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1. INTRODUCTION

The approximation of solutions of the polynomial equations P (x) = xr − a0x
r−1 − · · · −

ar−2x − ar−1 = 0, where a0, a1, . . . , ar−1 (r ≥ 2 and ar−1 6= 0) are real or complex numbers,
is still playing a central role in many branches of mathematics. To solve this problem several
theoretical and numerical methods have been developed. The iterative Bernoulli process is
one of the most usual methods for the approximation of the solutions of P (x) = 0 (see [
7, 8, 9, 10, 11, 12, 13], for example). The main idea consists of associating with P (x) =
xr−a0x

r−1−· · ·−ar−2x−ar−1 a sequence {Vn}n≥0 defined by the following linear recurrence
relation of order r

Vn+1 = a0Vn + a1Vn−1 + · · ·+ ar−1Vn−r+1 for n ≥ r − 1, (1)

where V0, V1, . . . , Vr−1 are specified by the initial conditions. Such sequences, called r-
generalized Fibonacci sequences, are largely studied in the literature (see [7, 8, 13, 14, 15,
16, 18], for example). We shall refer to them in the sequel as sequences (1). If the sequence

of ratios
{
Vn+1
Vn

}
n≥0

converges, then q =limn→+∞
Vn+1
Vn

is a root of P (x). Therefore, sequences

(1) may be used in the approximation of roots of algebraic equations (see [12, 17], for example),
like Newton’s method or the secant method (see [10]).

For a convergent sequence {Sn}n≥0 one of the most important problems consists of ac-
celerating its convergence to S =limn→+∞Sn. The extrapolation methods are a powerful tool
for producing a new sequence {Tn}n≥0 converging to the same limit S, faster than {Sn}n≥0,
namely limn→+∞(Tn−S)/(Sn−S) = 0 (see [1, 3, 4, 5, 6], for example). The most well known
of these methods are the Aitken’s ∆2 process, ε-algorithm and the E-algorithm (see [3, 4, 5,
6], for example). This later extrapolation method generalizes the ε-algorithm and represents
the more powerful extrapolation method for accelerating the convergence (see [3, 5, 6]).

When r = 2 McCabe and Phillips have studied a theoretical application of Aitken accel-
eration for the convergence of the sequence of ratios {Wn = Vn+1

Vn
}n≥0, where {Vn}n≥0 is a

sequence (1) (see [17]). This gives an application of the Aitken acceleration to the Bernoulli
method for solving x2 − a0x − a1 = 0 (see [17]). The extension of McCabe-Phillips’s idea
to the general case of sequence (1) is studied in [2]. More precisely, the ε-algorithm method,
which generalizes the Aitken acceleration, has been applied to accelerate the convergence of
the sequence of ratios {Wn}n≥0 associated with a sequence (1) (see [2]). The hypothesis that
the dominant root λ0 of P (X) (namely |λ| < |λ0| for every other root λ) is simple plays an
important role in [2].
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In this paper we apply the general E-algorithm extrapolation method to accelerate the
convergence of the sequence of ratios {Wn = Vn+1

Vn
}n≥0, associated with a sequence (1). There-

fore, we extend and perform results of [2, 17]. In particular, it is not necessary to suppose
that the dominant root of P (X) is simple. Moreover, since the ε-algorithm is a subcase of
the E-algorithm, we discuss the difference between these two extrapolation methods. Some
examples allow us to show that the E-algorithm method is more powerful for accelerating the
convergence of {Wn}n≥0.

Note that there is a large literature on the extrapolation methods. In this paper, our basic
reference is Brezinski’s papers and monographs.

This paper is organized as follows. In Section 2 we give a connection between sequences
(1) and the E-algorithm. In Section 3 we apply the E-algorithm to the sequence of the ratios
{Wn = Vn+1

Vn
}n≥0. The last section is devoted to some results on the vectorial case.

