " , / 3 m m u s t be different f rom z e r o . 

Since the sequence 
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m+1 

also satisfies the conditions of Theorem 1 and 

oo 

x ^ E ki ri 9 

-m+l 

the number x has an expansion of the form 

489 

m+l 

with 0 < y . < k. for i > m + 1 and y. < k. for infinitely many i. Thus 

m+l 1 

and (3. = y. does not hold for all I > 1, showing Property U does not. hold. 
q. e. d. 

Theorem 2. Let 

{r.}°° and {kf 

be sequences as in Theorem 1. Then every real number x in 

5 £**J i i 

has one and only one expansion 
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OO 

(8) x = 2 h ri 
i 

with 0 < jS. < k. for 1 ^ 1 and p. < k. for infinitely many i, if and only 
if 

(9) r = T* k. r. 
v ' p L-* l l 

p+1 

for p = 1, 2, 3, •• • , or equivalently, 

do) r = s • rr —-ip 
P i=l 

for all p ^ 1, where 

E k. r. I I S 
1 

Proof. From Theorem 1, we must have 

E k. r. i l r < 
P 

p+1 

for p ^ 1, while from Lemma 3 and the uniqueness requirement, 

v = y^ k. r. p L~J i I 
p + 1 



1971] GENERALIZED BASES FOR REAL NUMBERS 491 

for p > 1. Equation (10) follows on noting 

r , - = 7 k. r. = r - k ,- r p+1 LJI i i p p+1 p+1 9 

p+2 

or 

r 
P 

for p > 1. Since 

OO 

ri = 2 ki ri = S " r i k i ' 
2 

we have 

r i=TTTE7 • 

and iteration using (11) leads to (10). q. e.d. 

40 APPLICATIONS 

CANTOR EXPANSION ([5] , Theorem 1.6, p. 7): "Let a1? a2? a3, °«° 
be a sequence of positive integers, all greater than 1. Then any real number 
a is uniquely expressible in the form 

(12) a = CA + Y* 1 -
v ^ JLJ at a2 • •• â  

i=l 

with integers c. satisfying the inequalities 0 ^ c, ^ a. - 1 for all i — 1 
and c. < a. - 1 for infinitely many L ?f 
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Proof. In T h e o r e m 2 , identify 

1 
r . = 

l ai a2 • • • a. 

and k. = a. - 1 for i ^ 1. Then condition (11) i s c l ea r ly sat isf ied. Now, 

for given a, l e t c^ = [a], the g r e a t e s t in teger contained in a, so that 

0 < a - [a] < 1 = £ k. r. = J^ 
a. - 1 

l 

at a2 • • • &i 
1 

Then T h e o r e m 2 impl ies a unique expansion in the form (12) as requ i red . 

q. e. d. 

Next , we give a useful sufficient condition for the exis tence of expan-

sions as specified in T h e o r e m 1. 

L e m m a 4. A sufficient condition for 

r
P * E ki ri <p * w 

p+i 

i s 

(13) r < (k _ + l ) r _Ll 
p p+1 p+1 

for all p ^ 1. 
Proof. Assume (13) i s sat isf ied. Then 

E ri * E ( k
i + i+ 1 ) r

i + i = E ki+i r
i + i + E r

i+i 
P + I p+i p+i p+i 

Thus , 
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OO OO 

Vi = E ri - E v i - E- k
i+i v i = E ki ri - V i Vi 

p+i p+ i p+ i p+i 

o r 

(1 + ViVi£ Ekiri 
P + I 

Since r ^ (1 + k i n ) r , - , we have p p+1 p+1 

r < y™^ k. r . 

p+1 

for all p ^ 1 as required* 
Example 1. Let x be an a r b i t r a r y r ea l number satisfying 

0 < x 
4-J ± -

1 * 
E FT 

where F i = F 2 = I t F - = F + F - for n ^ 2 specify the Fibonacci 

n u m b e r s , Then 

OO 

a. x = E F : • F . 
1 l 

with a. = a.(x) a binary coefficient for each i ^ 1. F u r t h e r , a. = 0 for 

infinitely many L 

Proof. Here k. = 1 for all i ^ 1. C lea r ly 
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-1 

is non-increasing and 

.l im = - = 0 
1 _ * oo F . 

i 

By condition (13) of Lemma 4, a sufficient condition for Theorem 1 to be ap-
plicable is r ^ 2r - s or equivalent^ 

where 

F" s F1" (p ~ 1} ' 
p P+i 

-̂14' 
But this is merely the condition F - ^ 2F , which is obvious for p ^ 1 
and the result follows from Theorem 1. 

Example 2. Let x be an arbitrary real number satisfying 0 < x <-**>., 

Then 

a. 
* " E-s: • 

where 

{Pi} = {2, 3, 5, 7, 11, ••• } 
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is the sequence of primes and a. = a.(x) is a binary coefficient for each i ^ 
1. Further a. = 0 for infinitely many L 

Proof. A gain ? we apply Theorem 1 with 

JL 

for i ^ 1 and k. = 1 for all i ^ 1. Condition (13) reduces to p. - ^ 2p.9 

and this latter inequality holds for all i ^ 1 by Betrand?s postulate ([6]5 p. 
171). Since 

is non-increasing and 

p i ' i 

. l im — = 0, 
1 —»°o p . 

the result follows from Theorem 1 and the well-known divergence of the series 

z^ P 

( [6] , Theorem 8B3, p. 168). 
Example 39 Let x be an arbitrary real number with 

2J F| ~ X ~ 2~J FJ 

Then x possesses an expansion of the form 

(i4) x = E F: » 
i 

6. 

L 
i 
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where each €. = €.(x) is either +1 or - 1 . 
Proof o For 

^ l -Zir> Eir 

we have 

(' 00 \ 00 

so that by Example 1, 

a. 

where each a. is a binary digit, Equivalently, 

i 

and we note that 2a. - 1 is either +1 or -1 depending on whether a. = 1 
or a. = 0, respectively; this establishes the expansion in the stated form. 
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ON MODULI FOR WHICH THE FIBONACCI SEQUENCE 
CONTAINS A COMPLETE SYSTEM OF RESIDUES 

S. A. BURR 
Belt Telephone Laboratories, Inc., Whippany, New Jersey 

Shah [1] and Bruckner [2] have considered the problem of determining 
which moduli m have the property that the Fibonacci sequence {u }, de-
fined in the usual way9 contains a complete system of residues modulo m, 
Following Shah we say that m is defective if m does not have this property, 

The results proved in [1] includes (I) If m is defective, so is any 
multiple of m; in particular, 8n is always defective. (II) if p is a prime 
not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (in) If p is a 
prime = 3 or 7 (mod 20) and is not defective^ thenthe set {0, ±1, =tu3, ±u49 

±u5, • • • , ±u }9 where h = (p + l ) /2 ? is a complete system of residues 
modulo p„ In [2], Bruckner settles the case of prime moduli by showing that 
all primes are defective except 2, 3S 5, and 7. 

In this paper we complete the work of Shah and Bruckner by proving the 
following re suit f which completely characterizes all defective and nondefective 
moduli. 

Theorem. A number m is not defective if and only if m has one of 
the following forms: 

5 k , 2 *5 k
f 4»5k , 

33*5k
5 6«5k , 

k k 
7-5 , 14* 5* , 

where k ^ 0S j — 1. 
Thus almost all numbers are defective. We will prove a series of lem-

mas , from which the theorem will follow directly, We first make some use-
ful definitions. 

We say a finite sequence of integers (al9 ag? 9 a • > a r ) is a Fibonacci 
cycle modulo m if it satisfies a. + a.+1 = ai + 2 (mod m), i = 1, ° * * , r - 29 

as well as a - + a = at (mod m) and a + ai = a2 (mod m), and further-
more (alf a2§

 e 9 e i aq) does not have these properties for any q <. r. (As 
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the name implies, it is convenient to regard the cycles as circular.) We say 
r is the length of the cycle. For any m, we also call (km) a Fibonacci 
cycle modulo m of length 1. We call two Fibonacci cycles equivalent if one 
is congruent termwise modulo m to a cyclic permutation of the other. Fin-
ally, we define a complete Fibonacci system modulo m to be a maximal set 
of pairwise inequivalent Fibonacci cycles modulo m. Note that the total num-
ber of terms appearing in such a system is m2. 

The idea behind this definition is simple; it is a compact way of repre-
senting all possible Fibonacci sequences modulo m. For example, the follow-
ing are complete Fibonacci systems modulo 2, 3, 4, and 5, respectively: 

{(0, 1, 1), (0)1, 

{(0, 1, 1, 2, 0, 2, 2, 1), (0)1, 

{0, 1, 1, 2, 3, 1), (0, 3, 3, 2, 1, 3), (0, 2, 2), (0)}, 

{(0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1), (1, 3, 4, 2), (0)} . 

For larger m the structure of these systems can become quite intri-
cate and is worthy of stafy in itself. We will not undertake such a study here. 
Instead, we will proceed to the lemmas. The first lemma gives another proof 
of the result of Bruckner; it is included to illustrate the above ideas. . 

Lemma 1. If p is a prime which is not defective, then p = 2, 3, 4, 
or 7. 

