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Consider the infinite product

A(x) =
∏
k≥2

(1− xFk) = (1− x)(1− x2)(1− x3)(1− x5)(1− x8) . . .

= 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + x18 + . . .

regarded as a formal power series. In [4], N. Robbins proved that the coefficients of A(x) are
all equal to −1, 0 or 1. We shall give a short proof of this fact, and a very simple recursive
description of the coefficients of A(x).

Following the notation of [4], let a(m) be the coefficient of xm in A(x). It is clear that
a(m) = rE(m)− rO(m), where rE(m) is equal to the number of partitions of m into an even
number of distinct positive Fibonacci numbers, and rO(m) is equal to the number of m into
an odd number of distinct positive Fibonacci numbers. We call these partitions “even” and
“odd” respectively.
Proposition 1: Let n ≥ 5 be an integer. Consider the coefficients a(m) for m in the interval
[Fn, Fn+1). Split this interval into the three subintervals [Fn, Fn + Fn−3 − 2], [Fn + Fn−3 −
1, Fn + Fn−2 − 1] and [Fn + Fn−2, Fn+1 − 1].

1. The numbers a(Fn), a(Fn + 1), . . . , a(Fn + Fn−3 − 2) are equal to the numbers
(−1)n−1a(Fn−3 − 2), (−1)n−1a(Fn−3 − 3), . . . , (−1)n−1a(0) in that order.

2. The numbers a(Fn + Fn−3 − 1), a(Fn + Fn−3), . . . , a(Fn + Fn−2 − 1) are equal to 0.
3. The numbers a(Fn + Fn−2), a(Fn + Fn−2 + 1), . . . , a(Fn+1 − 1) are equal to the numbers
a(0), a(1), . . . , a(Fn−3 − 1) in that order.
This description gives a very fast method for computing the coefficients a(m) recursively.

Once we have computed them for 0 ≤ m < Fn we can immediately compute them for Fn ≤
m < Fn+1 using Proposition 1.

Also, since the coefficient of xm in A(x) is equal to −1, 0 or 1 for all non-negative integers
m < F5, it follows inductively that the coefficients in each interval [Fn, Fn+1) are also all equal
to −1, 0 or 1. This will prove Robbins’s result.
Proof of Proposition 1: It will be convenient to prove Proposition 1.2 first. Let Fn +
Fn−3 − 1 ≤ m ≤ Fn + Fn−2 − 1, and consider the partitions of m into distinct positive
Fibonacci numbers. It is clear that the largest part in such a partition cannot be Fn+1 or
larger. It cannot be Fn−2 or smaller either, because Fn−2 + Fn−3 + · · · + F2 = Fn − 2 < m.
Therefore, it must be Fn or Fn−1.

If the largest part is Fn, then the second largest part cannot be Fn−1 or Fn−2. If, on the
other hand, it is Fn−1, then the second largest part must be Fn−2, because Fn−1 + Fn−3 +
Fn−4 + · · ·+ F2 = 2Fn−1 − 2 = Fn + Fn−3 − 2 < m.

This means that we can split the set of partitions into pairs. Each pair consists of two
partitions of the form Fn+Fa+Fb+· · · and Fn−1+Fn−2+Fa+Fb+· · · , where n−3 ≥ a > b >
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· · · . In each pair, one of the partitions is even and the other is odd. Therefore rE(m) = rO(m)
and a(m) = 0 as claimed.

Now we use a similar analysis to prove Proposition 1.3. Let Fn + Fn−2 ≤ m ≤ Fn+1 − 1.
As before, the largest part of a partition of m must be Fn or Fn−1. If it is Fn, the second
largest part cannot be Fn−1. If, on the other hand, it is Fn−1, then the second largest part
must be Fn−2.

Again, we can split a subset of the set of partitions into pairs. Each pair consists of
two partitions of the form Fn + Fa + Fb + . . . and Fn−1 + Fn−2 + Fa + Fb + . . . , where
n− 3 ≥ a > b > . . . . In each pair there is an even and an odd partition.

