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1. INTRODUCTION

The classical Carmichael numbers are well known in number theory. These numbers were
introduced independently by Korselt in [8] and Carmichael in [2] and since then they have
been the subject of intensive study. The reader may find extensive but not exhaustive lists of
references in [5, Sect. A13], [11, Ch. 2, Sec. IX].

Recall that a positive composite integer n is a Carmichael number if an ≡ a (mod n) for
every integer a. In other words, the Carmichael numbers are exactly the Fermat pseudoprimes
to every base.

This notion can be generalized in several ways. For instance, one may vary pseudopri-
mality tests. Such generalizations have been considered in [4], [10], [13]; for further references
see [6]. Another approach was suggested by Howe [6] who replaced the ring Z/nZ by any
Z/nZ-algebra.
Definition 1 ([6]): For a positive integer m, a Carmichael number of order m is a positive
composite integer n such that the map x 7→ xn defines an endomorphism of every Z/nZ-algebra
that can be generated by m elements as a Z/nZ-module.

This definition is not too useful in practice. But Howe [6] gave a nice criterion for
the Carmichael numbers of order m, which generalized Korselt’s criterion [8] for the usual
Carmichael numbers.
Theorem 1 ([6]): Let m and n be positive integers with n composite. Then n is a Carmichael
number of order m if and only if the following two conditions hold:

1. n is squarefree;
2. for every prime divisor p of n and for every integer r with 1 ≤ r ≤ m, there is an integer

ir ≥ 0 such that n ≡ pir (mod pr − 1).
Another generalization is the notion of rigid Carmichael numbers of order m. It was also

introduced in [6].
Definition 2 ([6]): A rigid Carmichael number of order m is a Carmichael number n of order
m such that for every prime divisor p of n and every integer r with 1 ≤ r ≤ m we have
n ≡ 1(mod pr − 1).

As noted in [5, Sect. A13], rigid Carmichael numbers of order two have already been
studied by S. Graham and R. Pinch.

It is naturally to ask what results concerning the usual Carmichael numbers can be
strengthened for their higher-order counterparts. For example, it is well known that any
Carmichael number has at least three different prime divisors. The proof can be found in
many textbooks, e.g., see [7]. The aim of this paper is to prove a lower bound for the number

141



ON THE NUMBER OF PRIME DIVISORS OF HIGHER-ORDER CARMICHAEL NUMBERS

of prime divisors of higher-order Carmichael numbers. We also consider the rigid Carmichael
numbers as a separate case.

We start with such an estimation for all Carmichael numbers of order n. It is simple but
the resulting bound is rather rough.
Theorem 2: Every Carmichael number of order m has at least m+ 2 prime divisors.

This theorem is proved in section 2. The estimate for rigid Carmichael numbers is asymp-
totically much better.
Theorem 3: For m ≥ 2, a rigid Carmichael number of order m has at least s + 1 prime
divisors, where

s =
∑
k≤m

φ(k) (1)

and φ denotes, as usual, the Euler totient function.
Remark 1: For s defined by (1), a lower bound was given by Mertens [9] (see also [3, Ch. 5,
ref. 36]):

∑
k≤m

φ(k) ≥ 3
π2
m2 − 1

2
m lnm−

(
γ

2
+

5
8

)
m− 1,

where γ = 0.57721 . . . is Euler’s constant.
Theorem 3 together with several auxiliary propositions is proved in section 3. Note that

Theorem 2 is stronger than Theorem 3 when m = 1 and 2. Moreover, the estimate of Theorem
2 is exact for m = 1. An example of a Carmichael number (which is necessarily rigid for m = 1)
with exactly three prime divisors is 561 = 3 · 11 · 17. The least (rigid) Carmichael number of
order two has 8 prime divisors. It is 17 · 31 · 41 · 43 · 83 · 97 · 167 · 331. As far as we know, no
example of a Carmichael number of order two with smaller number of prime divisors has been
found. For m = 2, Theorem 2 tells us that at least four divisors are necessary. Thus, there is
still a gap between lower and upper bounds. Carmichael numbers of order higher than two are
not known. However, Howe [6] gave heuristic arguments suggesting that there are infinitely
many such numbers. Note that his construction even for m = 2 produces Carmichael numbers
with many prime divisors.