Proof. Assume the contrary, and let p > 7 be a nondefective prime. 
Then p = 3 or 7 (mod 20), and (III) holds. From this it is easily seen either 
directly or from (5.5) and (5.6) of [1] that 

Ci = (0, 1, 1, . . . , uh_2 , u n _ l f uh , -u h _ 1 , uh_2 , • " , 1 , - 1 , 

0, - 1 , . 1 , . . . , -u h _ 2 , - V l § -u h , V l , - u h - 2 , . " , - 1 , 1) 

is a Fibonacci cycle of length 2p + 2 modulo p. 
Let C, , k = 1, • • • , (p - l ) / 2 , be the finite sequence formed by mul-

tiplying the terms of Cj by k. Clearly each C, is a Fibonacci cycle mod-
ulo p. But they are all inequivalent, since C. equivalent to C. implies 
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j = ±k (modp), which implies j = ke Since all the (p - l ) /2 sequences C, 
are inequivalentf the set 

^ • • • • • V D / 2 * ( 0 ) } 

is a complete Fibonacci system (modulo p) because the total number of terms 
appearing is 

E ^ i . (2p + 2) + 1 = p2 

Consider the finite sequence of integers 59 - 2 , 3S 1, 49 58 This sat is-
fies the Fibonacci difference equation* and hence must be congruent term-by-
term to a portion of some C, (possibly wrapped end around). Thus some 
C, has two congruent terms five steps apart, Therefore, multiplying each 
term by the inverse of k, we see that Cj has two congruent terms five steps 
apar t But examination of the definition of Cj shows that this implies that 
for some 3 ^ j ^ h either u. = ±1 (mod p) or u. = ±u, (mod p) for some 
k ^ j , 3 == k ^ h* (Note that here we have used p > 7e) But this contra-
dicts (in), so the lemma Is proved. 

By property (I) It suffices to consider moduli divisible only by 2, 3S 5, 
and 7* We first deal with the powers of 3* 

Lemma 2, No power of three is deficient 
Pro of. We begin by determining a complete Fibonacci system modulo 

3n
B It is well known that the rank and period of 3 are 4 * 3 " and 8 . 3 

,n| • „ 0n.-l u is 4 • 3 ,. m respectively* That is9 the smallest m > 0 for which 3 
and for all m§ 

Thus 

u = u - (mod 3 ) 
m l 0 0 n - l 

m+8*3 

C = (0, 1, 1, 2, • • • , u n„x) 
8.311 

is a Fibonacci cycle modulo 3n
s But It Is easily from the above facts that 



500 ON MODULI FOB WHICH THE FIBONACCI SEQUENCE [Dec. 

u 1 = -1 (mod 3 n ) , 
4.3n x+l 

so that 

Ct = fo , 1, 1, 2, • - . , 0, - 1 , - 1 , - 2 , " 9 U - ] 

is an equivalent Fibonacci cycle. 
For each integer k prime to 3 in the range 0 < k ' < £• 311, let C, 

be the sequence formed by multiplying each term of Cj by k. As in the p re -
vious lemma, the C, are all inequivalent Fibonacci cycles. The total num-
ber of such C, is -|</>(3 ) = 3 " , where $ is the Euler function. Hence, 

m—2 the total number of terms appearing in the C. is 8 • 3 . Consider also 
the sequences formed by multiplying by 3 every term of a complete Fibonacci 
system modulo 3 "" . This clearly forms a set of inequivalent Fibonacci 
cycles modulo 3 , and the total number of terms appearing in the cycles is 

2n—2 
3 . Furthermore, none of these cycles is equivalent to any C, . There-
fore, these cycles, together with the C, , form a complete Fibonacci system 
modulo 3 n , since the total number of terms is then 

8>32n-2 + 32n-2 = 32n ^ 

It is well known that the expression |a2 + ab - b2], where a and b 
are two consecutive terms of a sequence satisfying the Fibonacci difference 
equation, is an invariant of the sequence. Consequently, an invariant of any 
such sequence modulo m is the pair of residue classes corresponding to 
±(a2 + ab - b2) , and the same applies to Fibonacci cycles. 

We now show that any Fibonacci cycle modulo 3 with invariant cor-
responding to ±1 is equivalent to Cj. Certainly such a cycle must be equiva-
lent to some C, , since the invariants of the other cycle are divisible by 3. 
Such a C. must satisfy k2 = ±1 (mod 3 ). But 

k2 = -1 (mod 3n) 

is impossible, so (k + l)(k - 1) = 0 (mod 3 ), so that k = 1 and the cycle 
is equivalent to Cj. 
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From this, we see that the lemma will be proved if it can be shown that 
for any a there is a b such that 

a2 + ab - b2 = ±1 (mod 3n) . 

In fact, we will even show this for 

a2 + ab - b2 « -1 . 

This is obvious for n = 1. Now suppose the above to have been proved for 
some value n ^ 1, and let b be such that 

a2 + ab - b2 = -1 (mod 3n) , 

let 

a2 + ab - b2 = A-3n - 1 .. 

We will determine an x = 3 t + b such that 

a2 + ax - x2 = -1 (mod 3n + 1) . 

We have 

a2 + ax - x2 = a2 + 3nat + ab + 2-3nbt + b2 

= 3n(a + 2b)t + (a2 + ab - b2) 

= 3n(a + 2b)t + 3nA - Krnod 3n + 1) . 

Thus x will have the desired property if 

(a + 2b)t + A s 0 (mod 3) . 

But 3 / a + 2b, for otherwise a = b , and 
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a2 = a2 + ab - b2 = - 1 (mod 3) , 

which i s i m p o s s i b l e The re fo re , the above congruence has a solution and the 

l e m m a i s proved, 

We now cons ider the effect of the p r i m e 5. We will prove a genera l 

l e m m a which i s of some in t e r e s t in itself. 

L e m m a 3. Suppose that the Fibonacci sequence {u } has per iod k 

modulo m , and that i t has period 5k modulo 5m» F o r some n and a l e t 

u = a (mod m) . Then u , u, , • •• , u , , a r e congruent to a, m + a* 

• • • , 4m + a (mod 5m) in some o r d e r . 

Proof. We cons ider two c a s e s , depending on whether o r not 5Jm„ We 

f i r s t a s sume 5 / m . Then the per iod of 5m is the g. c. d. of k and the p e r -

iod of 5, which i s 20. Since this per iod i s to equal 5k, we have k = 4 , 8, 

12, 16 (mod 20). Now, a cycle modulo 5 which co r r e sponds to the s tandard 

Fibonacci sequence i s 

(0, 1, 1, 2 , 3 , . 0 , 3 , 3 , 1, 4 , 0, 4 , 4 , 3 , 2 , 0, 2 , 2 , 4 , 1). 

F r o m this i t m a y b e verif ied that u , u. , , • • • , u . . , a re congruent mod-J n k+n ' 4k+n & 

ulo 5 t o 0, 1, 2 , 3 , 4 in some o r d e r . F o r ins tance , if n = 0 (mod 20) they 

a re congruent respec t ive ly to 9, 3 , 1, 4 , 2. Since each of these i s congruent 

to a modulo m , they are congruent in some o r d e r to a, m + a, • • • , 4m + 

a. Th is comple tes the f i r s t c a s e . 
We now assume 5|m. Since the Fibonacci sequence has per iod k mod-

ulo m , u , u, , , • • • , u , , a re all congruent to a modulo m and hence 
n k+n' 4k+n & 

a re each congruent to im + a modulo 5m for some choice of 0 ^ i ^ 4. 

Our object i s to show that the value of i i s different for each of the five t e r m s . 
Set u ,- = b (mod m) . Then u , - , u , , „ , *e * , u . , , - a re each con-

n+1 n+1 m+n+1 4m+n+l 
gruent to jm + b for some 0 ^ j ^ 4 . Speaking in t e r m s of the concept we 
have defined, there a r e 25 p a i r s congruent modulo 5m to (im + a, j m + b) 
appearing within a complete Fibonacci sys tem modulo 5m, of which 5 ap -
p e a r in the cycle cor responding to the s tandard Fibonacci sequence. Our o b -
jec t i s to show that each of these 5 gives a different value of i. 

Since 
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a2 + ab - b2 = ±1 (mod m) , 

we may set 

a2 + ab - b2 = mA ± 1 . 

Applying this same invariant to the pair (im + n, jm + b), we have 

(im + a)2 + (im + a)(jm + b) - (jm + b)2 

= i2m2 + ijm2 - j2m2 + ((2a + b)i + (a - 2b)j)m + a2 + ab - b2 

= m2(i2 + ij - j2) + m((2a + b)i + (a - 2b)j) + mA ± 1 . 

This last expression will be congruent to ±1 (modulo 5m) if and only if 

(2a + b)i + (a - 2b)j + A = 0 (mod 5) . 

However9 2a + b ^ 0 (mod 5) since otherwise 

±1 = a2 - ab - b2 = a2 - 2a2 - 4a2 = 0 (mod 5); 

similarly a - 2b ^ 0 (mod 5). 
Consequentlys for each of the 5 possible choices of i , there is exactly 

one j satisfying the above congruence. Hence only these 5 pairs could appear 
as consecutive pairs in the Fibonacci sequence. Since i is different in each 
case, the lemma is proved., 

We now deal with the other primes, and combinations thereof. 
Lemma 4. The numbers 8, 12, 18, 21, 28, and 49 are deficient; the 

numbers 4, 6, 14, and 20 are nondeficient. 
Proof. The arithmetic involved in verifying these facts is left to the 

reader. 
We now can easily prove the main result. 
Proof of Theorem. Lemmas 1 and 4, along with (I), show that the num-

bers of the theorem are the only possible nondeficient numbers. Ail numbers 
3J are nondeficient by Lemma 2. Furthermore, the periods of 6, 14, 20, 
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and 30 are 24, 48, 60, and 8 • 3J~ , respectively, so that by Lemma 3, 
all numbers 6 • 5 , 14 • 5 , 20 - 5 , 3J • 5 are all nondeficient. Apply-
ing (I) again we see that all numbers of the theorem are nondeficient. Thus, 
the theorem is proved, 

It would be interesting to extend this work by considering more general-
ly the problem of characterizing, at least partially, the residue classes that 
appear in the Fibonacci sequence with respect to a general modulus, as well 
as their multiplicities. A small start on this large problem has been made 
by [1] , [2] , and the present work, especially Lemma 3. Also of interest, 
both as an aid to the above and for itself, would be a systematic study of com-
plete Fibonacci systems, whose structure can be quite complicated. In par-
ticular, it would be useful to know the set of lengths and multiplicities of the 
cycles. Considerable information, especially for prime moduli, bearing on 
this problem exists in various places; see for instance [3], [4 ] . Of course, 
these problems can be generalized to sequences satisfying other recurrence 
relations. 
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COMBINATIONS AND THEIR DUALS 
C. A. CHURCH, JR. 

