ON SOME IDENTITIES INVOLVING
 THE CHEBYSHEV POLYNOMIALS

Zhizheng Zhang

Department of Mathematics, Luoyang Teachers' College, Luoyang, 471022, P. R. China

Jun Wang

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China (Submitted November 2001- Final Revision November 2002)

1. INTRODUCTION

In [3], Melham considered sequences $\left\{U_{n}\right\}_{n=0}^{\infty}$ and $\left\{V_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{array}{lll}
U_{n}=p U_{n-1}-U_{n-2}, & U_{0}=0, & U_{1}=1, \\
V_{n}=p V_{n-1}-V_{n-2}, & V_{0}=2, & V_{1}=p,
\end{array}
$$

where $p \geq 2$. If $p=2$, then $U_{n}=n$ and $V_{n}=2$ for all $n \geq 0$. For $p>2$, if α and β, assumed distinct, are the roots of $x^{2}-p x+1=0$, the Binet's formula are

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}=\alpha^{n}+\beta^{n}
$$

It was remarked in [2] by Grabner and Prodinger that up to simple changes of variable these polynomials are Chebyshev polynomials, that is

$$
\begin{gathered}
U_{n}(p)=\mathcal{U}_{n-1}\left(\frac{p}{2}\right) \\
V_{n}(p)=2 \mathcal{T}_{n}\left(\frac{p}{2}\right)
\end{gathered}
$$

where \mathcal{T}_{n} and \mathcal{U}_{n} denote the classical Chebyshev polynomials of the first and second kind, respectively. Throughout this paper, let s be an arbitrary positive integer. Let $W_{n}(a, b)=$ $a U_{n}+b V_{n}$ and

$$
\begin{equation*}
W_{n}^{2 k}(a, b)+W_{n+s}^{2 k}(a, b)=\sum_{r=0}^{k} A_{r}(a, b ; k, s) W_{n}^{k-r}(a, b) W_{n+s}^{k-r}(a, b) . \tag{1}
\end{equation*}
$$

Melham [3] conjectured that $A_{r}(1,0 ; k, 1)=\frac{\mathcal{D}^{r} V_{k}}{r!}$, where \mathcal{D} means differentiation with respect to p. This conjecture was proved in [2] by Grabner and Prodinger in a more general setting that contains Melham's conjecture as a special case. Let $\Omega=a^{2}+4 b^{2}-b^{2} p^{2}$. Grabner and Prodinger obtained that

$$
A_{r}(a, b ; k, 1)=\Omega^{r} \sum_{0 \leq 2 j \leq k-r}(-1)^{j} \frac{k(k-1-j)!}{r!j!(k-r-2 j)!} p^{k-r-2 j}
$$

and $A_{0}(a, b ; 0,1)=2$. Furthermore, Grabner and Prodinger also obtained that

$$
\begin{aligned}
A_{r}(a, b ; k, 2) & =\Omega^{r} \sum_{0 \leq \lambda \leq k-r} \\
& (-1)^{\lambda} p^{2 k-2 \lambda} \frac{k\left(k-\left\lfloor\frac{\lambda}{2}\right\rfloor-1\right)!2^{\left\lceil\frac{\lambda}{2}\right\rceil}}{r!\lambda!(k-r-\lambda)!} \prod_{i=0}^{\left\lfloor\frac{\lambda}{2}\right\rfloor-1}\left(2 k-2\left\lceil\frac{\lambda}{2}\right\rceil-1-2 i\right)
\end{aligned}
$$

and $A_{0}(a, b ; 0,2)=2$.
In this note, we obtain some identities involving the Chebyshev polynomials. This generalizes Melham's and Grabner and Prodinger's results.

2. MAIN THEOREMS AND THEIR PROOFS

Lemma 2.1:

$$
\begin{gather*}
A_{r}(a, b ; k+1, s)=V_{s} A_{r}(a, b ; k, s)+\Omega U_{s}^{2} A_{r-1}(a, b ; k, s)-A_{r}(a, b ; k-1, s) \tag{2}\\
A_{r}(a, b ; k, s)=0, \text { for } r>k \text { or } r<0 \text { or } k<0 \tag{3}\\
A_{0}(a, b ; 0, s)=2, A_{0}(a, b ; 1, s)=V_{s}, A_{1}(a, b ; 1, s)=\Omega U_{s}^{2} \tag{4}\\
A_{0}(a, b ; k, s)=V_{k s}(k \geq 0) \tag{5}
\end{gather*}
$$

Proof: Obviously, (3) and $A_{0}(a, b ; 0, s)=2$ hold. Using the Binet's formula of U_{n} and V_{n} we have

$$
\begin{equation*}
W_{n}^{2}(a, b)+W_{n+s}^{2}(a, b)=V_{s} W_{n}(a, b) W_{n+s}(a, b)+\Omega U_{s}^{2} . \tag{6}
\end{equation*}
$$