2. E-ALGORITHM AND SEQUENCES (1).

2.1 The E-Algorithm:
The extrapolation E-algorithm method is an extension of the ε-algorithm (see [3, 4, 5, 6]).

Indeed, it is a more general extrapolation algorithm. Its main idea consists of associating with
each convergent sequence {Sn}n≥0 a sequence {Tn}n≥0, which converges to S =limn→+∞Sn
faster than {Sn}n≥0. Therefore, we have limn→+∞|Tn−SSn−S = 0 (see [3, 4, 5, 6], for example).
The kernel of the transformation T : {Sn}n≥0 −→ T ({Sn}n≥0) = {Tn}n≥0, namely KT =
{{Sn}n≥0;∃N > 0, Tn = S for every n ≥ N}, plays a central role in the extrapolation methods
(see [3, 4, 5, 6]).

Let {Sn}n≥0 be a convergent sequence of real numbers, with S =limn→+∞Sn, such that

Sn = S + α1g1(n) + · · ·+ αkgk(n),

where {gs(n)}n≥0(1 ≤ s ≤ k) are some real sequences and α1, . . . , αk are real numbers. In sum-
mary, the E-algorithm associated with {Sn}n≥0, consists in considering the following sequence
{Ej(Sn)}j≥0,n≥0, defined as follows,

Ek(Sn) =

∣∣∣∣∣∣∣∣
Sn . . . Sn+k

g1(n) . . . g1(n+ k)
... . . .

...
gk(n) . . . gk(n+ k)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 . . . 1
g1(n) . . . g1(n+ k)

... . . .
...

gk(n) . . . gk(n+ k)

∣∣∣∣∣∣∣∣
−1

. (2)

Let {E(n)
j }j≥0,n≥0 be the sequence defined by,

E
(n)
k =

E
(n)
k−1g

(n+1)
k−1,k − E

(n+1)
k−1 g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, n ≥ 0, k ≥ 1, (3)

where

E
(n)
0 = Sn, g

(n)
k,i =

g
(n)
k−1,ig

(n+1)
k−1,k − g

(n+1)
k−1,i g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, for every n ≥ 0, i ≥ k + 1, (4)
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such that g(n)
0,i = gi(n) for every i ≥ 1 and n ≥ 0. It was proved in Theorem 1 of [4] (see also

[3]) that Ek(Sn) = E
(n)
k .

Recall that the ε-algorithm is a particular case of the E-algorithm, corresponding to
gi(n) = ∆iSn in (2) - (3) (see [3, 4, 6]). Therefore, the sequence {ε(n)

k }k≥−1,n≥0 associated

with the convergent sequence {Sn}n≥0 satisfies ε
(n)
−1 = 0, ε(n)

0 = Sn and ε
(n)
k+1 = ε

(n)
k−1+

1

ε
(n+1)
k

−ε(n)
k

, for n ≥ 0 and for k ≥ 0. The application of the ε-algorithm method considered

with some constraints, for example the condition ε(n)
k 6= ε

(n+1)
k is assumed. On the other hand,

the ε(n)
2k are the only interesting quantities and the ε(n)

2k+1 are only used for intermediate com-
putations (see [3, 4, 5, 6]).
2.2 E-Algorithm for sequences (1):

Let {Vn}n≥0 be a sequence (1) and λ0, . . . , λl the roots of P (X) = Xr−a0X
r−1−· · ·−ar−1,

whose multiplicities are m0, . . . ,ml (respectively). Suppose that 0 < |λl| < |λl−1| < · · · <
|λ1| < |λ0|. If the limit V =limn→+∞Vn exists, for every choice of the initial conditions
V0, . . . , Vr−1 and V 6= 0 for some V0, . . . , Vr−1, then λ0 = 1 is a simple root of P (X) and
|λ| < 1 for every other root λ of P (X). Therefore, we have

Vn = V +
l∑

k=1

Pk(n)λnk ,

where Pk(n) =
∑mk−1
j=0 βk,jn

j . Thus, Vn = V +
∑l
k=1 gk(n), where gk(n) = Pk(n)λnk (1 ≤ k ≤

l). We verify easily that, limn→+∞
gk(n+1)
gk(n) = λk 6= 1. Since λi 6= λj(1 ≤ i 6= j ≤ l), Theorem

2.8 of [3] shows that limn→+∞E
(n)
k = limn→+∞Ek(Vn) = V , for every k.