University of North Carolina, Greensboro, North Carolina 

In [3] this author gave derivations of certain results for restricted 
combinations by simple extensions of the first problem in Riordan [4, p. 14j]. 
In these derivations k-combinations of the first n natural numbers were ob-
tained by one-one correspondence with arrangements of plus signs and minus 
signs on aline. In what follows "dual" results are obtained by the symmetric 
interchange of the pluses and minuses* 

For notation, terminology, and basic combinatorial results we follow 
Riordan [4]. By k-combinations will be meant k-combinations of the first n 
natural numbersB 

To establish the correspondence ? consider the arrangements of p pluses 
and q minuses on a line* If p = k and q = n - ks each arrangement cor-
responds in a one-one way with a k-combination of the first n natural num-
bers as follows,, Arrange the first n natural numbers on a line in their 
natural (rising) order; place a plus sign under each integer selected and a 
minus sign under each integer not selected,, 

It is well known that there are 

( p ; q ) 

arrangements of p pluses and q minuses on a line. With p = k and q = 
n - k we get the familiar 

C(nsk) = 

k-combinations. The dual in this case gives nothing new since 

C(n,k) = C(n?n - k) . 

505 
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Starting with the first problem in Riordan [4, p. 14], with pluses and 
minuses interchanged, there are 

(1) (v) 
arrangements of p pluses and q minuses on a line with no two pluses to-
gether [3]. With p = k and q = n - k we get K apian sky fs result [4, p. 198] 
that there are 

(2) (n-H 
k-combinations with no two consecutive integers in the same combination. 

To get the dual in this case, interchange p and q in (1). Then with 
p = k and q = n - k we have that there are 

(3) ( n - k ) 

k-combinations with no two consecutive integers omitted from the same com-
bination (n - l ) /2 < k < n. 

In [3] we also rederived the circular case of Kaplanskyfs lemma [4, p. 
198], That i s , there are 

(4) P + q i q 
q i p 

arrangements of p pluses and q minuses on a circle with no two consecutive 
pluses, and 

n /n - k \ 
n - k \ k / 

circular k-combinations with no two consecutive integers, where n and 1 are 
taken to be consecutive. The dual in this case is that there are 
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k \n - kJ 

circular k-combinations with no two consecutive integers omitted9 n/2 ^ k 
< n0 

In rederiving (5) below* a result lof Abramson and Moser [2], which 
generalizes (2), we got that there are 

arrangements of p pluses and q minuses on a line with exactly r blocks of 
consecutive pluses* With p = k and q = n - k there are 

» (S:i) (n"' + 1) 
k-combinations with exactly r blocks of consecutive integers. This reduces 
to (2) when r = k6 The dual in this case is 

(•^Of*1) 
k-combinations with exactly r blocks of consecutive integers omitted. This 
reduces to (3) when r = n - k„ 

There are circular k-combinations corresponding to (5), see [2] or 
[ 3] 9 and the appropriate duaL 

Another generalization of (2) is that there are 

/ q + p - bp + b j 
\ P / 

arrangements of p pluses and q minuses on a line with at least b minuses 
between any two pluses [3] , and 

(6) / n - bk + b \ 

V * ) 
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k-combinations such that if i occurs in a combination, none of i + 1, i + 2, 
• • ' , i + b can [4, p. 222], Here the dual is 

/ n - b(n - k) + b \ 
{ n - k ; 

k-combinations such that if i is omitted9 none of the i + 1, i + 2, ••• , i + b 
are, b(n - l)/(b + 1) ^ k ^ n. 

For the circular k-combinations corresponding to (6) see [3, (5b)] or 
[4 , p. 222]. The dual follows readily from [3, (9b)]. 

Combining the restrictions in (5) and (6), we have 

/ p - l \ / q - (b - l)(r - 1) + l \ 

arrangements of p pluses and q minuses on a line with exactly r blocks 
of pluses, each block separated by at least b minuses. Thus there are 

/k - l \ /n - k - (b - l)(r - 1) + l \ 

k-combinations with r blocks of consecutive integers with atlease b consec-
utive integers omitted between each block [3, (4b)]. The dual is 

/ n - k - l \ / k - (b - l)(r - 1) + l \ 

k-combinations with r + 1 blocks of at least b consecutive integers in each, 
since there are only r gaps. 

Clearly, additional results of the type we have considered above can be 
obtained from similar enumerations in the literature. Additional enumera-
tions for which the duals are immediate appear in [3], 

In closing, one enumeration and its dual should be mentioned. Expan-
sion of the enumerating generating function 

* q+1 
(1 + t + t? + • • • + tJ) 
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gives 

m 
q;J + D = £'(-i)r(q")C f(p,q;j + D = > ; (_i)*p - ] f q + P - » 0 + i)> 

r=0 

the number of arrangements of p pluses and q minuses on a line with at 
most j pluses between two minuses, before the first minus, and after the 
last. With p = k and q = n - k we get Abramson's [1] 

[FT] 
Vl<„,„ . £ ,.„*(• - * • iV- - u ; m , 

r=0 X 7 

the number of k-combinations with blocks of at most j consecutive integers. 
Its dual is 

m E <-»f: *) (n - "2+") 
r=0 

the number of k-combinations with blocks of at most j consecutive integers 
omitted. See a l s o (!'. )* 
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it i s evident that 

Thus (6.4) impl ies 

(6.5) ** r r / ^ u u , Z-^ u a 
n=l n n + r "S=l "n 

Returning to (6.2), we have 

Lk+1 

2k 
(ctfr 

*-Tf n n+2k-j+l n= l J 

2k j 
W 

n n+2k-j+l 

There fore we have 

Lk+1 (uj 

2k 

2k ~ Ml 
3=0 

2k 

2 k j=o ( 
(a/3) ,f j(j-l)-jk V > (a£)n Eu u n 

n=l n n+2k-j+l 

In p a r t i c u l a r , when a + p = 1, ap = - 1 , (6.6) r educes to 
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2k 

(6.7) 

L F F M J 
1) n(k+l) 

n=l n n+1 n+2k+l 

2k 

- ^ I > ? i l i + 1 H k ! T f 
3=0 { 

where now [ 2k 

y^ (-Dn 

'. V and A 2 k ^ . + 1 are expressed In terms of Fibonacci numbers, 
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p = 1 stems from its application to the partitioning of integers into distinct 
Fibonacci numbers. These applications are investigated in the papers listed 
in References. When p is a root of unity, series (1) again has partition — 
theoretic congruence which we exploited to some extent in Section 5. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-186 Proposed by James Desmond, Florida State University, Ta I la basse, Florida. 

The generalized Fibonacci sequence is defined by the recurrence relation 

n-1 n n+1 

wfyere n is an integer and U0 and Uj are arbitrary fixed integers. 
For a prime p and integers n, r , s and t show that 

U ^ E U j_. (mod p) np+r sp+t *' 

if p = ±1 (mod 5) and n + r = s + t, and that 

U _, = ( - l ) r + t U ^ (modp) np+r sp+t *' 

if p = ±2 (mod 5) and n -- r = s - t. 

H-187 Proposed by Ira Gessel, Harvard University, Cambridge, Massachusetts. 

Problem: Show that a positive integer n is a Fibonacci number if and 
only if either 5n2 + 4 or 5n2 - 4 is a square. 

512 
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H-188 Proposed by Raymond £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Prove that there are no even perfect Fibonacci numbers* 

SOLUTIONS 
A NORMAL DETERMINANT 

H-168 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, Canada. 

I f 

M-('r i i ' ) 
for i9 j = 19 2 , 'a ° 9 n9 show that det a.. = 1„ 

Solution by F. D. Parker, St. Lawrence University, Canton, New York. 

It will be convenient to denote the given matrix by Mn5 and its deter-
minant by d(Mn), and then to prove the result by mathematical induction. 

Since 

- . - ( ' r i ; ' ) -
we have the two identities 

a.. - a. - . = a. . i » 
i] i - l , J i f j - l 

and 

a.. - a. . - = a. - . . 
i] i , j - l i - l » J 

If we subtract from each column (except the first) of Mn the preceding 
column j the second identity shows that 

d(Mn) = d ( C . r C . _ l j 2 , C ._ 1 ) 3 I • • • , C . _ 1 > n ) , 
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where c . represents a column whose elements are given by a... We notice 
that the first row of this new matrix is (1, 0, 0, • • • ) . Now if we subtract 
from each row (except the first) of the new matrix the preceding row, the first 
identity produces the matrix 

- • (-1 O 
where 0 is a row vector of zeros, I is a column vector of ones. The de-
terminant has not been changed by these operations so that we have 

d(Mn) = d(Mn") = d(Mn - 1) . 

