ON DEDEKIND SUMS AND LINEAR RECURRENCES OF ORDER TWO

Neville Robbins

Mathematics Department, San Francisco State University, San Francisco, CA 94132
(Submitted September 2001-Final Revision December 2001)

INTRODUCTION

If h and k are integers such that $(h, k)=1$ and $k>0$, the Dedekind sum $s(h, k)$ is defined by

$$
s(h, k)=\sum_{r=1}^{k} \frac{r}{k}\left(\frac{h r}{k}-\left[\frac{h r}{k}\right]-\frac{1}{2}\right)
$$

(See Apostol [1], p. 61). Theorem 0 below is Exercise 12a, p. 72 of [1].
Theorem 0: $s\left(F_{2 n}, F_{2 n+1}\right)=0$ for all $n \geq 1$.
In this note, we (1) generalize Theorem 0 to somewhat more general linear recurrences of order two, and (2) obtain a theorem concerning Lucas numbers that is analogous to Theorem 0.

PRELIMINARIES

$$
\begin{align*}
& \text { If } h^{\prime} \equiv \pm h(\bmod k), \text { then } s\left(h^{\prime}, k\right)= \pm s(h, k) \tag{1}\\
& \text { If } h^{2}+1 \equiv 0(\bmod k), \text { then } s(h, k)=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
s(h, k)+s(k, h)=\frac{h^{2}+k^{2}+1-3 h k}{12 h k} \tag{3}
\end{equation*}
$$

Let P, Q be integers such that $(P, Q)=1$ and $D=P^{2}+4 Q \neq 0$. Let $\alpha=\frac{P+\sqrt{D}}{2}, \beta=\frac{P-\sqrt{D}}{2}$, so that $\alpha-\beta=P, \alpha \beta=-Q$. Let two linear recurrences of order 2 be defined for $n \geq 0$ by:

$$
\begin{align*}
& u_{0}=0, u_{1}=1, u_{n}=P u_{n-1}+Q u_{n-2} \text { for } n \geq 2 \tag{4}\\
& v_{0}=2, v_{1}=P, v_{n}=P v_{n-1}+Q v_{n-2} \text { for } n \geq 2 \tag{5}
\end{align*}
$$

(In particular, if $P=Q=1$, then $u_{n}=F_{n}$ and $v_{n}=L_{n}$.)
The Binet equation state that:

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, v_{n}=\alpha^{n}+\beta^{n} \tag{6}
\end{equation*}
$$

Some consequences of (6) are:

$$
\begin{gather*}
u_{2 n+1} u_{2 n-1}-u_{2 n}^{2}=Q^{2 n-1} \tag{7}\\
v_{2 n}^{2}-v_{2 n+1} v_{2 n-1}=D Q^{2 n-1} \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
F_{2 n} L_{2 n-1}-F_{2 n-2} L_{2 n+1}=1 \tag{9}
\end{equation*}
$$

Remarks: (1), (2), (3) are well-known properties of Dedekind sums. (See [1], p. 62.) (4) through (8) are well-known properties of linear recurrences of order 2. (See [2], p. 193-194). (9) can be proved via (6) or by induction on n.

THE MAIN RESULTS

Theorem 1: Let $\left\{u_{n}\right\}$ be a linear recurrence of order 2 (as in (4) above) with $Q=1$. Then $s\left(u_{2 n}, u_{2 n+1}\right)=0$.

Proof: Applying (7) and the hypothesis, we get $u_{2 n}^{2} \equiv-1\left(\bmod u_{2 n+1}\right)$. The conclusion now follows from (2).

Theorem 2:

$$
s\left(L_{2 n}, L_{2 n+1}\right)=-\frac{F_{2 n}}{L_{2 n+1}}
$$

Proof: Since $L_{2 n}=L_{2 n+1}-L_{2 n-1}$, it suffices (by (1)) to prove that

$$
s\left(L_{2 n-1}, L_{2 n+1}\right)=\frac{F_{2 n}}{L_{2 n+1}}
$$

We use induction on n. The theorem holds for $n=1$, since

$$
s\left(L_{1}, L_{3}\right)=s(1,4)=\frac{1}{8}=\frac{F_{2}}{2 L_{3}}
$$

(3) implies

$$
s\left(L_{2 n-1}, L_{2 n+1}\right)+s\left(L_{2 n+1}, L_{2 n-1}\right)=\frac{L_{2 n+1}^{2} 2+L_{2 n-1}^{2}-3 L_{2 n+1} L_{2 n-1}+1}{12 L_{2 n+1} L_{2 n-1}}
$$

(1) and (5) imply

$$
s\left(L_{2 n+1}, L_{2 n-1}\right)=s\left(L_{2 n-2}, L_{2 n-1}\right)=-s\left(L_{2 n-3}, L_{2 n-1}\right)=\frac{F_{2 n-2}}{2 L_{2 n-1}}
$$

by induction hypothesis. Furthermore, by (5) and (8), we have

$$
L_{2 n+1}^{2}+L_{2 n-1}^{2}-3 L_{2 n+1} L_{2 n-1}=L_{2 n}^{2}-L_{2 n-1} L_{2 n+1}=5
$$

Therefore it suffices to show that

$$
\frac{1}{2 L_{2 n-1} L_{2 n+1}}+\frac{F_{2 n-2}}{2 L_{2 n-1} L_{2 n+1}}=\frac{F_{2 n}}{2 L_{2 n+1}} .
$$

But the last identity follows from (9), so we are done.

ON DEDEKIND SUMS AND LINEAR RECURRENCES OF ORDER TWO

REFERENCES

[1] T. Apostol. Moduluar Functions and Dirichlet Series in Number Theory. 2nd Ed. (1989), Springer-Verlag.
[2] N. Robbins. Beginning Number Theory. (1993) Wm. C. Brown Publishers, Dubuque, IA.
AMS Classification Numbers: 11B39, 11F20

豈必

