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1. INTRODUCTION

There are many known connections between determinants of tridiagonal matrices and the
Fibonacci and Lucas numbers. For example, Strang [5, 6] presents a family of tridiagonal
matrices given by:

M(n) =


3 1
1 3 1

1 3
. . .

. . . . . . 1
1 3

 , (1)

where M(n) is n × n. It is easy to show by induction that the determinants |M(k)| are the
Fibonacci numbers F2k+2. Another example is the family of tridiagonal matrices given by:

H(n) =


1 i
i 1 i

i 1
. . .

. . . . . . 1
i 1

 , (2)

described in [2] and [3] (also in [5], but with 1 and -1 on the off-diagonals, instead of i). The
determinants |H(k)| are all the Fibonacci numbers Fk, starting with k = 2. In a similar family
of matrices [1], the (1,1) element of H(n) is replaced with a 3. The determinants now generate
the Lucas sequence Lk, starting with k = 2 (the Lucas sequence is defined by the second order
recurrence L1 = 1, L2 = 3, Lk+1 = Lk + Lk−1, k ≥ 2).

In this article, we extend these results to construct families of tridiagonal matrices whose
determinants generate any arbitrary linear subsequence Fαk+β or Lαk+β , k = 1, 2, . . . of the
Fibonacci or Lucas numbers. We then choose a specific linear subsequence of the Fibonacci
numbers and use it to derive the following factorization:

F2mn = F2m

n−1∏
k=1

(
L2m − 2cos

πk

n

)
. (3)
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This factorization is a generalization of one of the factorizations presented in [3]:

F2n =
n−1∏
k=1

(
3− 2cos

πk

n

)
.

In order to develop these results, we must first present a theorem describing the sequence of
determinants for a general tridiagonal matrix. Let A(k) be a family of tridiagonal matrices,
where

A(k) =



a1,1 a1,2

a2,1 a2,2 a2,3

a3,2 a3,3
. . .

. . . . . . ak−1,k

ak,k−1 ak,k

 .

Theorem 1: The determinants |A(k)| can be described by the following recurrence relation:
|A(1)| = a1,1

|A(2)| = a2,2a1,1 − a2,1a1,2

|A(k)| = ak,k|A(k − 1)| − ak,k−1ak−1,k|A(k − 2)|, k ≥ 3.

Proof: The cases k = 1 and k = 2 are clear. Now

|A(k)| = det



a1,1 a1,2

a2,1 a2,2
. . .

. . . . . . ak−3,k−2

ak−2,k−3 ak−2,k−2 ak−2,k−1

ak−1,k−2 ak−1,k−1 ak−1,k

ak,k−1 ak,k


.

By cofactor expansion on the last column and then the last row,

|A(k)| = ak,k|A(k − 1)| − ak−1,k det



a1,1 a1,2

a2,1 a2,2
. . .

. . . . . . ak−3,k−2

ak−2,k−3 ak−2,k−2 ak−2,k−1

0 ak,k−1


= ak,k|A(k − 1)| − ak−1,kak,k−1|A(k − 2)|.

2. FIBONACCI SUBSEQUENCES

Using Theorem 1, we can generalize the families of tridiagonal matrices given by (1) and
(2) to construct, for every linear subsequence of Fibonacci numbers, a family of tridiagonal
matrices whose successive determinants are given by that subsequence.
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Theorem 2: The symmetric tridiagonal family of matrices Mα,β(k), k = 1, 2, . . . whose ele-
ments are given by:

m1,1 = Fα+β , m2,2 = dF2α+β

Fα+β
e

mj,j = Lα, 3 ≤ j ≤ k,

m1,2 = m2,1 =
√
m2,2Fα+β − F2α+β

mj,j+1 = mj+1,j =
√

(−1)α, 2 ≤ j < k,

with α ∈ Z+ and β ∈ N , has successive determinants |Mα,β(k)| = Fαk+β .
In order to prove Theorem 2, we must first present the following lemma:

Lemma 1: Fk+n = LnFk + (−1)n+1Fk−n for n ≥ 1.
Proof: We use the second principle of finite induction on n to prove this lemma:
Let n = 1. Then the lemma yields Fk+1 = Fk + Fk−1, which defines the Fibonacci

sequence. Now assume that Fk+n = LnFk + (−1)n+1Fk−n for n ≤ N . Then

Fk+N+1 = Fk+N + Fk+N−1

= LNFk + (−1)N+1Fk−N + LN−1Fk + (−1)NFk−N+1

= (LN + LN−1)Fk + (−1)N+2(Fk−N+1 − Fk−N )
= LN+1Fk + (−1)N+2Fk−(N+1).

Now, using Theorem 1 and Lemma 1, we can prove Theorem 2.
Proof of Theorem 2: We use the second principle of finite induction on k to prove this

theorem:

|Mα,β(1)| = detFα+β = Fα+β

|Mα,β(2)| = det
(

Fα+β

√
m2,2Fα+β − F2α+β√

m2,2Fα+β − F2α+β dF2α+β

Fα+β
e

)
= F2α+β .

Now assume that |Mα,β(k)| = Fαk+β for 1 ≤ k ≤ N . Then by Theorem 1,

|Mα,β(k + 1)| = mk,k|Mα,β(k)| −mk,k−1mk−1,k|Mα,β(k − 1)|
= Lα|Mα,β(k)| − (−1)α|Mα,β(k − 1)|
= LαFαk+β + (−1)α+1Fα(k−1)+β

= Fα+αk+β (by Lemma 1)
= Fα(k+1)+β

Another family of matrices that satisfies Theorem 2 can be found by choosing the neg-
ative root for all of the super-diagonal and sub-diagonal entries. With Theorem 2, we can
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now construct a family of tridiagonal matrices whose successive determinants form any linear
subsequence of the Fibonacci numbers. For example, the determinants of:

1 0
0 8 1

1 7 1

1 7
. . .