Thus d(Mn) is a constant and, since d(ml) = 1, then d(Mn) = 1. 

Also solved by C. B. A. Peck and M. Yoder. 

PRIME TARGET 

H-169 Proposed by Francis DeKoven, Highland Park, Illinois. (Correction). 

Show n2 + 1 is a prime if and only if n ^ ab + cd with ad - be = ±1 
for integers a, b, c, d > 0. 

Solution by Robert Guili, San Jose State College, San Jose, California. (Par t i a l ) 

Note: Z denotes the set of positive integers. 
Solution by contradiction: If 

n = ab + cd; ad - be = ±1 , 

then 

n2 = a2b2 + 2abcd + c2d2 ; 1 = a2d2 - 2abcd + b2c2 . 

So 
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n2 + 1 = a2b2 + a2d2 = c2d2 + b2c2 

= a2(b2 + d2) + c2(d2 + b2) 

= (a2 + c2)(b2 + d2) 

which is not true. 

EDITORIAL COMMENT 

The second part of this proof intended here was not complete, 

The late proposer made the same logical oversight. However, 

the second proof he submitted was more complete and can ap-

pear at a later date. 

Editor V. E. H. 

Also solved by the Proposer. 

NON-EXISTENT 

H-171 Proposed by Doug/as Lind, Stanford University, Stanford, California. 

Does there exist a continuous real-valued function f defined on a com-
pact interval I of the real line such that 

Jf(x)ndx = Fn . 

What if we require f only be measurable? 

Solution by the Proposer. 

We claim that such a measurable function f does not exis t By the 
Binet formula9 
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F n = (a11 - b n ) / ^ 5 , 

where 

a = (1 + N / 5 ) / 2 5 b = (1 - ^"5)72 . 

For any measurable real-valued function g defined on I and any p ^ 1 we 
define 

Hffl'p.1 I Slip = f /|g(x)|Pdxj 

which is taken to be +°° if |g|p is not Lebesgue integrable. Also, let 

Hell oo, i s Helloo = esssup{ |g(x) | ; x €l } = inf {t: nig'ht,")) = 0} , 

where JJL denotes Lebesgue measure on the real line. It is well known that 
since /LX (I) < <» , 

limp^Jlsllp = list > 

where ||g|| is possibly <*>. 
Now suppose that f is a real-valued function on I such that 

F = / fV)dx n J w 

for n = 1, 2, ••• . Then 

Let 

PL = lî coPUn = li^y/n = a 

A = { x E I: f(x) = a } , 

B = {x G I: f(x) = -a} . 
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Then for n = 2k we have 

a - b = J f2k(x)dx = ^ ( A ) + ^(B)}a2k + J f2k(x)dx 9 

dx 

^5 I I-(AUB) 

so that 

(*> _ J _ _ M(A) _ M(B) = J L ( A 2 k
 + / [Ml2k 

-JE N/5 \ a / I-(AUB) L a J 

Since jf(x)/a| < 1 for almost all x G I - (AUB), 

{f(x)/a}2 k - 0 

a.e. on I - (AUB) as k —• °o5 so by Lebesgue's Dominated Convergence 
Theorem, the right-hand integral approaches 0 as k ~» «>. Since 

|b/a | < l f (b/a)2 k -> 0 

as k-+°o, so letting k —> °° in (*) shows 

JLI(A) + jti(B) = 1/N/5 . 

Now if we put n = 2k + 1, we have 

2k+l K2k+1 „ . , - f 9, ,-
^ zJ> = {M(A) - MB))a2k+1 + J f ^ W d x , 

^ 5 I-(AUB) 

and the same reasoning as before shows 

JU(A) - MB) = 1/N/5 , 

Hence JU(B) = 0 and JU(A) = 1/NT5. Letting K = I - A, we thus have 
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^ = / fn(x)dx . 
N/5 K 

Now 

lb I = lim llfll ^ = \\f\Lrr > 
i i n->oo'11 l n , K ll lk°,K 

so 

||f(x)|| - |b | 

for almost all x E K. Let 

C = {x <E K: f(x) = b} , 

D = {x e K: f(x) = -b} . 

Then 

OK-

^ 3 = fo(C) + pe(D)}b2k + / f2k(x)dx , 
N/5 K-(CUD) 

so that 

- i j + j*(C) + UL0) = - / ["4^1 dx . 
N/5 K-(CUD)L D J 

Eeasoning as before5 we see by dominated convergence that the right-hand 
integral approaches 0 as k —*• °°. But this contradicts the fact that the left 
side is strictly positive. This contradiction shows that such an f does not 
exist. 

We remark that the situation is different for Lucas numbers. For let 
1 = [0 ,2 ] , f(x) = a if 0 < x < l , f(x) = b if 1 ^ x < 2. Then 
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/ Ax)dx = a11 + b n = L . 
I n 

However, one can show using the methods above that f cannot be replaced by 
a continuous function. 

Editorial Note: Robert Giuli noted that 

-a n-1 
/ -25. dx = F , 
b ^ 5 

although this does not satisfy the proposal. It might be interesting to recon-
sider the proposal with restrictions on f, such as boundedness, etc. 

HISTORY REPEATS 

H-172 Proposed by David England, Rockford College, Rockford, Illinois. 

Prove or disprove the " iden t i t y / ' 

t=l X 7 

th 
where F and L denote the n Fibonacci and Lucas numbers, respect-
ively, and [x] denotes-the greatest integer function. 

Solution by Douglas Lindt Stanford University 

This is Problem H-135 (this Quarterly, Vol. 65 1968, pp. 143-144: 
solution, Vol. 7, 1969, pp. 518-519), and appears as Eq. (3.15) in "Compo-
sitions and Fibonacci Numbers" by V. E. Hoggatt, J r . , and D. A. Lind (this 
Quarterly, Vol. 7, 1969, pp. 253-266). 

Also solved by Wray Brady and L Carlitz. 
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FIBONACCI VERSUS DIOPHANTUS 

H-173 Proposed by George Ledin, Jr., Institute of Chemical Biology, University of San Francisco, San 
Francisco, California 

Solve the Diophantine equation, 

x2 + y2 + 1 = 3xy . 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

The equation 

(*) x2 + y2 + 1 = 3xy 

can be written in the form 

(ax _ 3y)2 - 5y2 = -4 , 

where a = 2. We recall that the general (positive) solution of 

x2 - Sy2 = - 4 

is given by 

(H^) •^\2n+l u + v \[5 
= n

 o
n (n = 0, 1, 2, • • • ) 

so that 

1 \ ^ [2n + l \ 
Un 9 2 n Z - r \ 2r I 

A r=0 X / 

= -J_\s 2 n + 1 I Vn 2 2 n Z - ^ \ 2 r + if 
r=0 

5 r 
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On the o ther hands the Fibonacci number F - sa t i s f ies 
n+l 

F 
n + 1 2' 

2 r ^ n 
»n 2 ^ \2r + l j 5 9 

so that v = F 2 - . Moreover , 

which gives 

Since 

u + v = 2 F 0 l 0 , n n 2n+2 ' 

Un 2 F 2 n + 2 F 2 n + 1 

y = v , 2x - 3y = u , J n J n ' 

i t follows that 

2x = u + 3v = 2 F 0 l 0 + 2 F 0 ^ = 2 F 0 l 0 , n n 2n+2 2n+l 2n+3 

so that x = F~ oo Hence we have the genera l solution of (*) with x > y: 

x = F 2 n + 3 ' y = F 2 n + 1 ( n = °> 1 ' 2 ' ' - >• 

The solution x = y = 1 i s evidently obtained by taking n = - 1 . 

Also solved by W. Barley, M. Herdy, C. B. A. Peck, C. Bridger, J. A. H. Hunter, and the Proposer. 

SUM PROJECT 

H-175 Proposed by L Car/itz, Duke University, Durham, North Carolina. 

Put 
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(1 + z + | z 2 ) "n X = 2 a(n? 
k)zk . 

k=0 

Show that 

[Dec. 

(1) 

(n) 

a ( n s n ) = » 5 - 8 - • • (2n - 1) 
•Lie, 

5(-=")(*---X-*)' 2-5-8 . . . (3n - 1) 

m §M2n°i (_w) r = (coV-3) - ^ n 2-5»8 . . . (3n - 1) 
nl 

where 

w = f (-1 - N / - 3 ) . 

Solution by the Proposer. 

(I) If z = wf(z)s> f(0) f 0, where f(z) i s analytic about the or ig in , 

then (Polya-Szegd, Aufgaben und L e h r s a t z e aus d e r Ana lys i s , Vol. 1, p . 125) 

n= l L 

J 2 ^ n+ l r ,n ,-H 

n=0 L ^ J 

Take 
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f(z) = (1 - z + I Z 2 ) " 1
 f 

523 

so that 

(*) 4 - tf«)n+1 

dx 

n! a(n,n) 

Jx=0 

On the o ther hands z = wf(z) becomes 

which r educes to 

z ( l - z + 4 z2) = w , 

It follows that 

(1 - z)3 = 1 - 3w . 

z = 1 - (1 - 3w) ,4 

= v (-Dn H)s%n 

n=l x * 

E 2°5°8 °°° (3n 1) n 

n=0 

Compar i son with (*) gives 

a(n9n) 2*5*8 •• • (3n - 1) 
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(II). Since 

r=0 V ' 

= X>kE(";r)(s)0)B. 
k=0 r+s=k \ / \ / \ f 

it follows that 

"--t(":')(M.-)W 
s=0 

(III). Put 

1 - z + | z 2 = ( 1 - ofz)(l - j8z) 

It is easily verified that 

2 
CO 

a = N / - 3 N / - 3 

Then 

(1 - z +-*-z4) = (1 - <zz) (1 - /3z) 

E f n + r \ r r \ ~ ^ / n + s \ r P L sf >s s ? z , 
r=0 x ' s=0 
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so that 

(-°> • Z (°: r)(": B W 
r+s=n x f x / 

2 F ! ln-r 
3 / V ^ 3 i 

^E("r)(2V')-' W - ' r=0 

[Continued from page 496* ] 

GENERALIZED BASES FOR REAL NUMBERS 

3. S. Kakeya, "On the Partial Sums of an Infinite S e r i e s / ' Sci. Reports 
Tohoku Imp. U9 (1), 3 (1914), pp. 159-163. 