Since 0 < |λl| < |λl−1| < · · · < |λ1| < λ0 = 1, we derive that limn→+∞
gk+1(n)
gk(n) = 0. Hence,

Theorem 2.10 of [3] allows us to see that, for every k ≥ 1, the sequence {E(n)
k }n≥0 converges

to V faster than {Vn}n≥0.
Suppose now that λ0 = 1, λ1, . . . , λr−1 are the distinct roots of P (X). Then, we have

Vn = V +
∑r−1
k=1 βkgk(n), where gk(n) = λnk (1 ≤ k ≤ r− 1). For every n ≥ 0 and k ≥ j+ 1, we

set g(n)
0,j = gj(n)(1 ≤ j ≤ r − 1) and

g
(n)
k,j =

g
(n)
k−1,jg

(n+1)
k−1,k − g

(n+1)
k−1,j g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, for j ≥ k + 1.

Therefore, a straightforward computation shows that g(n)
k,j = αk,jλ

n
j for every j > k, where

αk,j = λk−λj
λk−1 αk−1,j , with α1,j = λ1−λj

λ1−1 . Application of Theorem 2.2 of [3] (see also Theorem
3 of [4]) allows us to derive that

E
(n)
k = V +

r−1∑
j=k+1

Ck,jλ
n
j ,
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where Ck,j = αk,jβj . Hence, for every k ≥ 1, the sequence {E(n)
k }n≥0 is also a sequence (1),

which converges to V faster than {Vn}n≥0. Moreover, in this case the characteristic polynomial

of {E(n)
k }n≥0 is given by Qk(X) = (X − 1)(X − λk+1) . . . (X − λr−1).

Summarizing, the preceding discussions give rise to the following proposition.
Proposition 2.1: Let {Vn}n≥0 be a sequence (1) such that V = limn→+∞ Vn exists, for

every choice of the initial conditions. Consider the sequence {E(n)
k }n≥0(k ≥ 0), where E(n)

k =
Ek(Vn). Then, we have
(i) limn→∞E

(n)
k = V.

(ii) {E(n)
k }n≥0 converges to V faster than {Vn}n≥0 and {Vn}n≥0 is in the kernel of the trans-

formation T = E, namely E(n)
r−1 = V , for every n ≥ 0.

(iii) Suppose that P (X) has distinct roots λ0 = 1, λ1, . . . , λr−1. Then, the sequence {E(n)
k }n≥0

is a sequence (1), which converges to V faster than {Vn}n≥0.
Remark 2.1: Why the E-algorithm for sequences (1)? Let {Vn}n≥0 be a sequence (1).
Suppose that we have λ ∈6 C and ν ∈ IN∗ such that limn→+∞

Vn
nν−1λn = LA exists and LA 6= 0

for some choice of A = (V0, . . . , Vr−1). It was shown in Theorem 3 of [8] that the preceding
assertion is equivalent to the following: λ is a characteristic root of (1) of maximum modulus
and multiplicity ν, and any other characteristic root µ of modulus |µ| = |λ| has multiplicity mµ

strictly less than ν. Therefore, the E-algorithm is very useful for accelerating the convergence
of the sequence { Vn

nν−1λn }n≥1.
On the other hand, Theorem 7 of [8] implies that under one of the conditions of Theorem

3 of [8] we have limn→+∞Wn = λ, where Wn = Vn+1
Vn

. Therefore, the E-algorithm allows us
again to accelerate the convergence of the sequence of ratios {Wn}n≥0.

