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1. INTRODUCTION

In a previous paper [6], we discussed decompositions of certain matrices whose rows are
generalized arithmetic progressions or whose columns are successive convolutions of an integer
sequence. This work was an extension of the explorations made by Bicknell and Hoggatt in
several papers [2, 5] in the 1970s. In this paper, we extend our prior results to include matrices
whose rows are generalized geometric progressions. We then show how this applies to a class
of matrices studied by Ollerton and Shannon [7] as well as some novel matrices. We finally
employ our results to easily calculate generating functions for these matrices.

2. PRIOR RESULTS AND MOTIVATION

Our previous work ended with a discussion of the convolution matrices for sequences with
first term not equal to one, such as the following matrix based on convolutions of the familiar
Lucas numbers:

L =



2 4 8 16 32 64 · · ·
1 4 12 32 80 192 · · ·
3 13 42 120 320 816 · · ·
4 22 85 280 840 2368 · · ·
7 45 195 705 2290 6924 · · ·
11 82 399 1588 5601 18204 · · ·
...

...
...

...
...

...
. . .


. (1)

To review, the convolution of two sequences {an} and {bn}, (n = 0, 1, . . . ), is the sequence
{cn} where cn =

∑n
k=0 akbn−k. The convolution matrix of a sequence is the matrix whose ith

column (i = 1, 2, . . . ) is the (i− 1)th convolution of the sequence with itself.
The final theorem in this previous paper guarantees that we can decompose such matrices

into a product of two triangular matrices, one of which is raised to a positive integer power.
Here we propose to generalize this theorem to any integer exponent using methods developed
by Call and Velleman [3].

Let PU [x] be the matrix defined by

(PU [x])i,j =
{

(x)j−i
(
j−1
i−1

)
, if j ≥ i,

0, otherwise,
(2)

where x is any nonzero integer. Then it is proved in [3] that

(PU )r = PU [r], (3)
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where PU = PU [1], the standard upper triangular Pascal matrix, and r is any nonzero integer.
If r = 0, then we define P 0

U = I, where I is an identity matrix.
Using these facts, we can prove the following generalization of our previous theorem:

Theorem 1(Strong Convolution Decomposition Theorem): Let {vn} be a sequence
whose first term is any integer v0, and let V be the convolution matrix of that sequence. Then
V = S · P v0

U for some lower triangular matrix S and the upper triangular Pascal matrix PU .
Moreover, successive columns of S are successive convolutions of the sequence {vn} with the
sequence {0, v1, v2, v3, . . . }.

The proof is similar to the one given in [6].
In our Lucas example,

L =



2 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
3 7 2 0 0 0 . . .
4 14 13 2 0 0 . . .
7 31 43 19 2 0 . . .
11 60 115 90 25 2 . . .
...

...
...

...
...

...
. . .





1 1 1 1 1 1 . . .
0 1 2 3 4 5 . . .
0 0 1 3 6 10 . . .
0 0 0 1 4 10 . . .
0 0 0 0 1 5 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .



2

. (4)

Three things are important to notice here. First, the seed matrix is related to the original
sequence that is convoluted. Second, the exponent of the upper triangular Pascal matrix
is equal to the first element in the original sequence. Third, the first row of the original
convolution matrix L is clearly a geometric sequence.

It is this final observation that will lead to a generalization of this approach. Theorem
1 now deals with all convolution matrices of integer sequences, whereas previously we were
limited to (AP ) matrices whose rows were all generalized arithmetic progressions. The natural
tack to take is to exploit the insight gained with convolution matrices in order to extend these
previous results to a class of matrices based on geometric progressions.

3. GEOMETRIC PROGRESSION MATRICES

The first step towards such a goal is to extend the common definition of a geometric
sequence in a manner analagous to the generalization of arithmetic progressions we capitalized
on in [6]. To this end, we define the first order geometric difference with respect to a ratio r of
a sequence {ak} to be the sequence ∆1

r{ak} = {ak+1 − r(ak)}. If we let ∆i
r{ak} represent the

ith order difference, i.e., ∆i
r{ak} = {∆i−1

r ak+1 − r(∆i−1
r ak)}, we can then define a geometric

progression of nth order with ratio r, or (GP )n,r, to be a sequence whose nth order geometric
difference with ratio r is an ordinary nonzero geometric sequence with ratio r, while the (n−1)th

order geometric difference is not.
After such a load of definitions, an example is in order. Consider the sequence

{3, 13, 42, 120, 320, 816, . . . }: it is a second order progression with ratio 2, that is, a (GP )2,2.
We can see this by constructing its geometric difference table with ratio 2:

∆0
2ak 3 13 42 120 320 816 . . .