4. Jo L* Brown, Jr8 , "On the Equivalence of Completeness and Semi-
Completeness for Integer Sequences,!? Mathematics Magazine, VoL 36, 
No* 4, Sept.-Oct. , 1963, pp. 224-226, 

5. L Niven, "Irrational Numbers/1 Carus Mathematical Monograph No. 11, 
John Wiley and Sons, Inc. , 1956. 

6. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Num-
bers , John Wiley and Sons, Inc. , 1960. 

CHALLENGE 
"In what v/ay does the ©ubi© @ongruenee 

x5 - l.gx + 25 - 0 (mod p ) t p a p r i m e 

relate to the Fibonat©! numbers? 

Generalize to other reemrring series0ft 

John Brillhart ana Emma Lehmer 



THE SUM OF THE FIRST n POSITIVE INTEGERS-GEOMETRICALLY 
FREDERICK STERS\S 

Sen Jose State College, San Jose, California 

The familiar formula 1 + 2 + • • • + n = -J^n(n + 1) follows from count-
ing in two ways, the number of intersections of (n + 1) lines in the plane, 
assuming that no two of these lines are parallel and no three intersect at the 
same point On the one hand, since any two of the lines intersect at a point 
distinct from the point of intersection of any other pair, the number of points 
of intersection is the same as the number of distinct pairs of lines: 

(n l *) = in(n + 1) . 

On the other hand, suppose the lines are numbered, completely arbitrarily, 
from 1 to (n + 1). Counting the number of intersections sequentially, the 
second line intersects the first at one point. The third line intersects each of 
the first two at two distinct points — giving a partial total of 1 + 2 intersec-
tions,, The fourth line intersects each of the first 3 at three points — giving 

st a partial total of 1 + 2 + 3 intersections- Thus, the (k + 1) line inter-
th sects the first through the k lines at k distinct points so that the lines 

numbered 1 through (k + 1) intersect at 1 + 2 + • • • + k distinct points* 
Finally, we see in this way that the n + 1 lines intersect at 1 + 2 + • • • + n 
distinct points. Thus, we have counted the same number of points in two 
ways and have arrived at the familiar formula. 

[Continued from page 5~:u .] 

Afternoon Session 
Phyllotaxis: The Facts arid the Theory 

Dr. Irving Adler, North Bennington, Vermont 
Telephone Grammars: An Elementary Example in the Mathematical Theory 
of Context-Free Languages 

George Ledin, Jr . , Institute of Chemical Biology, University of S. F. 
The Periodic Properties of a Linear Recurrent Sequence over a Ring 

Prof. Donald W. Robinson, Brigham Young University, Provo, Utah 
Free Discussion Period 
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SOME STRIKING PROPORTIONS IN THE MUSIC OF BELA BARTOK 
EDWARD A. LOWIVSAW 

200 Santa Clara Avenue, Oakland, California 

Unlike the techniques discussed in aprevious article* , relatively simple 
Fibonacci proportions can be used in the organization of larger units of mu-
sical time. In common diatonic practices the lengths of phrases and sections, 
expressed in measures, are generally some power of two; four, eight, six-
teen , and thirty-two. Fibonacci numbers, as numerical expressions of the 
golden mean, offer other ways of creating proportion which largely avoid 
these divisions. Naturally, just as the older phrases could be sometimes ex-
tended, shortened, or grouped in unusual ways without destroying the overall 
sense of balance, Fibonacci proportions need not always be exact or consis-
tent to achieve their intended effect 

Many contemporary composers are using Fibonacci proportions in this 
way, but some of the most striking examples are found in the music of an 
earlier master; Bartok. Bartok1 s use of Fibonacci proportions evidently 
springs from an interest in the golden mean. Erno Lendvai, in his book 
Bartok: sa vie et son oeuvre (Budapest, 1957), has pointed out many examples 
from Bartok1 s music where the golden mean is the major dividing point of a 
piece. 

If a unity is divided into two parts according to the golden mean, the 
larger part will be 0.618 and the smaller will be 0.382. The first movement 
for the Sonata for Two Pianos and Percussion has 443 measures, and its gold-
en mean is therefore 443x0.618 = 274. The recapitulation (the return to 
material from the beginning) begins in measure 274. In the first movement 
of the Divertimento for String Orchestra, the recapitulation begins at the 
golden mean (measured in ternary units instead of measures to compensate 
for meter changes), as it does also in the first movement of Contrasts. 
Three examples are cited from the sixth volume of Mikrokosmos. In "Free 
Variations,n the golden mean comes at the molto piu calmo; in "From the 
Diary of a Fly , n it falls at the climax (which is marked with a double 

* "An Example of Fibonacci Numbefs~Used to Generate Rhythmic Values In 
Modern Music," this Quarterly, Vol. 9, No. 4, pp. 423-426. 
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IN THE MUSIC OF BELA BARTOK 

sforzando), and in "Divided Arpeggios,n the recapitulation begins at the gold-
en mean. 

It is only one step further to casting subdivisions in Fibonacci propor-
tions. The first movement of Music for Strings, Percussion, and Celeste is 
88 measures long. If we allow a measure 's silence at the end, we have 89. 
The _fff climax of the movement arrives after 55 measures, of which the 
strings play the first 34 with mutes, removing them for the last 21. The first 
34 measures are subdivided further, as the exposition (the movement is a 
fugue) is 21 bars long. The 34 measures following the climax are divided in-
to 13 and 21 by the replacement of the mutes at measure 69, and the final 21 
measures are divided again by a change of texture into groups of thirteen and 
eight. The following diagram illustrates these divisions. It will be noted al-
so that before the climax longer units are followed by shorter ones, while the 
reverse tends to be true after the climax. Thus pace becomes a major factor 
in shaping the movement. 

__ . 89 — } 
5 5 34 j 

34 21 , r 13 tl 2 1 -

' 1 1 ! ' 1 
21 13 ' 21 1 13 ' 13 8 I 

Firs t Movement of Music for Strings, Percussion, and Celeste 
A diagram of the third movement of Music shows considerable, but not 

exclusive use of Fibonacci porportions. Here the smaller units are cast 
mostly in the familiar fives, eights, and thirteens, but the overall balance of 
the movement is less obvious, and highly individual. 

a a 
o o 
53 £ 

|- 21 - n ~ 13 Jf - 8 | £ j ~ 13 | % | 13 JJ-

143 E 5 3 5 L _ ^ L!^ § Si 5 t 4 , 2 8 3j_ i» * i 
meter: 4 2 4 | 4 

one me as. 
of 2/4 

Third Movement of Music for Strings, Percussion, and Celeste 
[Continued on page 536. ] 



A PRIMER FOR THE FIBONACCI NUMBERS; PART IX 
MARJORIE BICKWELL 

A. C. Wilcox High School, Santa Clara, California 
and 

VERWERE. HOGGATT,JR. 
San Jose State College, San Jose, California 

TO PROVE; F DIVIDES F . n nk 

For many years9 it has been known that the n Fibonacci number F 
divides F if and only if n divides m, n > 2. Many different proofs have 
been given; it will be instructive and entertaining to examine some of them. 

Some special cases are very easy* It is obvious that F, divides F2 , 9 

for F 2 k = F k L k . If we wish only to prove that F^ divides E^k when k is 
a power of 2, the identity 

F . = F L L0 L . • • • L . -
0j n n 2n 4n n j - l 
2Jn 2J n 

suffices. 

1. PROOFS USING THE BMET FORM 

Perhaps the simplest proof to understand is one which depends upon 
simple algebra and the Binet form (see [1]), 

n r,n 
(1) F = a - P 
{l) n a - p 

where 

a = (1 + N / 5 ) / 2 ? p = (1 - N / 5 ) / 2 

are the roots of x2 - x - 1 = 0.- Then 

nk 0nk / k 0 k \ 
F = a - g = (?-^4- (M) = P. M , 

n a - p \ a - p / k 
529 
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where 

M = « ( n " 1 ) k
 + « < n - 2 V + ^ - 3 ) ^ 2k + . . . 

+ ak/J(n-2)k + ^(n-l)k ^ 

If M is an integer, F. divides F , , k f 0. 
Since a/3 = - 1 , if (n - l)k is odd, pairing the first and last terms, 

second and next to last terms, and so on, 

M = (a<n-1 ) k + ^ n " 1 ) k ) + ( - l ) V n - 3 ) k + )3 ( n - 3 ) k ) 

+ (-D2Vn-5)k^(n-5)k) + ---
L(n- l )k + (-»\-m + ( - 1 ) 2 k L (n-5)k + 

where the n Lucas number is given by 

(2) L n = an + /3n . 

