FIBONACCI AND LUCAS NUMBERS AS TRIDIAGONAL MATRIX DETERMINANTS

Nathan D. Cahill

Eastman Kodak Company, 343 State Street, Rochester, NY 14650
e-mail: nathan.cahill@kodak.com

Darren A. Narayan

Department of Mathematics and Statistics, Rochester Institute of Technology
One Lomb Memorial Drive, Rochester, NY 14623
e-mail: dansma@rit.edu
(Submitted October 2001-Final Revision June 2002)

1. INTRODUCTION

There are many known connections between determinants of tridiagonal matrices and the Fibonacci and Lucas numbers. For example, Strang [5, 6] presents a family of tridiagonal matrices given by:

$$
M(n)=\left(\begin{array}{ccccc}
3 & 1 & & & \tag{1}\\
1 & 3 & 1 & & \\
& 1 & 3 & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & 1 & 3
\end{array}\right)
$$

where $\boldsymbol{M}(n)$ is $n \times n$. It is easy to show by induction that the determinants $|\boldsymbol{M}(k)|$ are the Fibonacci numbers $F_{2 k+2}$. Another example is the family of tridiagonal matrices given by:

$$
\boldsymbol{H}(n)=\left(\begin{array}{ccccc}
1 & i & & & \tag{2}\\
i & 1 & i & & \\
& i & 1 & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & i & 1
\end{array}\right)
$$

described in [2] and [3] (also in [5], but with 1 and -1 on the off-diagonals, instead of i). The determinants $|\boldsymbol{H}(k)|$ are all the Fibonacci numbers F_{k}, starting with $k=2$. In a similar family of matrices [1], the (1,1) element of $\boldsymbol{H}(n)$ is replaced with a 3 . The determinants now generate the Lucas sequence L_{k}, starting with $k=2$ (the Lucas sequence is defined by the second order recurrence $L_{1}=1, L_{2}=3, L_{k+1}=L_{k}+L_{k-1}, k \geq 2$).

In this article, we extend these results to construct families of tridiagonal matrices whose determinants generate any arbitrary linear subsequence $F_{\alpha k+\beta}$ or $L_{\alpha k+\beta}, k=1,2, \ldots$ of the Fibonacci or Lucas numbers. We then choose a specific linear subsequence of the Fibonacci numbers and use it to derive the following factorization:

$$
\begin{equation*}
F_{2 m n}=F_{2 m} \prod_{k=1}^{n-1}\left(L_{2 m}-2 \cos \frac{\pi k}{n}\right) \tag{3}
\end{equation*}
$$

This factorization is a generalization of one of the factorizations presented in [3]:

$$
F_{2 n}=\prod_{k=1}^{n-1}\left(3-2 \cos \frac{\pi k}{n}\right)
$$

In order to develop these results, we must first present a theorem describing the sequence of determinants for a general tridiagonal matrix. Let $A(k)$ be a family of tridiagonal matrices, where

$$
A(k)=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & & & \\
a_{2,1} & a_{2,2} & a_{2,3} & & \\
& a_{3,2} & a_{3,3} & \ddots & \\
& & \ddots & \ddots & a_{k-1, k} \\
& & & a_{k, k-1} & a_{k, k}
\end{array}\right)
$$

Theorem 1: The determinants $|A(k)|$ can be described by the following recurrence relation:

$$
\begin{aligned}
& |A(1)|=a_{1,1} \\
& |A(2)|=a_{2,2} a_{1,1}-a_{2,1} a_{1,2} \\
& |A(k)|=a_{k, k}|A(k-1)|-a_{k, k-1} a_{k-1, k}|A(k-2)|, \quad k \geq 3 .
\end{aligned}
$$

Proof: The cases $k=1$ and $k=2$ are clear. Now

$$
|A(k)|=\operatorname{det}\left(\begin{array}{cccccc}
a_{1,1} & a_{1,2} & & & & \\
a_{2,1} & a_{2,2} & \ddots & & \\
& \ddots & \ddots & a_{k-3, k-2} & & \\
& & a_{k-2, k-3} & a_{k-2, k-2} & a_{k-2, k-1} & \\
& & & a_{k-1, k-2} & a_{k-1, k-1} & a_{k-1, k} \\
& & & & a_{k, k-1} & a_{k, k}
\end{array}\right)
$$