The remaining partitions are of the form Fn + Fn−2 + Fa + Fb + . . . , where n− 3 ≥ a >
b > . . . . To each one of these partitions we can assign a partition of m′ = m − Fn − Fn−2,
by just removing the parts Fn and Fn−2. This is in fact a bijection. Since m′ < Fn−2, any
partition of m′ has largest part less than or equal to Fn−3; therefore it can be obtained in that
way from a partition of m.

It is clear that, under this bijection, odd partitions of m go to odd partitions of m′ and
even partitions of m go to even partitions of m′. It follows that a(m) = a(m−Fn −Fn−2), as
claimed.

Finally we prove Proposition 1.1. Consider Fn ≤ m ≤ Fn + Fn−3 − 2. The parts of a
partition of m come from the list F2, F3, . . . , Fn. To each partition π of m, assign the partition
π′ of m′ = Fn+2 − 2−m consisting of all the numbers on the above list that do not appear in
π. Any partition of m′ can be obtained in such a way from a partition of m: the partitions of
m′ also have all their parts less than or equal to Fn, because it is easily seen that m′ < Fn+1.

So the partitions of m are in bijection with the partitions of m′. If a partition π of m
has k parts, the corresponding partition π′ of m′ has n − 1 − k parts. Therefore, if n is odd,
the bijection takes odd partitions to odd partitions and even partitions to even partitions, and
a(m) = a(m′). If n is even, the bijection takes odd partitions to even partitions, and even
partitions to odd partitions, and a(m) = −a(m′). In any case, a(m) = (−1)n−1a(m′).

Now, it is easily seen that Fn +Fn−2 ≤ m′ ≤ Fn+1−2. Therefore Proposition 1.3 applies,
and a(m′) = a(m′ − Fn − Fn−2) = a(Fn + Fn−3 − 2 − m). Hence a(m) = (−1)n−1a(Fn +
Fn−3 − 2−m), which is what we wanted to show.
Proposition 2: Given an integer n, pick an integer m uniformly at random from the interval
[0, n]. Let pn be the probability that a(m) = 0 or, equivalently, that rE(m) = rO(m).

Then limn→∞ pn = 1.
Proof: Let αn be the number of non-zero coefficients among the first Fn coefficients

a(0), a(1), . . . , a(Fn − 1), so that p(Fn−1) = 1− αn/Fn. Notice that for Fn−1 ≤ m < Fn there
are at most αn non-zero coefficients among a(0), a(1), . . . , a(m), so pm ≥ 1 − αn/(m + 1) >
1− 2αn/Fn. We shall now prove that limn→∞ αn/Fn = 0, from which Proposition 2 follows.

First we obtain a recurrence relation for αn. Consider the non-zero coefficients a(m) for
Fn ≤ m ≤ Fn+1−1. We know that there are αn+1−αn such coefficients. Now split the interval
[Fn, Fn+1 − 1] into the three subintervals [Fn, Fn + Fn−3 − 2], [Fn + Fn−3 − 1, Fn + Fn−2 − 1]
and [Fn + Fn−2, Fn+1 − 1]. Proposition 1.2 shows that there are no non-zero coefficients in
the second subinterval, and Proposition 1.3 shows that there are αn−3 non-zero coefficients in
the third subinterval. Because a(Fn−3 − 1) is non-zero for all n ≥ 5 (this follows inductively
from Proposition 1.3), Proposition 1.1 shows that there are αn−3 − 1 non-zero coefficients in
the first subinterval. We conclude that αn+1 − αn = 2αn−3 − 1.

203



THE COEFFICIENTS OF A FIBONACCI POWER SERIES

The characteristic polynomial of this recurrence relation is x4 − x3 − 2 = 0, and its
roots are approximately r1 ≈ 1.54, r2 = −1, r3 ≈ 0.23 + 1.12i and r4 ≈ 0.23 − 1.12i. It
follows from standard results on linear recurrences that αn = O(rn

1 ), while Fn = Θ(λn), where
λ = (

√
5 + 1)/2 ≈ 1.62. Since r1 < λ, we conclude that limn→∞ αn/Fn ≡ 0.
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