3. APPLICATION OF THE E-ALGORITHM TO limn→+∞
Vn+1
Vn

.

Let {Vn}n≥0 be a sequence (1) and λ1, . . . , λl the roots of P (X) = Xr−a0X
r−1−· · ·−ar−1.

The Binet formula shows that Vn =
∑l
j=1 Pj(n)λnj , where mj is the multiplicity of λj(1 ≤ j ≤

l) and Pj(n) =
∑mj−1
i=0 βijn

i. The βjs are derived from the initial conditions by solving the
linear system of equations

∑l
j=1 Pj(n)λnj = Vn, n = 0, 1, . . . , r−1 (see [14, 8, 13], for example).

Suppose that P1(n) is not identically vanishing. Set Wn = Vn+1
Vn

and Sn = P1(n)
P1(n+1)Wn. Then,

we have limn→+∞Wn = limn→+∞ Sn. The Binet formula implies that

Sn = λ1 + g2(n) + · · ·+ gl(n), (5)

where

gj+1(n) =
(
Pj+1(n+ 1)
P1(n+ 1)

λj+1 −
Pj+1(n)
P1(n)

Sn

)(
λj+1

λ1

)n
, for j ≥ 1. (6)

The application of the E-algorithm to {Sn}n≥0 allow us to accelerate the convergence of
{Wn}n≥0 to λ1. More precisely, we have the main result of this Section.
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Theorem 3.1: Let {Vn}n≥0 be a sequence (1) and λ1, . . . , λ1 its characteristic roots, such that
|λl| < · · · < |λ1|. Let {Sn}n≥0 be defined by (5) - (6). Then, we have the following assertions.
(i) limn→+∞Ek(Sn) = λ1.

(ii) {Ek(Sn)}n≥0 converges to λ1 faster than {Wn}n≥0.
(iii) El−1(Sn) = λ1 for every n ≥ 0.

Proof: (i) From (5) - (6) we derive that limn→+∞
gj+1(n+1)
gj(n) = λj+1

λj
6= 1, for every

j(2 ≤ j ≤ l). Since λi 6= λj(i 6= j), we show that limn→+∞
gi+1(n+1)
gi(n) 6= limn→+∞

gj+1(n+1)
gj(n) .

Therefore, Theorem 2.8 of [3] implies that limn→+∞Ek(Sn) = λ1, for every k ≥ 0.

(ii) Since |λl| < · · · < |λ1| a straightforward computation implies that limn→+∞
gi+1(n)
gi(n) =

0. Therefore, Theorem 2.10 of [3] shows that {Ek(Sn)}n≥0 converges to λ1 faster than
{Ek−1(Sn)}n≥0, for every k ≥ 1. Particularly, {Ek(Sn)}n≥0 converges to λ1 faster than
{Wn}n≥0.

(iii) Expression (4) and Theorem 2.1 of [3] imply that El−1(Sn) = λ1, for every n ≥ 0.
More generally, we have Ek(Sn) = λ1 for every k ≥ l − 1 and n ≥ 0.

Suppose that λ1 is a simple root of P (X). It was established that the application of the
Aitken acceleration to the sequence of ratios {Wn}n≥0 associated with the sequence (1),

implies that {ε(n)
2 }n≥0 converges to λ1 faster than {Wn}n≥0 (see Proposition 3.1 of [2]). The

application of the ε-algorithm to {Wn}n≥0 shows also that {ε(n)
2k }n≥0 converges to λ1 faster

than {Wn+r−1}n≥0, for every k ≥ 1 (see Proposition 3.3 of [2]). For the E-algorithm, we have
the following corollary of Theorem 3.1.
Corollary 3.2: Let {Vn}n≥0 be a sequence (1) and λl, . . . , λ1 its characteristic root such that
|λl| < · · · < |λ1|. Suppose that λ1 is a simple root. Then, for every k ≥ 1, the sequence
{E(n)

k }n≥0 converges to λ1 faster than {Wn}n≥0 and we have E
(n)
l−1 = El−1(Wn) = λ1, for

every n ≥ 0.
Remark 3.1: The advantage of the E-algorithm for limn→+∞

Vn+1
Vn

. Let {Vn}n≥0 be a se-
quence (1), whose characteristic roots satisfy |λl| < · · · < |λ1| and λ1 is simple. Proposition
2.1 of [2] shows that there exists N > 0 such that ε(n)