By cofactor expansion on the last column and then the last row,

$$
\begin{aligned}
|A(k)| & =a_{k, k}|A(k-1)|-a_{k-1, k} \operatorname{det}\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & & & \\
a_{2,1} & a_{2,2} & \ddots & & \\
& \ddots & \ddots & a_{k-3, k-2} & \\
& & a_{k-2, k-3} & a_{k-2, k-2} & a_{k-2, k-1} \\
& & & 0 & a_{k, k-1}
\end{array}\right) \\
& =a_{k, k}|A(k-1)|-a_{k-1, k} a_{k, k-1}|A(k-2)| .
\end{aligned}
$$

2. FIBONACCI SUBSEQUENCES

Using Theorem 1, we can generalize the families of tridiagonal matrices given by (1) and (2) to construct, for every linear subsequence of Fibonacci numbers, a family of tridiagonal matrices whose successive determinants are given by that subsequence.

Theorem 2: The symmetric tridiagonal family of matrices $M_{\alpha, \beta}(k), k=1,2, \ldots$ whose elements are given by:

$$
\begin{aligned}
m_{1,1} & =F_{\alpha+\beta}, m_{2,2}=\left\lceil\frac{F_{2 \alpha+\beta}}{F_{\alpha+\beta}}\right\rceil \\
m_{j, j} & =L_{\alpha}, 3 \leq j \leq k \\
m_{1,2} & =m_{2,1}=\sqrt{m_{2,2} F_{\alpha+\beta}-F_{2 \alpha+\beta}} \\
m_{j, j+1} & =m_{j+1, j}=\sqrt{(-1)^{\alpha}}, 2 \leq j<k,
\end{aligned}
$$

with $\alpha \in Z^{+}$and $\beta \in N$, has successive determinants $\left|M_{\alpha, \beta}(k)\right|=F_{\alpha k+\beta}$.
In order to prove Theorem 2, we must first present the following lemma:
Lemma 1: $F_{k+n}=L_{n} F_{k}+(-1)^{n+1} F_{k-n}$ for $n \geq 1$.
Proof: We use the second principle of finite induction on n to prove this lemma:
Let $n=1$. Then the lemma yields $F_{k+1}=F_{k}+F_{k-1}$, which defines the Fibonacci sequence. Now assume that $F_{k+n}=L_{n} F_{k}+(-1)^{n+1} F_{k-n}$ for $n \leq N$. Then

$$
\begin{aligned}
F_{k+N+1} & =F_{k+N}+F_{k+N-1} \\
& =L_{N} F_{k}+(-1)^{N+1} F_{k-N}+L_{N-1} F_{k}+(-1)^{N} F_{k-N+1} \\
& =\left(L_{N}+L_{N-1}\right) F_{k}+(-1)^{N+2}\left(F_{k-N+1}-F_{k-N}\right) \\
& =L_{N+1} F_{k}+(-1)^{N+2} F_{k-(N+1)} .
\end{aligned}
$$

Now, using Theorem 1 and Lemma 1, we can prove Theorem 2.
Proof of Theorem 2: We use the second principle of finite induction on k to prove this theorem:

$$
\begin{aligned}
& \left|M_{\alpha, \beta}(1)\right|=\operatorname{det} F_{\alpha+\beta}=F_{\alpha+\beta} \\
& \left|M_{\alpha, \beta}(2)\right|=\operatorname{det}\left(\begin{array}{cc}
F_{\alpha+\beta} & \sqrt{m_{2,2} F_{\alpha+\beta}-F_{2 \alpha+\beta}} \\
\sqrt{m_{2,2} F_{\alpha+\beta}-F_{2 \alpha+\beta}} & \left\lceil\frac{\left.F_{2 \alpha+\beta}\right\rceil}{F_{\alpha+\beta}}\right\rceil
\end{array}\right)=F_{2 \alpha+\beta}
\end{aligned}
$$

