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1. INTRODUCTION

There are many known connections between determinants of tridiagonal matrices and the
Fibonacci and Lucas numbers. For example, Strang [5, 6] presents a family of tridiagonal
matrices given by:

3
1

= W =
—_

M(n) = S , (1)

where M (n) is n x n. It is easy to show by induction that the determinants |M (k)| are the
Fibonacci numbers Fbi12. Another example is the family of tridiagonal matrices given by:

1 4
1 1 1
H(n) = i 1 , (2)

described in [2] and [3] (also in [5], but with 1 and -1 on the off-diagonals, instead of ¢). The
determinants |H (k)| are all the Fibonacci numbers Fj, starting with & = 2. In a similar family
of matrices [1], the (1,1) element of H (n) is replaced with a 3. The determinants now generate
the Lucas sequence Ly, starting with & = 2 (the Lucas sequence is defined by the second order
recurrence Ly =1, Ly =3, Lpy1 = L + L1,k > 2).

In this article, we extend these results to construct families of tridiagonal matrices whose
determinants generate any arbitrary linear subsequence Fyyy3 or Lok4g, k = 1,2,... of the
Fibonacci or Lucas numbers. We then choose a specific linear subsequence of the Fibonacci
numbers and use it to derive the following factorization:

n—1
wk
Fan = F2m H (Lgm - 2008;) . (3)
k=1
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This factorization is a generalization of one of the factorizations presented in [3]:

n—1
k
Fy, = H (3 — QCOS%) .

k=1

In order to develop these results, we must first present a theorem describing the sequence of
determinants for a general tridiagonal matrix. Let A(k) be a family of tridiagonal matrices,
where

a1 Q1.2
a1 G22 G23
A(I{?) = (13’2 CL3’3

Qf—1,k
Ak k—1 Qg k

Theorem 1: The determinants |A(k)| can be described by the following recurrence relation:
[AD)] = a1,
’A(Q)’ = 02,201,1 — (21012
|A(k)| = arx|A(k — 1)| — ag k—1a5—1,5|A(k — 2)|, k> 3.

Proof: The cases k =1 and k£ = 2 are clear. Now

a1 ai2

az1 G2
|A(k)| = det ak—3,k—2
g2 k-3 Ak—2k—2 (Ap—2k—1

Qp—1,k—2 Qk—1k—1 Qak—1k
Ak, k—1 A,k

By cofactor expansion on the last column and then the last row,

ap1 ai2
2,1 G272
‘A(k)| = ak7k|A(kz — 1)| — Qk_1k det
Qf—3,k—2
g2 k-3 Ag—2k—2 Ap—2k—1
0 Ak k—1

= ag k A(k’ — 1)| — ak_l’kak’k_ﬂA(k — 2)| O

2. FIBONACCI SUBSEQUENCES

Using Theorem 1, we can generalize the families of tridiagonal matrices given by (1) and
(2) to construct, for every linear subsequence of Fibonacci numbers, a family of tridiagonal
matrices whose successive determinants are given by that subsequence.
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Theorem 2: The symmetric tridiagonal family of matrices M, g(k),k = 1,2,... whose ele-
ments are given by:

F2Oé+ﬁ"

mi1 = Fa+,37 ma2 = (F 5
a—+

mj,j:La, 3§]§]{3,

mie =mo1 = \/M22Fats — Foatp

mjiv1 =mjp1j = (=1)%2<j <k,

with @ € Z1 and 8 € N, has successive determinants | M, g(k)| = Foktp-
In order to prove Theorem 2, we must first present the following lemma:

Lemma 1: Fy,, = L, Fy + (=1)""'F,_,, for n > 1.

Proof: We use the second principle of finite induction on n to prove this lemma:
Let n = 1. Then the lemma yields Fyy1 = Fj + Fj—1, which defines the Fibonacci
sequence. Now assume that Fyi, = L, F} + (—1)”+1Fk_n for n < N. Then

Frint1 = Frpan + Fren—1
=LyF+ (DY P N+ Ly 1 Fe + ()Y Fr_nia
= (Ly + Ly-1)F + (=D)NT2(Fy_ny1 — Fr_n)
=Ly Fy+ (1) F_(ny11). O

Now, using Theorem 1 and Lemma 1, we can prove Theorem 2.