¿From (6), $A_{0}(a, b ; 1, s)=V_{s}$ and $A_{1}(a, b ; 1, s)=\Omega_{s}$ hold immediately. Noting that

$$
\begin{aligned}
W_{n}^{2(k+1)}(a, b)+W_{n+s}^{2(k+1)}(a, b)= & \left(W_{n}^{2}(a, b)+W_{n+s}^{2}(a, b)\right)\left(W_{n}^{2 k}(a, b)+W_{n+s}^{2 k}(a, b)\right) \\
& -W_{n}^{2}(a, b) W_{n+s}^{2}(a, b)\left(W_{n}^{2(k-1)}(a, b)+W_{n+s}^{2(k-1)}(a, b)\right)
\end{aligned}
$$

and applying (6) we have

$$
\begin{aligned}
& \sum_{r=0}^{k+1} A_{r}(a, b ; k+1, s) W_{n}^{k+1-r}(a, b) W_{n+s}^{k+1-r}(a, b) \\
& \quad=\left(V_{s} W_{n}(a, b) W_{n+s}(a, b)+\Omega U_{s}^{2}\right)\left(\sum_{r=0}^{k} A_{r}(a, b ; k, s) W_{n}^{k-r}(a, b) W_{n+s}^{k-r}(a, b)\right) \\
& \quad-W_{n}^{2}(a, b) W_{n+s}^{2}(a, b) \sum_{r=0}^{k-1} A_{r}(a, b ; k-1, s) W_{n}^{k-1-r}(a, b) W_{n+s}^{k-1-r}(a, b) .
\end{aligned}
$$

Comparing the coefficients of $W_{n}^{k+1-r}(a, b) W_{n+s}^{k+1-r}(a, b)$ yields (2) and $A_{0}(a, b ; k+1, s)=$ $V_{s} A_{0}(a, b ; k, s)-A_{0}(a, b ; k-1, s)$. Solving this recurrence relation we obtain $A_{0}(a, b ; k, s)=V_{k s}$.

Theorem 2.2:

$$
\begin{equation*}
A_{r}(a, b ; k, s)=\Omega^{r} U_{s}^{2 r}\left(\left[x^{k-r}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}-\left[x^{k-r-2}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}\right) \tag{7}
\end{equation*}
$$

where $\left[x^{k}\right] f(x)$ denotes the coefficient of x^{k} in $f(x)$.
Proof: Let $f(x, y)=\sum_{k \geq 0, r \geq 0} A_{r}(a, b ; k, s) x^{k} y^{r}$. Summing Lemma 2.1, we have

$$
\begin{aligned}
& \sum_{k \geq 1, r \geq 0} A_{r}(a, b ; k, s) x^{k+1} y^{r}=\sum_{k \geq 1, r \geq 0} A_{r}(a, b ; k, s) x^{k+1} y^{r} \\
&+\sum_{k \geq 1, r \geq 1} \Omega U_{s}^{2} A_{r-1}(a, b ; k, s) x^{k+1} y^{r}-\sum_{k \geq 1, r \geq 0} A_{r}(a, b ; k-1, s) x^{k+1} y^{r},
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\sum_{k \geq 2, r \geq 0} A_{r}(a, b ; k, s) x^{k} y^{r}= & x V_{s} \sum_{k \geq 1, r \geq 0} A_{r}(a, b ; k, s) x^{k} y^{r} \\
& +x y \Omega U_{s}^{2} \sum_{k \geq 1, r \geq 0} A_{r}(a, b ; k, s) x^{k} y^{r}-x^{2} \sum_{k \geq 0, r \geq 0} A_{r}(a, b ; k, s) x^{k} y^{r},
\end{aligned}
$$

that is

$$
f(x, y)-2-x\left(V_{s}+\Omega U_{s}^{2} y\right)=x V_{s}(f(x, y)-2)+x y \Omega U_{s}^{2}(f(x, y)-2)-x^{2} f(x, y) .
$$

Hence we have

$$
\begin{aligned}
f(x, y) & =\frac{2-V_{s} x-\Omega U_{s}^{2} x y}{1-V_{s} x-\Omega U_{s}^{2} x y+x^{2}} \\
& =1+\frac{1-x^{2}}{1-V_{s} x-\Omega U_{s}^{2} x y+x^{2}} \\
& =1+\frac{1-x^{2}}{1-V_{s} x+x^{2}} \frac{1}{1-y \frac{\Omega U_{s}^{2} x}{1-V_{s} x+x^{2}}} .
\end{aligned}
$$

Comparing the coefficient of $y^{r}(r \geq 1)$, we have

$$
\begin{aligned}
\sum_{k \geq 0} A_{r}(a, b ; k, s) x^{k} & =\Omega^{r} U_{s}^{2 r}\left\{\frac{\left(2-V_{s} x\right) x^{r}}{\left(1-V_{s} x+x^{2}\right)^{r+1}}-\frac{x^{r}}{\left(1-V_{s} x+x^{2}\right)^{r}}\right\} \\
& =\Omega^{r} U_{s}^{2 r} x^{r} \frac{1-x^{2}}{\left(1-V_{s} x+x^{2}\right)^{r+1}}
\end{aligned}
$$