∆1
2ak 7 16 36 80 176 . . .

∆2
2ak 2 4 8 16 . . .

∆3
2ak 0 0 0 . . .

. (5)
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Extending the notation in [6], we call the first element in the jth row of the geometric
difference table of a (GP )n,r, that is, ∆j

ra1, the jth order initial constant, and we call the
(n + 1)th order initial constant – in our example, 2 – the constant of the progression. The
common ratio of rows, r, is called the ratio of the progression. Note that the sequence itself
is the zeroth row of geometric differences, so a regular nonzero geometric sequence with ratio
r is a (GP )0,r. Also, it is plain that the (n + 2)th and all subsequent rows in the geometric
difference table are zero sequences.

Moving on, a generalized geometric progression matrix, or (GP ) matrix, is an n×n matrix
whose ith row (i = 1, 2, . . . ) is n terms of a (GP )(i−1),r. That is, each subsequent row is a (GP )
of ascending order all of which have the same ratio. These (GP ) matrices are generalizations
of the (AP ) matrices of [2] and [6], since whenever r = 1 the sequences become arithmetic
progressions and we have an (AP ) matrix. We will prove that these (GP ) matrices decompose
according to the following rule:
Theorem 2(Geometric Decomposition Theorem): Gn×n is a (GP ) matrix with ratio r
if and only if Gn×n = Sn×n · (PU )r, where Sn×n is some lower triangular seed matrix with
nonzero diagonal elements, PU is the n × n upper triangular Pascal matrix, and r is any
nonzero integer ratio of G’s progressions.

Proof: Given that G is an n × n (GP ) matrix with ratio r, we will prove it has a seed
matrix S by constructing it. The key observation is that the leading diagonal of any sequence’s
geometric difference table is algebraically determined by the original sequence. Symbolically,
if {gk} is some sequence and {bm} is the leading diagonal of its geometric difference table, i.e.,

∆0
r{gk} b1 = g1 g2 g3 g4 g5 g6 . . .

∆1
r{gk} b2 · · · · ·

∆2
r{gk} b3 · · · ·

...
. . . · · ·

, (6)

then the relationships between the two sequences are

gi =
i∑

j=1

(r)i−j

(
i− 1
j − 1

)
bj and bi =

i∑
j=1

(−r)i−j

(
i− 1
j − 1

)
gj . (7)

This is a generalization of Sloane and Plouffe’s formula for arithmetic difference tables [8, p.
13]. An inductive proof of these two equations follows readily from the definition of geometric
differences and a little algebra.

Returning to our (GP ) matrix G, we let

G =


G1

G2
...

Gn

 , (8)

where Gi is the ith row of G, that is, Gi = (gi,1, gi,2, . . . , gi,n), where i = 1, 2, . . . , n. Then,
since G is a (GP ) matrix, Gi is a (GP )(i−1),r as defined above. Writing out the geometric

207



PASCAL DECOMPOSITIONS OF GEOMETRIC ARRAYS IN MATRICES

difference table of this ith row and labeling the leading diagonal {bi,1, bi,2, . . . } yields the
following diagram:

∆0
rGi bi,1 = gi,1 gi,2 gi,3 gi,4 gi,5 gi,6 . . .

∆1
rGi bi,2 · · · · ·

∆2
rGi bi,3 · · · ·
...

. . . · · ·
∆i−1

r Gi bi,i · ·
∆i

rGi 0 ·

. (9)

Now since Gi is a (GP )(i−1),r, its (i − 1)th order geometric difference must be equal
to a regular geometric sequence with ratio r. Moreover, bi,i equals the nonzero constant of
the progression. By the definition of (GP )(i−1),r, any elements below row i (on the leading
diagonal, all bi,j , j > i) must equal zero. Substituting from equation (8) for the elements gi,k

that make up our matrix G and using equation (7), we have

G =


g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n

...
...

. . .
...

gn,1 gn,2 . . . gn,n



=


∑1

j=1

(
0

j−1

)
(r)1−jb1,j

∑2
j=1

(
1

j−1

)
(r)2−jb1,j . . .