For any fixed m, the bound in Theorem 2 can be improved for all but finitely many
Carmichael numbers of order m. To state this improvement we must introduce some notation.
Let Φl(x) be the lth cyclotomic polynomial. Consider

Fm(x) =
∏
l≤m

Φl(x) (2)

and define the polynomial Gm,j(x) as the remainder of xj modulo Fm(x), i.e.,

deg Gm,j < deg Fm, (3)

Gm,j(x) ≡ xj (mod Fm(x)). (4)

Let M denote the largest number among all absolute values of the coefficients of polynomials
Gm,j(x), j = 0, . . . ,lcm(1, . . . ,m) − 1. Clearly, there are finitely many Carmichael numbers
whose greatest prime divisor is at most max{2Me, s}+ 1, where s is given by (1).
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Theorem 4: Let n be a Carmichael number of order m ≥ 2 and p be the greatest prime divisor
of n. Take s as in (1) and choose M as above. If

p > max{2Me, s}+ 1, (5)

then n has at least s
2 different prime divisors.

We prove this theorem in section 4. Note that Theorem 2 is stronger than Theorem 4
when m < 7.

2. THE TRIVIAL BOUND

Proof of Theorem 2: Let n be a Carmichael number of order m. By Theorem 1, we can
write n = p1p2 . . . pN for some N ≥ 2, where p1, . . . , pN are primes and p1 < p2 < · · · < pN .
There are two cases:

Case 1. n ≡ 1 (mod pmN − 1). Then there exists a positive integer k such that n − 1 =
kpmN − k. Hence,

k − 1 = pN (kpm−1
N − p1p2 . . . pN−1). (6)

If k = 1 then we would have pm−1
N = p1 . . . pN−1, which is impossible. Hence, k > 1. Since (6)

implies pN |k − 1, we have k > pN . Consequently,

pNN > p1 . . . pN = n = k(pmN − 1) + 1 ≥ (pN + 1)(pmN − 1) + 1 ≥ pm+1
N .

In particular, N > m+ 1, i.e., n has at least m+ 2 prime divisors.
Case 2. n ≡ piN (mod pmN − 1), where 0 < i < m. Then n = piN + k(pmN − 1). By Theorem

1, n has at least two prime divisors. In particular, n 6= piN and k > 0. But n is divisible by
pN and i > 0. Hence k is divisible by pN and k ≥ pN . We have

pNN > p1 . . . pN = n = piN + k(pmN − 1) ≥ piN + pN (pmN − 1) ≥ pm+1
N .

As in the first case, n has at least m+ 2 prime divisors.

3. RIGID CARMICHAEL NUMBERS

Let n = p1p2 . . . pN be a rigid Carmichael number of order m, where p1, . . . , pN are primes
and p1 < p2 < · · · < pN . By Definition 2, for any r ≤ m the congruence n ≡ 1 (mod prN − 1)
holds. Therefore,

n ≡ 1(mod lcm(pN − 1, p2
N − 1, . . . , pmN − 1)). (7)

Now our aim is to evaluate the above least common multiple.
It would be a trivial problem if we replace the number pN by the indeterminate x. Indeed,

xk−1 =
∏
d|k Φd(x), and two different cyclotomic polynomials are relatively prime. Therefore,

lcm(x− 1, . . . , xm − 1) =
∏
d≤m

Φd(x) = Fm(x), (8)

where Fm is defined by (2). However, for a given p, two numbers Φd(p) and Φl(p) may have
non-trivial common factor. Although the relation similar to (8) still holds in this case, its
proof becomes more tricky.
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The reader familiar with Möbius algebras (see [12, Ch. 3] or [1, Ch. 4]) may recognize
the following lemma as a multiplicative analogue of the special case of the general Möbius
inversion formula.
Lemma 1: For all positive integers a1, . . . , am we have

lcm(a1, . . . , am) =
m∏
k=1

( ∏
i1<i2<···<ik

gcd(ai1 , . . . , aik)

)(−1)k−1

.

Proof: Let ordpa denote the greatest integer k such that pk|a. Then the claim of the
lemma is equivalent to the following one: for every prime p

max
i=1,...,m

ordpai =
m∑
k=1

(−1)k−1
∑

i1<···<ik

min
l=1,...,k

ordp(ail). (9)

Relation (9) now follows from the more general statement [1, Example 4.62]: for any
non-negative integers α1, . . . , αm,

max
i=1,...,m

αi =
m∑
k=1

(−1)k−1
∑

i1<···<ik

min
l=1,...,k

αil . (10)

It can be deduced also from the inclusion and exclusion principle.
Lemma 2: Let f1, . . . , fm ∈ Q[x] be non-zero polynomials. Then

lcm(f1, . . . , fm) =
m∏
k=1

( ∏
i1<···<ik

gcd(fi1 , . . . , fik)

)(−1)k−1

.