Now assume that $\left|M_{\alpha, \beta}(k)\right|=F_{\alpha k+\beta}$ for $1 \leq k \leq N$. Then by Theorem 1,

$$
\begin{aligned}
\left|M_{\alpha, \beta}(k+1)\right| & =m_{k, k}\left|M_{\alpha, \beta}(k)\right|-m_{k, k-1} m_{k-1, k}\left|M_{\alpha, \beta}(k-1)\right| \\
& =L_{\alpha}\left|M_{\alpha, \beta}(k)\right|-(-1)^{\alpha}\left|M_{\alpha, \beta}(k-1)\right| \\
& =L_{\alpha} F_{\alpha k+\beta}+(-1)^{\alpha+1} F_{\alpha(k-1)+\beta} \\
& =F_{\alpha+\alpha k+\beta} \quad(\text { by Lemma } 1) \\
& =F_{\alpha(k+1)+\beta} \quad \square
\end{aligned}
$$

Another family of matrices that satisfies Theorem 2 can be found by choosing the negative root for all of the super-diagonal and sub-diagonal entries. With Theorem 2, we can
now construct a family of tridiagonal matrices whose successive determinants form any linear subsequence of the Fibonacci numbers. For example, the determinants of:

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
1 & 0 & & & & \\
0 & 8 & 1 & & & \\
& 1 & 7 & 1 & & \\
& & 1 & 7 & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & 7
\end{array}\right),\left(\begin{array}{cccccc}
8 & \sqrt{6} & & & & \\
\sqrt{6} & 5 & i & & & \\
& i & 4 & i & & \\
& & i & 4 & \ddots & \\
& & & \ddots & \ddots & i \\
& & & & i & 4
\end{array}\right), \\
& \text { and }\left(\begin{array}{cccccc}
13 & -\sqrt{5} & & & & \\
-\sqrt{5} & 3 & -1 & & & \\
& -1 & 3 & -1 & & \\
& & -1 & 3 & \ddots & \\
& & & \ddots & \ddots & -1 \\
& & & & -1 & 3
\end{array}\right)
\end{aligned}
$$

are given by the Fibonacci subsequences $F_{4 k-2}, F_{3 k+3}$ and $F_{2 k+5}$.

3. LUCAS SUBSEQUENCES

We can also generalize the families of tridiagonal matrices given by (1) and (2) to show a similar result for linear subsequences of Lucas numbers. We state this result as the following theorem:

Theorem 3: The symmetric tridiagonal family of matrices $T_{\alpha, \beta}(k), k=1,2, \ldots$ whose elements are given by:

$$
\begin{aligned}
t_{1,1} & =L_{\alpha+\beta}, t_{2,2}=\left\lceil\frac{L_{2 \alpha+\beta}}{L_{\alpha+\beta}}\right\rceil \\
t_{j, j} & =L_{\alpha}, 3 \leq j \leq k \\
t_{1,2} & =t_{2,1}=\sqrt{t_{2,2} L_{\alpha+\beta}-L_{2 \alpha+\beta}} \\
t_{j, j+1} & =t_{j+1, j}=\sqrt{(-1)^{\alpha}}, 2 \leq j<k,
\end{aligned}
$$

with $\alpha \in Z^{+}$and $\beta \in N$, has successive determinants $\left|T_{\alpha, \beta}(k)\right|=L_{\alpha k+\beta}$.
Again we begin with a lemma; its proof imitates the proof of Lemma 1.
Lemma 2: $L_{k+n}=L_{n} L_{k}+(-1)^{n+1} L_{k-n}$ for $n \geq 1$.
Proof of Theorem 3: We use induction:

$$
\begin{aligned}
\left|T_{\alpha, \beta}(1)\right| & =\operatorname{det} L_{\alpha+\beta}=L_{\alpha+\beta} . \\
\left|T_{\alpha, \beta}(2)\right| & =\operatorname{det}\left(\begin{array}{cc}
L_{\alpha+\beta} & \sqrt{m_{2,2} L_{\alpha+\beta}-L_{2 \alpha+\beta}} \\
\sqrt{m_{2,2} L_{\alpha+\beta}-L_{2 \alpha+\beta}} & \left\lceil\frac{L_{2 \alpha+\beta}}{\left.L_{\alpha+\beta}\right\rceil}\right.
\end{array}\right)=L_{2 \alpha+\beta} .
\end{aligned}
$$