Thus, M is the sum of integers, and hence an integer. If (n - l)k is even, 
the symmetric pairs can again be formed except for the middle term which is 

M ) ( n - l ) k / 2 = ^ ( n - D k / 2 § 

again making M an integer. Thus, F, divides F , , or, F divides F 
K. nKi n m 

if n divides m . See also H-172, th is i s sue . 

2. PROOFS BY MATHEMATICAL INDUCTION 

Other proofs can be de r ived , s t a r t ing with a known identi ty and using 
mathemat ica l induction. F o r example , use the known identity (see [2]) 

(3> F
m + n = F m F n + l + F m - l F n 

Let m = nk: 

( 4 ) Fnk+n " Fn(k+1) " F n k F n * l + F n k - l F n 
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Obviously5 F divides F and F divides F 0 , for F 0 = F L , so n n n AD. zn n n 
that FM divides F. for k = 1, 2* Assume that F divides F . for i = n Kn n in 
1, 2 , • • • , k. Then, s ince F M divides F and F divides F. , identi ty 

n n n kn J 

(4) fo rces F also to divide F n 1 W so that F divides F, for a l l p o s -n n\K"r±/ n Kn 
itive in tege r s kB 

Another identity ? eas i ly proved using (2) and (2), which l eads to an easy 

proof by mathemat ica l induction i s 

(5) L F + F L = 2F 
n m - n n m - n m 

Let m = nk, yielding 

(6) L F ,. -v + F L ,. -* = 2F . . 
n n(k- l ) n n (k - l ) nk 

If F divides F and F divides F n -v, then F m u s t divide F , , n n n n(k- l ) n nk 

A l e s s obvious identi ty given by Si ler [3] also y ie lds a proof by m a t h e -

mat ica l inductions 

™ (("I)" + 1 - V ( E Finj = ( - D \ - Fn(k+1) + Fn . 

If F divides F . for i = 1, 2S 3S * - • , k9 then F i s a factor of the le f t -n in n 
hand m e m b e r of (7). Since F divides F and F divides F, , F m u s t 

n n n Kn n also divide F „ l l W so that F divides F. for all posi t ive in tege r s k* n(k+l) n kn ^ ° 

3B PROOFS FROM GENERATING FUNCTIONS AND POLYNOMIALS 

Now le t us look for elegance* Suppose that we have proved the g e n e r -

ating function identity given in [ 4 ] , 

F , x R 

1 - L x + (-1) x' . A n k=0 
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Then, since the leading coefficient of the divisor is one and the resulting oper-
ations of division are multiplying, adding, and subtracting integers, the quo-
tient coefficients F k / F of powers of x are integers, and F divides 
F , for all integers k ^ 0. 

Let us develop a generating function for a related proof that L divides 
L, whenever k is odd. Applying (2) and the formulafor summing an infin-
ite geometric progression, 

OO 

2-# L(2i+l)nX 

i=0 
= 

= 

= 

oo oo 

^ a n ( 2 i + l ) . x i + j - i 8 n ( 2 i + l ) x i 

i=0 i=0 

® + P 
i 2 n i / ^ 2 * 1 l - a x 1 - p x 

(an + pn)(l - (-l)nx) 
n / 2n ^ 02nv , / flv2n 2 1 - (a + p )x + (ap) x 

L n ( l - (-l)nx) 

1 - L 0 x + x2 

2n 

Then 

V L(2i+Dn i _ 1 - (-Dnx 
LJ ~~ x " : : ~~1 
. A n 1 - L 0 x + x* 
i=0 2n 

so that by the same reasoning given for the Fibonacci generating function 
above, L / r t . l l X / L is an integer. (2i+l)n n & 

Next, we prove that L/o^+i^ / ^ ^s a*1 integer another way. Now it 
is true that 

L(2k+l)n = L n L 2 k n " ( _ 1 ) L(2k-l)n 

so that 
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L(2k+l)n _ _ , ..n+1 L(2k-l)n 
L 2n v ; L 

n n 

Thus, we are set up to use mathematical induction since when k = 1, it is 
clear that L divides L . Thus, if L,Q1 1 . /L is an integer, then n n \£KV—x)TL n 
L(2k+l)n / L n i s a * s o a n m t e £ e r s T n e proof is complete by mathematical 
indue tion0 

We can carry this one step further, and prove that L is not divisible 
by L n if m f (2k+l)n, n > 2e 

L(2k+l)n+) = L n L 2kn + j + ( " 1 ) I l L (2k- l )n + j ^ J = 1. 2, 3, •• • , 2n - 1 . 

Thus, given that some j = 1, 2, 3, • • • , or 2n - 1 exists so that L, , ..v .. 
is divisible by L , then by the method of infinite descent, L/?, -v . is 
divisible by L for this sa 

J n 
mately yield the inequality 

divisible by L for this same j = 1, 2, 3, • • • , or 2 n - l . This will ulti-

I m -n+j n 

which is clearly a contradiction since the L in that range are all smaller 
than L , n ̂  2* The same technique can be used on F n ^ and F to prove 
that F divides F only if n divides m, n ̂  29 (Since F2 = 1 divides 
all F , we must make the qualification n > 2.) 

If the theory of Fibonacci polynomials is at our disposal, the theorem 
that F divides F if and only if n divides m, n > 2, becomes a special 
case. (See [5],) 

If the following identity is accepted (proved in [5]), 

F
m = F n l 2 (-1>UlL

m-(2i+l)n )+ ( - ^ m ^ p n ' ? * 1 • 

when |n| < |m|, n f 0, the identity can be interpreted in terms of quotients 
and remainders; the quotientbeing a sum of Lucas numbers and the remainder 
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of l ea s t absolute value being a Fibonacci number o r i ts negat ive. The r e m a i n -
d e r i s z e ro if and only if e i t he r F 0 = 0 o r F 0 = + F , in which 

J m-2pn m-2pn n5 

c a se the quotient i s changed by ±1. In the f i rs t c a s e , m - 2pn = 0, so that 

m i s an even mult iple of n; and in the second, m - 2pn = i n , with m an 

odd mult iple of n. So, F divides F if and only if n divides m , n > 2. 

That F divides F only if n divides m can also be proved through 

use of the Eucl idean Algori thm [2] o r as the solution to a Diophantine equa-

tion [6 ] to es tab l i sh that 

(F , F ) = F , v (m > n > 2) , 
v m n (m,n) v ' 9 

o r , that the g r e a t e s t common d iv i sor of two Fibonacci n u m b e r s i s aF ibonacc i 
number whose subscr ip t i s the g r e a t e s t common d iv isor of the subsc r ip t s of 
the o ther two Fibonacci n u m b e r s . 

4. THE GENERAL CASE 

A second proof that L divides L if and only if m = (2k + l )n , n ^ 

2 , provides a spr ingboard for studying the genera l c a s e . The identity 

(8) L ^ = F ^ - L + F L . 
m+n m+1 n m n - 1 

indicates that L divides L , if L divides F . Since n m+n n m 

F Q = L F , 2p p p 

L divides F 0 . But s ince p 2p 

F 2 (k+l )p F2kp+2p F 2 k p F 2 p + l + F 2 k p - l F 2 p 9 

whenever L divides F„, , i t mus t divide F„/ , ^ , and we have proved 

by mathemat ica l induction that L divides F2> for all posi t ive in t ege r s k. 

Then, r e tu rn ing to (8), if m = 2kn, L divides L , o r , 

L2kn+n = L (2k+l )n = F 2 k n + l L n + F 2 k n L n - l J 
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so that L divides L / 0 1 ,-v . n (2k+l)n 
To prove that L n divides L only if m = ( 2 k + l ) n , n ^ 2 , we 

prove that L n divides F m only if m = 2kn, n > 2. We use the identity 

F 2 n - j = L n F n - j + ^ ^ - j ' j = 1 > 2 , . . . , n - l 

to show that L cannot divide F 0 ., If L divides F 0 ., then L mus t n 2n-3 n 2n-j n 
divide F ., but L n ^ F n > |F__.|, c l ea r ly a contradict ion. T h u s , L d i -

vides L m if and only if m = (2k + l )n . A proof of this same theorem using 

algebraic number s i s given by Car l i t z in [ 7 ] , 

Now we cons ider the genera l c a s e . Given a Fibonacci sequence defined 

by 

Hi = p , H2 = q, H ^ = H ^ + H 
1 ^ 4 ^ n+2 n+1 n 

under what c i r c u m s t a n c e s does H divide H ? 
n m 

Studying a sequence such as 

1, 4 , 55 9 , 14, 2 3 , 37, 60, 97, 157, 254, 4 1 1 , 665, 1076, e o e 

quickly convinces one that each m e m b e r divides o ther m e m b e r s of the s e -

quence in a r egu l a r fashion. F o r example , 5 divides i tself and every fifth 

m e m b e r the rea f te r , while 4 divides i tself and every sixth m e m b e r t h e r e -

after. 