The proof is similar to the previous one. The following two lemmas recall some well-known
facts.
Lemma 3: For any integer p > 1 and positive integers a1, . . . , ak we have

gcd(pa1 − 1, . . . , pak − 1) = pgcd(a1,...,ak) − 1.

Lemma 4: Let x be an indeterminate. In Q[x] the following relation holds:

gcd(xa1 − 1, . . . , xak − 1) = xgcd(a1,...,ak) − 1.

Now we are able to evaluate the desired least common multiple.
Lemma 5: For any integer p > 1 and any positive integer m, the relation

lcm(p− 1, p2 − 1, . . . , pm − 1) = Fm(p)

holds, where Fm is defined by (2).
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Proof: By Lemma 1 and 3,

lcm(p− 1, p2 − 1, . . . , pm − 1) =
m∏
k=1

 ∏
1≤i1<···<ik≤m

(
pgcd(i1,...,ik) − 1

)(−1)k−1

. (11)

By Lemmas 2 and 4,

lcm(x− 1, x2 − 1, . . . , xm − 1) =
m∏
k=1

 ∏
1≤i1<···<ik≤m

(
xgcd(i1,...,ik) − 1

)(−1)k−1

, (12)

where lcm is taken in Q[x]. Combining (12) with (8), we obtain

Fm(x) =
m∏
k=1

 ∏
1≤i1<···<ik≤m

(
xgcd(i1,...,ik) − 1

)(−1)k−1

.

Substituting p in place of x and taking into account (11), we complete the proof.
Lemma 6: Let m ≥ 2. Define s by (1) and Fm by (2). Then

Fm(p) ≥ (p− 1)s−1(p+ 1).

In particular, lcm(p− 1, . . . , pm − 1) ≥ (p− 1)s−1(p+ 1).
Proof: Write down |Φl(p)| =

∏
ζ |p− ζ|, where the product is taken over all primitive

roots of unity of degree l. Thus, |Φl(p)| ≥
∏
ζ(p− 1) = (p− 1)φ(l) for all l and |Φ2(p)| = p+ 1.

Now the claim follows from (2) and Lemma 5.
Proof of Theorem 3: Relation (7) implies

n = 1 + k lcm(pN − 1, p2
N − 1, . . . , pmN − 1)

for some k > 0. Using Lemma 6 we obtain

(pN − 1)N−1(pN + 1) > p1p2 . . . pN

= n = 1 + k lcm(pN − 1, p2
N − 1, . . . , pmN − 1)

≥ 1 + k(pN − 1)s−1(pN + 1) > (pN − 1)s−1(pN + 1).

Hence N > s, which completes the proof.

4. AN IMPROVED ESTIMATE FOR NON-RIGID
CARMICHAEL NUMBERS

Let Sm be the set of all roots of unity of degree at most m. In other words, Sm is the set
of all roots of Fm, where Fm is given by (2). Consider polynomials Gm,j defined by (3)-(4).
In particular,

Gm,j(ξ) = ξj for any ξ ∈ Sm. (13)
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Note that Gm,j is uniquely determined by conditions (3) and (13) as the (unique) solution of
the corresponding interpolation problem. Moreover, these two conditions allow to define Gm,j
for negative j’s. As a consequence of (13), the sequence of polynomials Gm,j is periodic with
respect to j and its period is lcm(1, . . . ,m). In addition, the polynomials Gm,j for fixed m
and 0 ≤ j <lcm(1, . . . ,m), are pairwise distinct.
Lemma 7: For any j such that deg Fm ≤ j < lcm(1, . . . ,m), we have degGm,j ≥ 1

2degFm.
Proof: Let d =degGm,j . First, we show that Gm,d−j(x) = xdGm,j

(
1
x

)
. Note that

degxdGm,j
(

1
x

)
≤ d <degFm and, for any ξ ∈ Sm,

ξdGm,j(1/ξ) = ξd−j = Gm,d−j(ξ).