. . . . . . 1
1 7


,



8
√

6√
6 5 i

i 4 i

i 4
. . .

. . . . . . i
i 4


,

and



13 −
√

5
−
√

5 3 −1
−1 3 −1

−1 3
. . .

. . . . . . −1
−1 3


are given by the Fibonacci subsequences F4k−2, F3k+3 and F2k+5.

3. LUCAS SUBSEQUENCES

We can also generalize the families of tridiagonal matrices given by (1) and (2) to show a
similar result for linear subsequences of Lucas numbers. We state this result as the following
theorem:
Theorem 3: The symmetric tridiagonal family of matrices Tα,β(k), k = 1, 2, . . . whose ele-
ments are given by:

t1,1 = Lα+β , t2,2 = dL2α+β

Lα+β
e

tj,j = Lα, 3 ≤ j ≤ k,

t1,2 = t2,1 =
√
t2,2Lα+β − L2α+β

tj,j+1 = tj+1,j =
√

(−1)α, 2 ≤ j < k,

with α ∈ Z+ and β ∈ N , has successive determinants |Tα,β(k)| = Lαk+β .
Again we begin with a lemma; its proof imitates the proof of Lemma 1.

Lemma 2: Lk+n = LnLk + (−1)n+1Lk−n for n ≥ 1.
Proof of Theorem 3: We use induction:

|Tα,β(1)| = detLα+β = Lα+β ·

|Tα,β(2)| = det
(

Lα+β

√
m2,2Lα+β − L2α+β√

m2,2Lα+β − L2α+β dL2α+β

Lα+β
e

)
= L2α+β .
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Now assume that |Tα,β(k)| = Lαk+β for 1 ≤ k ≤ N . Then by Theorem 1,

|Tα,β(k + 1)| = tk,k|Tα,β(k)| − tk,k−1tk−1,k|Tα,β(k − 1)|
= Lα|Tα,β(k)| − (−1)α|Tα,β(k − 1)|
= LαLαk+β + (−1)α+1Lα(k−1)+β

= Lα+αk+β (by Lemma 2)
= Lα(k+1)+β

With Theorem 3, we can now construct a family of tridiagonal matrices whose successive
determinants form any linear subsequence of the Lucas numbers. For example, the determi-
nants of:



3 0
0 6 −1
−1 7 −1

−1 7
. . .

. . . . . . −1
−1 7


,



18
√

14√
14 5 i

i 4 i

i 4
. . .

. . . . . . i
i 4


,

and



29
√

11√
11 3 1

1 3 1

1 3
. . .

. . . . . . 1
1 3



are given by the Lucas subsequences L4k−2, L3k+3 and L2k+5.

4. A FACTORIZATION OF THE FIBONACCI NUMBERS

In order to derive the factorization (3) given by F2mn = F2m

∏n−1
k=1

(
L2m − 2 cos πkn

)
, we

consider the symmetric tridiagonal matrices:

Bm(n) =



L2mF2m

√
F2m√

F2m L2m 1
1 L2m 1

1 L2m
. . .

. . . . . . 1
1 L2m


.

By Lemma 1, F4m = L2mF2m, and dF6m/F4me = dL2m − (F2m/F4m)e = L2m. Furthermore,√
dF6m/F4meF4m − F6m =

√
L2mF4m − F6m =

√
F2m, so Bm(n) = M2m,2m(n) is a specific
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instance of the tridiagonal family of matrices described in Theorem 2. Therefore, by Theorem
2, |Bm(n)| = F2m(n+1).

By using the property of determinants that |AB| = |A ‖ B|, and by defining ej to be the
jth column of n× n identity matrix I, we have |Bm(n)| = F2m|Cm(n)|, where:

Cm(n) =
(

I +
(

1
F2m

− 1
)

e1e
T
1

)
Bm(n).

The determinant is the product of the eigenvalues. Therefore, let λk, k = 1, 2, . . . , n be
the eigenvalues of Cm(n) (with associated eigenvectors xk), so |Cm(n)| =

∏n
k=1 λk. Let-

ting Gm(n) = Cm(n)−L2mI, we see that Gm(n)xk = Cm(n)xk−L2mIxk = λkxk−L2mxk =
(λk − L2m)xk. Then γk = λk − L2m are the eigenvalues of Gm(n).

An eigenvalue γ of Gm(n) is a root of the characteristic polynomial |Gm(n) − γI| = 0.
Note that |Gm(n)−γI| = |

(
I +

(√
F2m − 1

)
e1e

T
1

)
(Gm(n)− γI)

(
I +

(
1/
√
F2m − 1

)
e1e

T
1

)
|,

so γ is also a root of the polynomial:∣∣∣∣∣∣∣∣∣∣∣∣∣

−γ 1
1 −γ 1

1 −γ 1

1 −γ
. . .

. . . . . . 1
1 −γ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This polynomial is a transformed Chebyshev polynomial of the second kind [4], with roots
γk = −2 cos πk

n+1 . Therefore,

F2m(n+1) = |Bm(n)| = F2m|Cm(n)| = F2m

n∏
k=1

λk = F2m

n∏
k=1

(
L2m − 2 cos

πk

n+ 1

)
.

(3) follows by a simple change of variables.
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