So reading off the coefficient of x^{k} we get

$$
A_{r}(a, b ; k, s)=\Omega^{r} U_{s}^{2 r}\left(\left[x^{k-r}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}-\left[x^{k-r-2}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}\right) .
$$

The proof of the theorem is completed.
We rewrite the main results of this paper as follows

$$
\begin{align*}
W_{n}^{2 k}(a, b)+W_{n+s}^{2 k}(a, b) & =\sum_{r=0}^{k} \Omega^{r} U_{s}^{2 r}\left(\left[x^{k-r}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}\right. \\
& \left.-\left[x^{k-r-2}\right] \frac{1}{\left(1-V_{s} x+x^{2}\right)^{r+1}}\right) W_{n}^{k-r}(a, b) W_{n+s}^{k-r}(a, b) \tag{8}
\end{align*}
$$

Corollary 2.3:

$$
U_{n}^{2 k}+U_{n+1}^{2 k}=\sum_{r=0}^{k} \frac{\mathcal{D}^{r} V_{k}}{r!} U_{n}^{k-r} U_{n+1}^{k-r}
$$

Proof: Take $a=1, b=0, s=1$ in Theorem 2.2.

Corollary 2.4:

$$
V_{n}^{2 k}+V_{n+1}^{2 k}=\sum_{r=0}^{k}(-1)^{r}\left(p^{2}-4\right)^{r} \frac{\mathcal{D}^{r} V_{k}}{r!} V_{n}^{k-r} V_{n+1}^{k-r}
$$

Proof: Take $a=0, b=1, s=1$ in Theorem 2.2.
We denote by $\sigma_{i}(n, k)$ the summation of all products of choosing i elements from $n+k-$ $i+1, n+k-i+2, \ldots, n+2 k-1$ but not containing any two consecutive elements, i.e.

$$
\sigma_{i}(n, k)=\sum \prod_{t=1}^{i}\left(n+k-i+j_{t}\right)
$$

where the summation is taken over all i-tuples with positive integer coordinates $\left(j_{1}, j_{2}, \ldots, j_{i}\right)$ such that $1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq k+i-1$ and $\left|j_{r}-j_{s}\right| \geq 2$ for $1 \leq r \neq s \leq i$. For more details see [1].
Lemma 2.5: (Feng and Zhang [1])

$$
G_{s n}^{(k+1)}=\frac{1}{k!U_{s}\left(V_{s}^{2}-4\right)^{k}} \sum_{i=0}^{k}(-1)^{i} 2^{i} V_{s}^{k-i}\langle n\rangle_{k-i} \sigma_{i}(n, k) U_{s(n+k-i)}
$$

where $\langle n\rangle_{i}=n(n+1) \ldots(n+i-1)$ and $\sum_{n \geq 0} G_{s n}^{(k)} x^{n-1}=\left(\frac{1}{1-V_{s} x+x^{2}}\right)^{k}$.
Proof: See [1].
We obtain the explicit expression of the coefficients $A_{r}(a, b ; k, s)$ in Theorem 2.2 as follows.

Theorem 2.6:

$$
\begin{aligned}
A_{r}(a, b ; k, s) & =\frac{\Omega^{r} U_{s}^{r-1}}{r!\left(V_{s}^{2}-4\right)^{r}} \sum_{i=0}^{r}(-1)^{i} 2^{i} V_{s}^{k-i}\left[\langle k-r+1\rangle_{r-i} \sigma_{i}(k-r+1, r) U_{s(k+1-r)}\right. \\
& \left.-\langle k-r-1\rangle_{r-i} \sigma_{i}(k-r-1, r) U_{s(k-1-r)}\right]
\end{aligned}
$$

Proof: Combining Theorem 2.2 and Lemma 2.5, Theorem 2.6 follows.

ACKNOWLEDGMENT

The authors would like to thank an anonymous referee for many valuable suggestions that have improved this manuscript. This work is supported in part by the National Natural Science Foundation of China.

REFERENCES

[1] H. Feng and Z.Z. Zhang. "Computational Formulas for Convoluted Generalized Fibonacci and Lucas Numbers." The Fibonacci Quarterly 41.2 (2003): 144-151.
[2] P. J. Grabner and H. Prodinger. "Some Identities for the Chebyshev Polynomials." Portugaliae Mathematica 59 (2002): 311-314.
[3] R. S. Melham. "On Sums of Powers of Terms in a Linear Recurrence." Portugaliae Mathematica 56.4 (1999): 501-508.

AMS Classification Numbers: 05A15, 11B37, 11B39

必必