∑n
j=1

(
n−1
j−1

)
(r)n−jb1,j∑1

j=1

(
0

j−1

)
(r)1−jb2,j

∑2
j=1

(
1

j−1

)
(r)2−jb2,j . . .

∑n
j=1

(
n−1
j−1

)
(r)n−jb2,j

...
...

. . .
...∑1

j=1

(
0

j−1

)
(r)1−jbn,j

∑2
j=1

(
1

j−1

)
(r)2−jbn,j . . .

∑n
j=1

(
n−1
j−1

)
(r)n−jbn,j

 .
(10)

Remembering that many of the bij are zero and then applying equation (3), we see that

G =


b1,1 0 0 . . . 0
b2,1 b2,2 0 . . . 0
b3,1 b3,2 b3,3 . . . 0

...
...

...
. . .

...
bn,1 bn,2 bn,3 . . . bn,n




(
0
0

)
(r)0

(
1
0

)
(r)1

(
2
0

)
(r)2 . . .

(
n−1

0

)
(r)n−1

0
(
1
1

)
(r)0

(
2
1

)
(r)1 . . .

(
n−1

1

)
(r)n−2

0 0
(
2
2

)
(r)0 . . .

(
n−1

2

)
(r)n−3

...
...

...
. . .

...
0 0 0 . . .

(
n−1
n−1

)
(r)0



=


b1,1 0 0 . . . 0
b2,1 b2,2 0 . . . 0
b3,1 b3,2 b3,3 . . . 0

...
...

...
. . .

...
bn,1 bn,2 bn,3 . . . bn,n




1 1 1 . . .
(
n−1

0

)
0 1 2 . . .

(
n−1

1

)
0 0 1 . . .

(
n−1

2

)
...

...
...

. . .
...

0 0 0 . . .
(
n−1
n−1

)



r

(11)

= Sn×n · (PU )r.

G can therefore be split into a product of a lower triangular matrix S and the n × n upper
triangular Pascal matrix raised to the rth power, and the first half of the theorem is proved.
The converse follows from a reversal of this argument. Start with any lower triangular seed
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matrix S with nonzero diagonal elements, multiply r times by the upper triangular Pascal
matrix (or by its inverse, if r is negative), and a (GP ) matrix with ratio r will result.

What’s more, given a (GP ) matrix G, we now know the exact structure of the seed
matrix S and can calculate it from our original matrix G. We call this process the Pascal
decomposition of G. It turns out that the elements on S’s main diagonal are the progression
constants of each row of G, and – since the determinant of P is always one – we can make a
corollary.
Corollary (Generalization of Eves’ Theorem): For any (GP ) matrix Gn×n,

|Gn×n| =
n∏

j=1

cj ,

where cj is the progression constant of the jth row of Gn×n.
When the ratio of G’s progressions equals one, this agrees with both Bicknell and Hoggatt’s

work [2] and our own previous results [6] concerning arithmetic progression matrices and
convolution matrices with first term one. It also explains what we observed when decomposing
convolution matrices with first term greater than one.

4. SPECIAL CASES OF (GP ) MATRICES

Ollerton and Shannon [7] explore matrices generated under a class of recursion relations.
If {n, p} represents the entry in the nth row and pth column of a matrix, their relation,

{n, p} = b{n− 1, p}+
s∑

i=r

ai{n + i, p− 1}, with {n,−1} = 0 ∀n, (12)

allows one to fill in the rest of a matrix so long as its top row is known. We have found that the
transposes of such matrices are always (GP ) matrices with ratio b, and hence are decomposable.
Furthermore, by translating notations it can be verified algebraically that Property 12 in [7]
is a special case of our Corollary. To do so, first note that if {0, 0} = a then

cj = a

(
b

s∑
i=r

aib
i

)j−1

, for j = 1, 2, . . . , n, (13)

is the progression constant of the jth column of this recurrence relation array. It follows that
the transpose of such an array must be a (GP ) matrix. Applying Theorem 2 and its Corollary
then yields Property 12.