Now assume that $\left|T_{\alpha, \beta}(k)\right|=L_{\alpha k+\beta}$ for $1 \leq k \leq N$. Then by Theorem 1,

$$
\begin{aligned}
\left|T_{\alpha, \beta}(k+1)\right| & =t_{k, k}\left|T_{\alpha, \beta}(k)\right|-t_{k, k-1} t_{k-1, k}\left|T_{\alpha, \beta}(k-1)\right| \\
& =L_{\alpha}\left|T_{\alpha, \beta}(k)\right|-(-1)^{\alpha}\left|T_{\alpha, \beta}(k-1)\right| \\
& =L_{\alpha} L_{\alpha k+\beta}+(-1)^{\alpha+1} L_{\alpha(k-1)+\beta} \\
& =L_{\alpha+\alpha k+\beta} \quad(\text { by Lemma 2) } \\
& =L_{\alpha(k+1)+\beta} \quad \square
\end{aligned}
$$

With Theorem 3, we can now construct a family of tridiagonal matrices whose successive determinants form any linear subsequence of the Lucas numbers. For example, the determinants of:

$$
\begin{gathered}
\left(\begin{array}{cccccc}
3 & 0 & & & & \\
0 & 6 & -1 & & & \\
& -1 & 7 & -1 & & \\
& & -1 & 7 & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 7
\end{array}\right),\left(\begin{array}{cccccc}
18 & \sqrt{14} & & & & \\
\sqrt{14} & 5 & i & & & \\
& i & 4 & i & & \\
& & i & 4 & \ddots & \\
& & & \ddots & \ddots & i \\
& & & & i & 4
\end{array}\right) \\
\quad \text { and }\left(\begin{array}{cccccc}
29 & \sqrt{11} & & & & \\
\sqrt{11} & 3 & 1 & & & \\
& 1 & 3 & 1 & & \\
& & 1 & 3 & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & 3
\end{array}\right)
\end{gathered}
$$

are given by the Lucas subsequences $L_{4 k-2}, L_{3 k+3}$ and $L_{2 k+5}$.

4. A FACTORIZATION OF THE FIBONACCI NUMBERS

In order to derive the factorization (3) given by $F_{2 m n}=F_{2 m} \prod_{k=1}^{n-1}\left(L_{2 m}-2 \cos \frac{\pi k}{n}\right)$, we consider the symmetric tridiagonal matrices:

$$
B_{m}(n)=\left(\begin{array}{cccccc}
L_{2 m} F_{2 m} & \sqrt{F_{2 m}} & & & & \\
\sqrt{F_{2 m}} & L_{2 m} & 1 & & & \\
& 1 & L_{2 m} & 1 & & \\
& & 1 & L_{2 m} & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & L_{2 m}
\end{array}\right)
$$

By Lemma 1, $F_{4 m}=L_{2 m} F_{2 m}$, and $\left\lceil F_{6 m} / F_{4 m}\right\rceil=\left\lceil L_{2 m}-\left(F_{2 m} / F_{4 m}\right)\right\rceil=L_{2 m}$. Furthermore, $\sqrt{\left\lceil F_{6 m} / F_{4 m}\right\rceil F_{4 m}-F_{6 m}}=\sqrt{L_{2 m} F_{4 m}-F_{6 m}}=\sqrt{F_{2 m}}$, so $B_{m}(n)=M_{2 m, 2 m}(n)$ is a specific
instance of the tridiagonal family of matrices described in Theorem 2. Therefore, by Theorem $2,\left|B_{m}(n)\right|=F_{2 m(n+1)}$.