The m y s t e r y i s resolved by the identity 

H = F H + F H 
m+n * m+1 n * m n - 1 e 

If H divides F , then H divides eve ry m t e r m of the sequence t h e r e -n m n J 

after. F u r t h e r , divisibi l i ty of t e r m s of {H } by an a r b i t r a r y in teger p can 

be predic ted using tables of Fibonacci en t ry points . If H^ i s divisible by p , 

then H. , i s the next m e m b e r of the sequence divisible by p , where e i s 

the en t ry point of p for the Fibonacci sequence. F o r example , if 41 divides 

ER9 then 41 divides H n + 2 Q and 41 divides H + 2 Q k s ince 20 is the s u b -
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script of the first Fibonacci number divisible by 41, but 41 will divide no 
member of the sequence between H and H 2« . 
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[Continued from page 528. ] 

Perhaps the most carefully wrought example is the introduction to the 
first movement of the Sonata for Two Pianos and Percussion. Here the divi-
sions, while not conforming to numbers of the Fibonacci series (0,1), are all 
determined by the golden mean. Measures 2-17 (the first measure is sim-
ply a roll on the timpani) contain 46 ternary (3/8)units, the most appropriate 
for study in a passage which contains both 6/8 and 9/8 measures. The gold-
en mean of 46 is 28, which is the dividing line between the second and the 
third statements of the theme, and the place where the theme becomes invert-
ed. The golden mean of 28 is 17.3, the juncture of the first and second state-
ments of the theme. The two cymbal notes further subdivide the first and 
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second statements according to the golden mean, while the third statement is 
so partitioned by the entrance of the tam-tam. There are other passages of 
the Sonata in which the phrase structure is organized according to the golden 
mean, but most amazing is the fact that the entire piece is so proportioned. 
It contains 6,432 eighth notes, and the division between the first and second 
movements falls but one eighth note from 3,975, the golden mean. 

Will a listener be aware of the "Fibonacci proportions" as they go by? 
Probably not, yet they will do their job just the same. What the listener will 
perceive is a sense of balance, a feeling that the musical events he hears 
occur at the "right" places, that they form intriguing patterns in time. Com-
posers have always played with our perception of time, causing a moment to 
seem interminable or a whole passage to foreshorten or "telescope" into a 
single recollection. To ears accustomed to fours, eights, and sixteens* 
these new proportions will undoubtedly seem curious in their effectiveness, 
but so may the phrases of a Renaissance motet or a passage of Gregorian 
chant. 

When we analyze music, the result is a number of graphs, charts , and 
explanations showing how a piece achieves its effect. We must remember, 
however, that composers seldom create their pieces in this manner. Bartok 
may have had a mathematical interest in the golden mean, or he may have 
hit upon the Fibonacci series while consciously searching for shapes other 
than powers of two for his musical ideans. More likely, however, the tech-
niques grew out of the shapes of the musical ideas themselves, just as have 
most new techniques throughout music history. One can imagine his realizing 
at some point that these proportions were what his ideas had been approaching 
all along. The technique was thus a means of focusing and clarifying the 
effect, Whatever the procedure Bartok used, we know that performers and 
listeners recognized the exceptional balance and proportion of this music long 
before anyone discovered its "astonishing" use of Fibonacci numbers and the 
golden mean. 
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A FIBONACCI CROSTIC 
MARJORIEBICKNELL 

A. C. Wilcox High School, Santa Clara, California 

Use the definitions below to write the words to which they refer; then 
enter the appropriate letters in the diagram to complete a quotation from a 
mathematical work. The first letters of the defined words give the author 
and title from which the quotation is taken. The end of each word is indicated 
by a black square following it. 

A. The first, fourth, 
and fifth clue num-
bers for word A; also, 76 40 36 29 18 
the sum of its five 
clue numbers. 
B. A Fibonacci 

count-down. 
C. An undiscovered 

number. 

D. Compass point. 

23 17 65 88 66 ' 43 156 124 42 

"66 1 I B 32 3 2 ' T75 52 3 
169 24" 46 138 T05 T5T 184 105 90 161 

174 

66 88 115 32 32 ' 175 52 

24" 46 138 T05 T5T 184 105 

• 96" ~ 130 T50 T85 T§4 39 

12 99 174 47 T 130 67 

38 

90 

13C 

E. Rank given by 
subscript of first 
positive Fibonacci 5 19 61 11 93 119 149 25 51 170 
number divisible by 
a number. 
F. See G. 129 27 163 T83 9T 
G. Platonic solid in 
which the (word F) of ___ 
a diagonal of a face 81 113 81 125 107 110 131 125 171 141 177 157 
to an edge is the 
Golden Section. 

57 26 9 20 57 28 84 104 16 
H. Phyllotaxis finds 
the numbers of A 
and J here and in 
V. 
I. E = IR. 1 4 7 1 6 4 5 3 T 8 T T82 1 W 
J. See H and first _____ 
eight clue numbers 2 1 13 8 55 21 144 6 
of J. 
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K. Secret emblem 1 0 9 100_35 _ 1 2 0 _ 7 1 _ 1 2 ^ 62_ 71_ 146_ 146 153 
of the Pythagoreans. 146 56 94 49 44 22 82 146 

L. Boundless. 128 "86 59" 123" 86 140 155 "167 

M. Music of the ? . 69" 78 Tl5 1*36 Tl2 136 H I 

N. Type of number 
in which the sum of 
the aliquot divisors 54 118 48 135 33 143 "135 152 
exceeds the number 
itself. 

O. Exponents used 
in hand computations. 

P. Necessary 
and sufficient. 

Q. 

F n 

R. 
i e IT 

S. 

T. 

Form 

a - p e 

He proved 
• = - 1 

Horizontal 
arrays. 

The Golden 
Section. 

37 133 158 116 79 85 87 108 172 60 

14 58 T04 

Tl7 179 64 T42 15* 

165" 92 30 165 41 

T54 T73 159" T66 

T 3 9 3 T 7 0 T 7 f T 0 T or 70 50" "63 

U. Asked secretly 
by the mathema- _____ ___ _____ _ 
tic ally uniniatiated 127 89 132 162 75 151 
about phyllotaxis, 
the Golden Section, 
and the ubiquity of 
Fibonacci numbers. 

137 103 132 83 162 83 73 106 114 132 

V. See H. 98 4 160 45 34 98 4 4 77 34 

W. What 5x2
? 

Pascal1 s triangle, j ^ ^ ^ j ^ -j^g J J J j ^ ^g- jg j ^ j ^ j j 6 
and friction have 
in common. 
X.. Hypothesis 72 "97 
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A POLYNOMIAL REPRESENTATION OF FIBONACCI NUMBERS 
DAVID G. BEVERAGE 

San Diego State College, San Diego, California 

Douglas Lind has proposed the problem, "Does there exist a polynomial 
P(x) for which P(F, ) = Fn, ?ff. In particular, it is known that, if L (x) is 
the n Lucas Polynomial9 then 

L n ( L 2 k + l ) " L(2k+l)n 9 

The answer to the Fibonacci formulation of the problem is in the affirmative 
also. The following theorem expresses an infinite number of polynomials, 
defined recursively, satisfying the properties for Fibonacci numbers analo-
gous to those of the Lucas numbers and the Lucas polynomials. 

Theorem. 

,n=l 

Proof. Using the Binet form, 

k 0k 

*k a - p ' 

where 

i + 45 

and 

D __ 1 - NT5 

tp^KT'V* _ n 2 n + l — - ' « - • - «- • - • - - • 
F(2n+l)k " 5 F k 

i 

541 
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then 
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,2n+l 
,2n+l 2n+l 

a - r v* (2n + A (g ) 
e - » J = ̂  V s ^ to 

2 n + l - s , s 

/S) 2n+l 

n 2n+li 

I>£ M H 
. 2 n + l - s , s 
• * ( - / 3 k ) 

s=0 s=n (a - 0) 2n+l 

Noting that 

/ 2 n + 1 ^ _ / 2n + 1 \ 
\ s / ~ ~ \ 2 n + l - s / 

and substi tut ing t = 2n + 1 - s in the second of the summat ions from s = n 
to s = 2n + 1, then 

„2n+l 
n /2n + l \ , ^ k s , - , s f~ , 2n+l -2s . 2n+ l -2s 

) - (r) 
s=0 (a - p) ^—jy 

Substituting (a - (3) = \T5 and a(3 = - 1 , noting the Binet form in the l a s t 

express ion of each t e r m of the summat ion , and solving for the t e r m in which 

s = 05 the theorem can be obtained. 

Examples , F o r n = 1, 

F 3 k = 5 F k + ( - ^ k • 

Hence? the polynomial P(x) = 5x2 + 3x sa t is f ies P(F2> ) = Ffi, , and the 

polynomial P(x) = 5x3 - 3x sa t is f ies P(F~. - ) = Ff i . «. To de te rmine 

Fj., in t e r m s of F, by the theorem above, it i s n e c e s s a r y to substi tute the 

F«. express ion above into the theorem with n = 2; one obtains 

F5k = 2 5 F k + a5<-» F l + 5Fk • 
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so that the polynomials 

P4(x) = 25x5 + 25x3 + 5x 

and 

P2(x) = 25x5 - 25x3 + 5x 

satisfy 

p i ^ 2 k > = F 1 0 k 

and 

P 2 ( F 2 k + l ) = F 1 0 k + 5 ' 

S imi la r ly , one m a y obtain 

F 7 k = 5 3 F 7 + 7 » 5 2 ( - l ) k F | + 70 F ^ + 7 ( - l ) k F k 

with polynomials 

P3(x) = 125 x 7 + 175 x5 + 70 x3 + 7x 

o r 

P4(x) = 125x7 - 175 x5 + 70x3 - 7x , 

where 

P 3( F 2k> = F 1 4 k 

and 

I > 4 ( F 2 k + l ) = F14k+7 ffi 
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An interesting congruence result may be obtained by taking 2n + 1 = 
odd prime p in the theorem. 