It is not difficult to show that a convolution matrix of a sequence {vn} = {v0, v1, v2, . . . }
in [5,6] is also a (GP ) matrix with ratio v0. It can be verified algebraically that

cj = v0v
j−1
1 , for j = 1, 2, . . . , n, (14)

is the progression constant of the jth row of the convolution array. Thus Theorem 4 and its
Corollary in [6] are direct results of the Theorem 2 and its Corollary, respectively.
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For example, we can invent the following matrix Q based on the Lucas-like numbers
{1, 4, 5, 9, 14, . . . }, which form its top row, using the recursion {n, p} = 2{n−1, p}+{n, p−1}:

Q =



1 4 5 9 14 23 · · ·
2 10 20 38 66 112 · · ·
4 24 64 140 272 496 · · ·
8 56 184 464 1008 2000 · · ·
16 128 496 1424 3440 7440 · · ·
32 288 1280 4128 11008 25888 · · ·
...

...
...

...
...

...
. . .


. (15)

We can decompose its transpose like so:

QT =



1 2 4 8 16 32 · · ·
4 10 24 56 128 288 · · ·
5 20 64 184 496 1280 · · ·
9 38 140 464 1424 4128 · · ·
14 66 272 1008 3440 11008 · · ·
23 112 496 2000 7440 25888 · · ·
...

...
...

...
...

...
. . .



=



1 0 0 0 0 0 · · ·
4 2 0 0 0 0 · · ·
5 10 4 0 0 0 · · ·
9 20 24 8 0 0 · · ·
14 38 64 56 16 0 · · ·
23 66 140 184 128 32 · · ·
...

...
...

...
...

...
. . .





1 1 1 1 1 1 · · ·
0 1 2 3 4 5 · · ·
0 0 1 3 6 10 · · ·
0 0 0 1 4 10 · · ·
0 0 0 0 1 5 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .



2

, (16)

which gives us |QT
n×n| = |Qn×n| = 2n(n−1)/2, in agreement with Ollerton and Shannon’s

prediction.
Now, Ollerton and Shannon’s results only hold for arrays with recursion relations. We

can generate other (GP ) matrices without such relations. For instance,

N =



1 3 9 27 81 243 · · ·
3 11 39 135 459 1539 · · ·
11 35 114 378 1269 4293 · · ·
50 152 471 1489 4800 15750 · · ·
274 824 2511 7753 24245 76737 · · ·
1764 5294 16038 49036 151263 470553 · · ·

...
...

...
...

...
...

. . .


(17)
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is a (GP ) matrix with ratio 3 based on the Stirling numbers of the first kind. It cannot be
generated by an Ollerton-Shannon type recursion, as the constants of the progressions do not
form a regular geometric sequence. However, since

N =



1 0 0 0 0 0 · · ·
3 2 0 0 0 0 · · ·
11 2 3 0 0 0 · · ·
50 2 9 4 0 0 · · ·
274 2 33 4 5 0 · · ·
1764 2 150 4 15 6 · · ·

...
...

...
...

...
...

. . .





1 1 1 1 1 1 · · ·
0 1 2 3 4 5 · · ·
0 0 1 3 6 10 · · ·
0 0 0 1 4 10 · · ·
0 0 0 0 1 5 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .



3

, (18)

it can be easily seen that |Nn×n| = n!.

5. PRESERVATIVE DECOMPOSITIONS

An immediate consequence of Theorem 2 is that the rectangular Pascal matrix can be
decomposed into the product of the lower triangular Pascal matrix and the upper triangular
Pascal matrix:

1 1 1 1 1 · · ·
1 2 3 4 5 · · ·
1 3 6 10 15 · · ·
1 4 10 20 35 · · ·
1 5 15 35 70 · · ·
...

...
...

...
...

. . .

 =



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .





1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 0 1 3 6 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 . (19)

This matrix is special in that its seed matrix is just a shifted copy of the original matrix. It is
natural to ask if other matrices share this property.

Further study of (16) shows that the seed matrix of QT is the exact lower triangular form
of QT . Similarly, for Vieta’s array (c.f. Table 2 in [7]):

1 2 2 2 2 · · ·
1 3 5 7 9 · · ·
1 4 9 16 25 · · ·
1 5 14 30 55 · · ·
1 6 20 50 105 · · ·
...

...
...

...
...

. . .

 =



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .





1 2 2 2 2 · · ·
0 1 3 5 7 · · ·
0 0 1 4 9 · · ·
0 0 0 1 5 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 . (20)

Finally, we decompose the Fibonacci array given by Table 3 in [7]:

1 1 2 3 5 · · ·
1 2 4 7 12 · · ·
1 3 7 14 26 · · ·
1 4 11 25 51 · · ·
1 5 16 41 92 · · ·
...