Proof of Theorem 2: We use the second principle of finite induction on k to prove this
theorem:

[Ma,3(1)| = det Fayp = Faip

Faoip Vme2Faip — F2a+ﬁ)
My 5(2)] = det P = Foa4p-
[Ma5(2)] <\/m2,2Fa+ﬁ — Faoayp {—FQ&:;W o

Now assume that |M, g(k)| = Far+p for 1 < k < N. Then by Theorem 1,

|Ma,g(k +1)| = my x| Mo, (k)| — mi g—1mi—15|Ma,g(k —1)]
= La|Map(k)| — (=1)%[Ma,p(k — 1)|
= LoFaksp + (1) Foago1y4p
= Fotak+p (by Lemma 1)
= Fak+1)+p O

Another family of matrices that satisfies Theorem 2 can be found by choosing the neg-
ative root for all of the super-diagonal and sub-diagonal entries. With Theorem 2, we can
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now construct a family of tridiagonal matrices whose successive determinants form any linear
subsequence of the Fibonacci numbers. For example, the determinants of:

1 0 8 6
0 8 1 N
1 7 i 4 g
1 7 . ' i o4 . ’
. S . o
1 7 7
13 V5
-5 3 -1
-1 3 -1
and 1 3
-1 3

are given by the Fibonacci subsequences Fy;_o, F5;43 and Fops.
3. LUCAS SUBSEQUENCES

We can also generalize the families of tridiagonal matrices given by (1) and (2) to show a
similar result for linear subsequences of Lucas numbers. We state this result as the following
theorem:

Theorem 3: The symmetric tridiagonal family of matrices T, g(k),k = 1,2,... whose ele-
ments are given by:

L2a+ﬁ"

t11 = Layp,tap = (L )
a+

tjj=1La,3<j<k,

t10 =t21 = \/t2,2La+ﬁ — Lon4p

tijr1 =tir1; =V (=1)%,2<j <k,

with o € Z* and 3 € N, has successive determinants |1, g(k)| = Lak+s-
Again we begin with a lemma,; its proof imitates the proof of Lemma 1.

Lemma 2: Ly, = L,Ly + (=1)""1Ly_,, for n > 1.

Proof of Theorem 3: We use induction:

Tap(1)| = det Layp = Layp:

Lo+ts VMm22Lotp — Laats
To.3(2) = det ’ = Log+5.
@] = det (o Bliy ) = s
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Now assume that |T g(k)| = Lak+g for 1 <k < N. Then by Theorem 1,

To,8(k +1)| = tik|Ta,s(k)| — trp—1tk—1,kTa,p(k — 1)|
= La|To,p(k)| — (=1)%|Ta,5(k — 1)
= LoLakyp + (1) Lag-1)44
= Lotak+p (by Lemma 2)

= La(k+1)+s O

With Theorem 3, we can now construct a family of tridiagonal matrices whose successive
determinants form any linear subsequence of the Lucas numbers. For example, the determi-
nants of:

3 0 18 /14
0 6 -1 V14 5 1
-1 7 -1 7 4 3
-1 7 ’ 7 4 ’
—1 )
-1 7 7 4
29 411
V11 3 1
1 3 1
and 1 3
' 1
1 3

are given by the Lucas subsequences L4x_o, Lsi13 and Logs.

4. A FACTORIZATION OF THE FIBONACCI NUMBERS

In order to derive the factorization (3) given by Fan = Fopm Z;ll (Lgm — 2cos %k), we

consider the symmetric tridiagonal matrices:

L2mF2m Vv F2m

V F2m L2m 1
1 Lo, 1
1 L2m

By Lemma 1, Fy,, = Loy, For, and [Fg/Fam| = [Lom — (Fom/Fam)| = Lap,. Furthermore,
\/[F6m/F4m—‘F4m - Fﬁm = \/L2mF4m - F6m =V F2m7 S0 Bm(n) = M2m,2m(n) is a SpeCiﬁC
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instance of the tridiagonal family of matrices described in Theorem 2. Therefore, by Theorem
27’£%n(n>|zzfénﬂn+ly

By using the property of determinants that |AB| = |A || B|, and by defining e; to be the
§t" column of n x n identity matrix I, we have |B,,(n)| = Fam|Cyn(n)|, where:

C(n) = (I—i— (i - 1) elelT) Bpn(n).

The determinant is the product of the eigenvalues. Therefore, let A,k = 1,2,...,n be
the eigenvalues of C,(n) (with associated eigenvectors xy), so |Cy,(n)| = [[p_; Ak. Let-
ting G, (n) = Cy(n) — Loy I, we see that G, (n)x, = Cp(n)@xg — Lo Iy, = Ap@p — Lomxy =
(A — Lom )xk. Then v = A\, — Lo, are the eigenvalues of G, (n).

An eigenvalue v of G,,,(n) is a root of the characteristic polynomial |G,,(n) — vI| = 0.
Note that |G (n) =vI| = | (I 4+ (VFom — 1) e1e] ) (Gp(n) —~I) (I + (1/VFom — 1) €1€] ) |,
so 7 is also a root of the polynomial:

1 —r 1
1 —v 1
1 =0.
' 1
L=y

This polynomial is a transformed Chebyshev polynomial of the second kind [4], with roots

— mk
Yk = —2cos ;7. Therefore,

n n ’/I'k
Fom(ni1) = |Bm(n)| = Fam|Crn(n)] = Fom [[ Me = Fom [ ] <L2m — 2008 = 1) :
k=1 k=1

(3) follows by a simple change of variables.
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