P-l 
F p k = 5 2 F k (mod p) , 

for (p,5) = 1. Here, 

2Z± / 5 \ 
5 2 5 ( ? ) (mod p) , 

using the Legendre symbol, and hence 

F = F k (mod p) 
P k 

or 

F = ( - D S F k (mod p) 
p k 

according as p = ±1 (mod 5) or p = ±2 (mod 5). 
I would like to take this opportunity to express my sincere appreciation 

to V. C. Harris for many years of kindness, and years of encouragement and 
assistance in mathematics. See also [1]. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLiVIAW 
University of New IVSexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106, Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards, 

NOTATION: ¥t = F2 = 1 and F n + 2 = F n + 1 + F n ; 
Li = 1, L2 = 3, and L n + 2 = L f l + 1 + L n . 

PROPOSED PROBLEMS 

B-220 Proposed by Guy A R. Guillotte, Montreal, P. Q., Canada. 

Let p be the m prime. Prove that p and p - are twin 
primes (i. e. , p + = p + 2) if and only if 

m 

X X + 1 "Pn) = Pm " 
n=l 

B-221 Proposed by R. Garfield, College of Insurance, New York, N. Y. 

Prove that 

n=l n=l 
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B-222 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Find a formula for K where Kj = 1 and 

K n + 1 = ( K 1 + K 2 + . . . +Kn) + F 2 n + 1 . 

B-223 Proposed by Edgar Karst, University of Arizona, Tuscon, Arizona. 

Find a solution of 

x y + (x + 3 ) y - (x + 4 ) y = uV + (u + 3)V - (u + 4)V 

in the form 

x = F , y = F , u = L , and v = L . m J n* v s 

B-224 Proposed by Lawrence Somer, Champaign, Illinois. 

Let m be a fixed posit ive integer . P rove that no t e r m in the sequence 

Fj[, F 3 , F 5 , F 7 , • • • is divisible by 4m - 1. 

B-225 Proposed by John Me, Berkeley, California. 

Let ao> " ' ' , a . « be constants and le t {f } be a sequence of in tegers 
satisfying 

f . = a. ..f . , + a. 0 f . 0 + ••• + a f ; n = 0, 1, 2, ' " • . 
n+j j - 1 n+j-1 j - 2 n+j-2 o n 

Find a n e c e s s a r y and sufficient condition for {f } to have the p roper ty that 

every in teger m is an exact d iv isor of some f. . 

SOLUTIONS 

A SEQUENCE OF MULTIPLES OF 12 

B-202 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Let F | , F 2 , • ' • be the Fibonacci Sequence 1, 1, 2, 3 , 5, 8, • •• with 

F ,_o = F _,.- + F . Let n+2 n+1 n 
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Gn = F4n-2 + F4n + F4n+2 • 

(i) Find a recursion formula for the sequence Gl9 G2, 
(ii) Show that each G is a multiple of 12. 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

(i) The sequence {G } satisfies G « = 7G - - G since each of the 
sequences {F4 _2}5 {F. }, and {F. 2 } has this recursion relation. 

(ii) Since GQ = 0 and Gj = 12, mathematical induction using Part (i) 
proves that 12|G for n ^ 0. 

Also solved by T. £ Stanley, Gregory Wulczyn, and the Proposer. 

A SEQUENCE OF MULTIPLES OF 168 

B-203 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Show that F g _4 + F g + F g . is always a mult iple of 168„ 

Solution by T. £ Stanley, City University, London, England. 

The following generalizes on B-202 and B-203. 
Let 

E(n,k,r) = F. + F. + F. . 
kn-r kn kn+r 

The formulas 

Fkn+r F r - l F k n + F r F k n + l 
F k n - r = ( - 1 } ( F r - l F k n - F r F k n - l } 

are well-known. Thus? if r is even, we have 

E(n,k5r) = ( F r + )Fr_1 + l ) F k n . 

Now F, divides F, for each n and so E(n,ksr) is a multiple of 
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(F + 2F - + 1)F. r r - 1 k 

for even r . Then E (n ,8 ,4 ) i s a mult iple of (3 + 4 + 1 ) 2 1 = 168, which 

es t ab l i shes B-203. 

Also solved by Gregory Wulczyn and the Proposer. 

Edi to r f s Note; Combining thoughts from the solutions of B-202 and 

B-203 , one can show that F, _2 + F. + F. 2 i s a mult iple of (L + 1)F, 

for n = 1, 2 , 3 , • • • . 

GENERATING FUNCTION FOR F0 -
2 n - l 

B-204 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let Fi = Fo = 1 and F j 0 = F ^ + F . Show that 1 L n+2 n+1 n 

(i) Ftx + F2x2 + Fgx3 + F7x4 + • • • = (x - x 2 ) / ( l - 3x + x2) for | x | < 

(3 - N / 5 ) / 2 . 

(ii) 1 + 2x + 3x2 + 4x3 + • • • = 1/(1 - x)2 for |x | ^ 1. 

(iii) nF i + (n - 1)F, + (n - 2)F5 + • • • + 2 F 3 n _ 2 + F ^ = F 2 n + 1 - 1. 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

(i) Let 

f(x) = (1 - x ) / ( l - 3x + x 2 ) 

and le t i t s Maclaur in expansion be 

(1) f(x) = c0 + Cjx + c2x2 + c3x3 + • • • . 

Then (1) converges for | x | ^ | r | , where r i s the root of 1 - 3x + x2 = 0 of 

l e a s t absolute value* i. e. , r = (3 - \ f 5 ) / 2 . Multiplying both s ides of (1) by 

1 - 3x + x2 gives us 

(2) 1 - x = (1 - 3x + x2 )c0 + Cjx + c2x2 + - - . ) . 
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Expanding the r 
of (2), leads to 
Expanding the right side of (2) and equating coefficients of x m on both sides 

(3) c0 = 1, ct = 25 c n + 2 - 3 c n + 1 + cn = 0 for n > 0 . 

This implies that c = F 9 - and Part (i) is proved. 
(ii) This follows by term-by-term differentiation of 

1 + X + X? + • • • = 1/(1 - X) , [x| < 1 . 

(iii) Let Gn = nF t + (n - 1)F3 + 2F 2 n _ 2 + F 2 n _ r Then the generating 
function for the G is found by multiplying the series of Parts (i) and (ii) to 
be 

1/[(1 - x)(l - 3x + x2)] = Gt + G2x + G3x2 + e9° . 

This implies that Gt = 1, G2 = 4? G3 = 12, and 

(4) G ±Q - 4G ^ + 4G ± 1 - G = 0 . 
v ' n+3 n+2 n+1 n 

Since F 0 M - 1 satisfies the same initial conditions and the same recur-2n+l 
rence relation (4) as G , Par t (iii) is established. 

Also solved by the Proposer. 

ANOTHER CONVOLUTION FOR ?2 ± 

B-205 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 

(2n - l ) F j + (2n - 3)F3 + (2n - 5)F5 + • • • + 3 F 2 n _ 3 + F ^ ^ = L 2 n - 2 . 

fin 
where L is the n . Lucas number (i. e. , Lj = 1, L2 = 3, L „ = L

n + i 
+ L ). n 
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Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

The solution is s i m i l a r to that of B-204. Instead of P a r t (ii) of B-204, 

one uses 

1 + 3x + 5x2 + • • . = (1 + x ) / ( l - x ) 2 , | x | < 1 , 

which may be obtained by differentiating t e r m - b y - t e r m in 

y + y3 + y 5 + . . „ = y / ( l - y2)f | x | < l , 

and then substi tut ing y2 = x. 

A GEOMETRIC SERIES 

B-206 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + \J'E)/2 and sum 

00 

E: aF ,- + F 
n n+1 n 

n=l 

Solution by C. B. A. Peck, State College, Pennsylvania. 

F r o m the Fibonacci Quar te r ly ; Vol. 1, No. 3 , p . 54, 

1 1 + 1 -V _L T? a = aF ,- + F n+1 n 

Hence the sum is 

( l / a 2 ) [ l - (1/a)] = l / ( a 2 - a) = 1 , 

s ince a2 - a - 1 = 0 . 

Also solved by Gregory Wulczyn and the Proposer. 
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ANOTHER GEOMETRIC SERIES 

B-207 Proposed by Guy A Guillotte, Montreal, Quebec, Canada. 

Sum 

~ * F + \f5 F ,- + F l 0 
n=l n n+1 n+2 

Solution by C. B. A. Peck, State College, Pennsylvania. 

The equation 

F + ^ F ± 1 + F _ L O = L ± 1 + \ | 5 F ± 1 = 2 a n + 1 
n n+1 n+2 n+1 n+1 

along with B-206, show that the sum desired here is l /28 

Also solved by Gregory Wulczyn and the Proposer. 

FIBONACCI NOTE SERVICE 
The Fibonacci Quar te r ly i s offering a se rv ice in which it will be p o s -

sible for i t s r e a d e r s to s ecu re background notes for a r t i c l e s . This will apply 
to the following: 
(1) Short abs t r ac t s of extensive r e s u l t s , de r iva t ions , and numer ica l data. 
(2) Brief a r t i c l e s summar iz ing a l a rge amount of r e s e a r c h . 
(3) Ar t i c l e s of s tandard s ize for which additional background m a t e r i a l may 

be obtained. 
Ar t i c l e s in the Quar te r ly for which this note se rv ice i s available will 

indicate the fact together with the number of pages in question. Reques ts for 
these notes should be made to: 

B ro the r Alfred Brousseau 
S t Mary ? s College 
Moraga , Calif. 94575 

The notes will be Xeroxed* 
The p r i ce for this s e rv ice i s four cents a page (including pos tage , m a -

t e r i a l s , and labor) . 
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