By using the property of determinants that $|A B|=|A \| B|$, and by defining \boldsymbol{e}_{j} to be the $j^{\text {th }}$ column of $n \times n$ identity matrix \boldsymbol{I}, we have $\left|B_{m}(n)\right|=F_{2 m}\left|C_{m}(n)\right|$, where:

$$
C_{m}(n)=\left(\boldsymbol{I}+\left(\frac{1}{F_{2 m}}-1\right) \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}\right) B_{m}(n) .
$$

The determinant is the product of the eigenvalues. Therefore, let $\lambda_{k}, k=1,2, \ldots, n$ be the eigenvalues of $C_{m}(n)$ (with associated eigenvectors \boldsymbol{x}_{k}), so $\left|C_{m}(n)\right|=\prod_{k=1}^{n} \lambda_{k}$. Let$\operatorname{ting} G_{m}(n)=C_{m}(n)-L_{2 m} \boldsymbol{I}$, we see that $G_{m}(n) \boldsymbol{x}_{k}=C_{m}(n) \boldsymbol{x}_{k}-L_{2 m} \boldsymbol{I} \boldsymbol{x}_{k}=\lambda_{k} \boldsymbol{x}_{k}-L_{2 m} \boldsymbol{x}_{k}=$ $\left(\lambda_{k}-L_{2 m}\right) \boldsymbol{x}_{k}$. Then $\gamma_{k}=\lambda_{k}-L_{2 m}$ are the eigenvalues of $G_{m}(n)$.

An eigenvalue γ of $G_{m}(n)$ is a root of the characteristic polynomial $\left|G_{m}(n)-\gamma \boldsymbol{I}\right|=0$. Note that $\left|G_{m}(n)-\gamma \boldsymbol{I}\right|=\left|\left(\boldsymbol{I}+\left(\sqrt{F_{2 m}}-1\right) \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}\right)\left(G_{m}(n)-\gamma \boldsymbol{I}\right)\left(\boldsymbol{I}+\left(1 / \sqrt{F_{2 m}}-1\right) \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}\right)\right|$, so γ is also a root of the polynomial:

$$
\left|\begin{array}{cccccc}
-\gamma & 1 & & & & \\
1 & -\gamma & 1 & & & \\
& 1 & -\gamma & 1 & & \\
& & 1 & -\gamma & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & -\gamma
\end{array}\right|=0
$$

This polynomial is a transformed Chebyshev polynomial of the second kind [4], with roots $\gamma_{k}=-2 \cos \frac{\pi k}{n+1}$. Therefore,

$$
F_{2 m(n+1)}=\left|B_{m}(n)\right|=F_{2 m}\left|C_{m}(n)\right|=F_{2 m} \prod_{k=1}^{n} \lambda_{k}=F_{2 m} \prod_{k=1}^{n}\left(L_{2 m}-2 \cos \frac{\pi k}{n+1}\right) .
$$

(3) follows by a simple change of variables.

REFERENCES

[1] P.F. Byrd. Problem B-12: A Lucas Determinant. The Fibonacci Quarterly 1.4 (1963): 78.
[2] N.D. Cahill, J.R. D'Errico, D.A. Narayan and J.Y. Narayan. "Fibonacci Determinants." College Mathematics Journal 3.3 (2002): 221-225
[3] N.D. Cahill, J.R. D'Errico and J.P. Spence. "Complex Factorizations of the Fibonacci and Lucas Numbers." The Fibonacci Quarterly 41.1 (2003): 13-19.
[4] T. Rivlin. Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. 2nd Edition, John Wiley \& Sons, Inc., 1990.
[5] G. Strang. Introduction to Linear Algebra. 2nd Edition, Wellesley MA, WellesleyCambridge, 1998.
[6] G. Strang and K. Borre. Linear Algebra, Geodesy and GPS. Wellesley MA, WellesleyCambridge, 1997, pp. 555-557.

AMS Classification Numbers: 11B39, 11C20