2k = λ1, for every n ≥ N and some k ≥ 1,
if and only if {Wn+N − λ1}n≥0 is a sequence (1). However, Corollary 3.2 shows that by the
E-algorithm we have Ek(Wn) = λ1, for every n ≥ 0 and k ≥ l − 1. More generally, for the
E-algorithm the root λ1 is not necessarily simple.
Remark 3.2: Let {Vn}n≥0, be a sequence (1) defined by Vn+1 = aVn − bVn−1, where V0 = 1
and V1 = a. In [17] the Aitken acceleration has been applied to the sequence of ratios {Wn}n≥0,
with the aim to approximate the larger root of the polynomial equation x2 − ax + b = 0.
Consider now the ε-algorithm for {Wn}n≥0. A straightforward computation allows us

to obtain that ε
(n)
−1 = 0, ε(n)

0 = Wn, ε
(n)
1 = 1

Wn+1−Wn
, ε

(n)
2 = W2(n+1), ε

(n)
3 = 1

Wn+2−Wn+1
+

1
W2(n+2)−W2(n+1)

, ε
(n)
4 =

W 2
2(n+2)−Wn+2W4(n+2)

W4(n+2)−Wn+2
. The application of the E-algorithm to {Wn}n≥0,

shows that E(n)
0 = Wn and E

(n)
1 = limn→+∞Wn according to the initial conditions V0 =

1, V1 = a. This example shows that he E-algorithm is a more powerful tool in the acceleration
of convergence of {Wn}n≥0 to the solution of the equation x2 − ax+ b = 0.
Remark 3.3: The preceding results of Section 3 can be applied to the sequence of ratios {Wn =
VA(n)/VB(n)}n≥0, where {VA(n)}n≥0 and {VB(n)}n≥0 are two sequences (1), whose initial
conditions are A = (α0, . . . , αr−1), B = (β0, . . . , βr−1) respectively. More precisely, suppose
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that we have λ ∈ /C and ν ∈ IN∗ such that limn→+∞
VA(n)
nν−1λn = LA, limn→+∞

VB(n)
nν−1λn = LB

exist and LB 6= 0. Theorem 6 of [8] shows that S = limn→+∞ VA(n)/VB(n) = LA/LB. For
reason of simplicity, suppose that ν = 1 (or equivalently λ is simple) and 0 < |λl| < · · · <
|λ1| < |λ|. The Binet formulas VA(n) = LA +

∑l
k=1 Pk(n)λnk , VB(n) = LB +

∑l
k=1Qk(n)λnk

show that

Wn = VA(n)/VB(n) = S +
l∑

j=1

gk(n),

where gk(n) = Pk(n)−SnQk(n)
LB

(λk/λ)n(1 ≤ k ≤ l). A straightforward computation shows
that limn→+∞ gk(n + 1)/gk(n) = λk. Suppose that there exists A = (α0, . . . , αr−1), B =
(β0, . . . , βr−1) such that LA/LB 6= 0 and Pk(n) 6= SQk(n)(1 ≤ k ≤ l). Then, we have
limn→+∞ gk+1(n)/gk(n) = 0. Since λk 6= λ and λk 6= λj(j 6= k), we have limn→+∞Ek(VA(n)/

VB(n)) = LA/LB and Ek(VA(n)/VB(n)) = E
(n)
k = LA/LB. Therefore, the sequence {E(n)

k }n≥0

(1 ≤ k ≤ l) converges to LA/LB faster than {VA(n)/VB(n)}n≥0.