...
...

...
...

. . .

 =



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .





1 1 2 3 5 · · ·
0 1 2 4 7 · · ·
0 0 1 3 7 · · ·
0 0 0 1 4 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 . (21)
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Clearly, there are many such matrices. We would like to characterize them, and so we consider
an array T = (ti,j), where ti,j is the entry in the ith row and jth column of T .
Theorem 3 (Preservation Theorem): Let b be a nonzero integer, let TU stand for the
upper triangular matrix form of T , and let P b

L denote the bth power of the lower triangular
Pascal matrix. Then, T = P b

L · TU if and only if ti,j = bti−1,j + ti,j−1, for i ≥ 2 and j ≥ 1.
We call such a decomposition a preservative decomposition, and say that TT is a preser-

vative (GP ) matrix.
Proof: Suppose that ti,j = bti−1,j + ti,j−1, for i ≥ 2 and j ≥ 1. By Theorem 2 and the

discussion in Section 4, we know that the transpose of T is a (GP ) matrix, and hence that T
itself can be decomposed into P b

L · S. Moreover,
Si,j = ∆i−1

b t1,j = ∆i−2
b {t2,j − bt1,j} = ∆i−2

b t2,j−1

= ∆i−3
b {t3,j−1 − bt2,j−1} = ∆i−3

b t3,j−2

...

=
{

∆i−i
b ti,j−i+1, if i ≤ j

0, if i > j
=
{

ti,j−i+1, if i ≤ j

0, if i > j
.

(22)

Thus, we have T = P b
L · S = P b

L · TU .
Conversely, suppose that T = P b

L · TU . We want to prove that ti,j = bti−1,j + ti,j−1, for
i ≥ 2 and j ≥ 1. Since T = P b

L · TU , then we have

T =


t1,1 t1,2 t1,3 · · · t1,n

t2,1 t2,2 t2,3 · · · t2,n

t3,1 t3,2 t3,3 · · · t3,n

...
...

...
. . .

...
tn,1 tn,2 tn,3 · · · tn,n



=



(
0
0

)
b0 0 0 · · · 0(

1
0

)
b1

(
1
1

)
b0 0 · · · 0(

2
0

)
b2

(
2
1

)
b1

(
2
2

)
b0 · · · 0

...
...

...
. . .

...(
n−1

0

)
bn−1

(
n−1

1

)
bn−2

(
n−1

2

)
bn−3 · · ·

(
n−1
n−1

)
b0




t1,1 t1,2 t1,3 · · · t1,n

0 t2,1 t2,2 · · · t2,n−1

0 0 t3,1 · · · t3,n−2

...
...

...
. . .

...
0 0 0 · · · tn,1

 .

(23)
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Equating the corresponding entries of matrices in the two sides of equation (23) and solving
the system of equations for ti,j yields

T =


t1,1 t1,2 t1,3 · · · t1,n

t2,1 t2,2 t2,3 · · · t2,n

t3,1 t3,2 t3,3 · · · t3,n

...
...

...
. . .

...
tn,1 tn,2 tn,3 · · · tn,n

 = diag(1, b1, b2, . . . , bn−1)

·


1 0 0 · · · 0(
0
0

) (
1
0

) (
2
0

)
· · ·

(
n−1

0

)(
1
1

) (
2
1

) (
3
1

)
· · ·

(
n
1

)
...

...
...

. . .
...(

n−2
n−2

) (
n−1
n−2

) (
n

n−2

)
· · ·

(
2n−3
n−2

)




t1,1 t1,2 t1,3 · · · t1,n

0 t1,1 t1,2 · · · t1,n−1

0 0 t1,1 · · · t1,n−2

...
...

...
. . .

...
0 0 0 · · · t1,1

 .

(24)

Therefore, we obtain

ti,j =
{ ∑j−1

k=0

(
i−2+k

i−2

)
bi−1t1,j−k, if i ≥ 2, j ≥ 1

ti,j , if i = 1, j ≥ 1
. (25)

Next, we calculate bti−1,j + ti,j−1, for i ≥ 3 and j = 1, 2, 3, . . . . Using equation (25) and
noting ti,j = 0 for j ≤ 0 leads to

bti−1,j + ti,j−1 =
j−1∑
l=0

(
i− 3 + l

i− 3

)
bi−1t1,j−l +

j−2∑
m=0

(
i− 2 + m

i− 2

)
bi−1t1,j−m−1

=
(

i− 3
i− 3

)
bi−1t1,j +

j−1∑
s=1

{(
i− 3 + s

i− 3

)
+
(

i− 3 + s

i− 2

)}
bi−1t1,j−s.