Hence, Gm,d−j(x) and xdGm,j
(

1
x

)
must coincide. In particular, degGm,d−j ≤ d. Next,

Gm,d−j(ξ)Gm,j(ξ) = ξd−jξj = ξd for any ξ ∈ Sm. Therefore,

Gm,d−j(x)Gm,j(x) ≡ xd (mod Fm). (14)

Note that Gm,l = xl for 0 ≤ l <degFm. Since degFm ≤ j <lcm(1, . . . ,m), the polynomial
Gm,j differs from Gm,l, l = 0, . . . ,degFm − 1, i.e., Gm,j is not a monomial. Together with (14)
this implies

Gm,d−j(x)Gm,j(x) = xd +H(x)Fm(x) (15)

for some non-zero polynomial H. In particular, the degree of the product in the left-hand side
of (15) is at least degFm. Consequently, 2d ≥degGm,d−j+degGm,j ≥degFm, which completes
the proof.

Now we are able to prove Theorem 4.
Proof of Theorem 4: Let n be a Carmichael number of order m. Write down n = p1 . . . pN ,
where p1, . . . , pN are primes and p1 < · · · < pN . Let p be the greatest prime divisor of n, i.e.,
p = pN .

By Theorem 1, for any r, 1 ≤ r ≤ m, there exists ir, such that 0 ≤ ir < r and

n ≡ pir (mod pr − 1). (16)

The exponents ir must satisfy the obvious compatibility condition:

pir ≡ pit (mod pgcd(r,t) − 1),

which in turn is equivalent to
ir ≡ it (mod gcd(r, t)). (17)

Using the Chinese Remainder Theorem we can find j, such that

0 ≤ j < lcm(1, . . . ,m) and j ≡ ir (mod r) for any r = 1, . . . ,m.

Therefore, pj ≡ pir (mod pr − 1) and

n ≡ pj (mod Fm(p)) (18)

by (16) and Lemma 5. Note that s defined in (1) is exactly the degree of Fm. We are to
distinguish several cases.
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Case 1: j = 0. It was settled in Theorem 3.
Case 2: 0 < j < s. It can be settled in a way similar to case 1. Namely,(

1 +
1

p− 1

)s−1

< e

since p > s by hypothesis (5). Therefore, using Lemma 6 and obvious estimates, we have

pj ≤ ps−1 =
(

1 +
1

p− 1

)s−1

(p− 1)s−1 ≤ e(p− 1)s−1 ≤ (p− 1)s−1(p+ 1) ≤ Fm(p).

On the other hand, n has at least two prime factors, hence, n 6= pj and n > Fm(p) in accordance
with (18). Combining this inequality with Lemma 6, we have

(p− 1)N−1(p+ 1) > p1 . . . pN = n > Fm(p) ≥ (p− 1)s−1(p+ 1)

and N ≥ s. Note that in the first two cases the estimate is even better than we claimed.
Case 3: s ≤ j <lcm(1, . . . ,m). We have

n ≡ pj ≡ Gm,j(p) (mod Fm(p)). (19)

Recall that M is the largest number among absolute values of coefficients of polynomials
Gm,j(x), j = 0, . . . ,lcm(1, . . . ,m)− 1. Using assumption (5) and Lemma 6 we deduce

|Gm,j(p)| ≤M
s−1∑
i=0

pi = M
ps − 1
p− 1

<
M

p− 1
ps

=
M

p− 1

(
1 +

1
p− 1

)s
(p− 1)s < Me(p− 1)s−1 ≤ 1

2
(p− 1)s <

1
2
Fm(p).

(20)

Put d =degGm,j . Then

|Gm,j(p)| ≥ pd −M
d−1∑
i=0

pi = pd − M

p− 1
(pd − 1) > pd − M

p− 1
pd >

1
2
pd.

Combining this inequality with Lemma 7 we get

|Gm,j(p)| ≥
1
2
ps/2. (21)

If Gm,j(p) is positive, then, by (19) and (21),

n ≥ Gm,j(p) ≥
1
2
ps/2.
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If Gm,j(p) is negative, then (19), (20), and Lemma 6 imply

n ≥ Gm,j(p) + Fm(p) ≥ 1
2
Fm(p) ≥ 1

2
(p− 1)s−1(p+ 1).

In any case,

n ≥ 1
2
p(p− 1)s/2−1 ≥ p(p− 1)s/2−2.

In particular,
(p− 1)N−1p > p1 . . . pN = n ≥ (p− 1)s/2−2p.

Consequently, N > s
2 − 1. Since s/2 is an integer for m ≥ 2, this completes the proof.
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