4. THE VECTORIAL CASE.

In [3, 4] the E-algorithm is applied to the case of convergent sequences in R
p (or /Cp),

with p ≥ 2. We extend here some results of the preceding Sections 2 and 3 to the vectorial
sequences (1). More precisely, let {Vn}n≥0 be a sequence of R

p (or /Cp) such that Vn+1 =
a0Vn + · · · + ar−1Vn−r+1 for n ≥ r − 1, where V0, . . . , Vr−1 are the initial values. Therefore,
we have a family {Vj,n}n≥0(0 ≤ j ≤ p) of scalar convergent sequences (1), and the procedure
of Section 2 allows us to have Vn = V +

∑l
j=1 gk(n), where gk(n) ∈ R

p (or /Cp). Hence,
Theorems 9 and 10 of [4] show that we have limn→+∞Ek(Vn) = V , for every k ≥ 0 and
Ek(Vn) = V + g

(n)
k,k+1 + · · ·+ g

(n)
k,l , for every k, n, where the g(n)

k,j are given in the same way as
in [4] (see p. 184 of [4]).

Moreover, suppose that 0 < |λl| < · · · < |λ1| < λ0 = 1 are the distinct roots of P (X) =
Xr − a0X

r−1 − · · · − ar−1. The Binet formula implies that gk(n) = (g(1)
k (n), . . . , g(p)

k (n))T =

λnk (P (1)
k (n), . . . , P (p)

k (n))T . Therefore, we have

lim
n→+∞

< Y, gk(n+ 1) >
< Y, gk(n) >

= λk,

for every nonvanishing Y = (y1, . . . , yp)T . Let j be the first integer such that gj is not
identically 0, then we have limn→+∞

<Y,Vn+1−V >
<Y,Vn−V > = λj . Since λk 6= λi for k 6= i, Theorem

4.6 of [3] allows us to have the following proposition,
Proposition 1: Let {Vn}n≥0 be a sequence (1) such that V = limn→+∞ Vn exists and
λl, . . . , λ1, λ0 its characteristic root such that |λl| < · · · < |λ1| < λ0 = 1. Then, we have

lim
n→+∞

< Y,E
(n)
k − V >

< Y, Vn − V >
= 0,

for every k ≥ 0.
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On the other hand, for every i, j(1 ≤ i ≤ l, 1 ≤ j ≤ p), we have limn→+∞ g
(j)
i (n) = 0.

Consider ji such that degP ji ≤ degP
ji
i for every j(1 ≤ j ≤ p). Then, there exists C > 0 and

N ∈ IN such that
∣∣∣∣ g(j)i (n)

g
(ji)
i

(n)

∣∣∣∣ < C, for every n ≥ N . Finally, we have limn→+∞
g
(ji)
i

(n+1)

g
(ji)
i

(n)
= λi

and limn→+∞
g
(ji+1)
i+1 (n)

g
(ji)
i

(n)
= 0, since |λi+1| < |λi|. The preceding discussion allows us to derive

from Theorem 4.7 of [3] the following proposition.
Proposition 2: Let {Vn}n≥0 be a vectorial sequence (1). Suppose that there exists V0, . . . , Vr−1

such that, for every i, we have limn→+∞
<Y,gi(n)>

g
ji
i

(n)
= αi 6= 0, for some fixed Y = (y1, . . . , yp)T .

Then

lim
n→+∞

‖ E(n)
i − V ‖

‖ E(n)
i−1 − V ‖

= 0,

for every i(1 ≤ i ≤ l).
The choice of the initial values V0, . . . , Vr−1 and Y = (y1, . . . , yp)T satisfying the hypothe-

ses of Proposition 2 is always possible. For example, if Vj = uj(1, . . . , 1)T with uj ∈ R (or /C)

and Y = (1, . . . , 1)T , we have limn→+∞
<Y,gi(n)>

g
ji
i

(n)
= p 6= 0.
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