(26)

By the combinatorial identity
(

n−1
m−1

)
+
(
n−1
m

)
=
(

n
m

)
, we obtain

bti−1,j + ti,j−1 =
(

i− 3
i− 3

)
bi−1t1,j +

j−1∑
k=1

(
i− 2 + k

i− 2

)
bi−1t1,j−k = ti,j . (27)

For i = 2, we have

bti,j + t2,j−1 = bt1,j +
j−2∑
k=0

(
k

0

)
bt1,j−k−1 =

j−1∑
k=0

(
k

0

)
bt1,j−k = t2,j . (28)

This completes the proof, and characterizes a subset of the matrices defined in [7] which are
preservative. In fact, this characterization is complete: all preservative (GP ) matrices are of
this sort.

6. PRESERVATIVE MATRICES AND THEIR GENERATING FUNCTIONS

Another important application of Pascal decompositions is to determine the generating
functions of the columns of the preservative arrays discussed in the last section. Suppose T is
such an array, and let ti,j be the entry in the ith row and jth column of T .
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Theorem 4: If T is a preservative (GP ) matrix with ratio b, then the generating function for
the jth column of T is the convolution

j∑
k=1

tk,j−k+1
xk−1

(1− bx)k
.

Proof: By Theorem 3, we have

X · T = (1, x, x2, x3, . . . )


t1,1 t1,2 t1,3 t1,4 · · ·
t2,1 t2,2 t2,3 t2,4 · · ·
t3,1 t3,2 t3,3 t3,4 · · ·
t4,1 t4,2 t4,3 t4,4 · · ·

...
...

...
...

. . .



= (1, x, x2, x3, . . . )P b
L


t1,1 t1,2 t1,3 t1,4 · · ·
0 t2,1 t2,2 t2,3 · · ·
0 0 t3,1 t3,2 · · ·
0 0 0 t4,1 · · ·
...

...
...

...
. . .



=
(

1
1− bx

,
x

(1− bx)2
,

x2

(1− bx)3
,

x3

(1− bx)4
, . . .

)
t1,1 t1,2 t1,3 t1,4 · · ·
0 t2,1 t2,2 t2,3 · · ·
0 0 t3,1 t3,2 · · ·
0 0 0 t4,1 · · ·
...

...
...

...
. . .

 .

(29)

This last step follows from the generating functions given for PL in [1]. From here, we can see
that the generating function for the kth column of T is

Ck(x) = t1,k
1

1− bx
+ t2,k−1

x

(1− bx)2
+ t3,k−2

x2

(1− bx)3
+ · · ·+ tk,1

xk−1

(1− bx)k
. (30)

This completes the proof of the theorem.
As an example, suppose we want to determine the generating functions of the columns

of Vieta’s array from equation (2). Because it satisfies the conditions of Theorem 3, it is a
preservative matrix. Hence we can immediately write the generating functions of its columns
using equation (29):

(
1

1− x
,

1
1− x

(
x

1− x

)1

,
1

1− x

(
x

1− x

)2

, . . .

)


1 2 2 2 2 2 · · ·
0 1 3 5 7 9 · · ·
0 0 1 4 9 16 · · ·
0 0 0 1 5 14 · · ·
0 0 0 0 1 6 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .


. (31)
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From [4], we know that the kth column generating function of the upper triangular array in
equation (31) is fk(x) = (x + 2)(x + 1)k−2, for k ≥ 2. Thus, the column generating functions
of Vieta’s array are

1
1− x

(
1, f2

(
x

1− x

)
, f3

(
x

1− x

)
, f4

(
x

1− x

)
, . . .

)

=
(

1
1− x

,
(2− x)
(1− x)2

,
(2− x)
(1− x)3

,
(2− x)
(1− x)4

, . . .

)
. (32)

The new technique provides a highly desirable alternative: consider how much work was
needed in [5] to derive the row generating functions for a convolution matrix. Possibilities for
further investigation include reanalyzing the row generating functions for a convolution matrix
and finding the column generating functions for a recursion relation matrix. We hope that the
Pascal decompositions developed here may also shed some light on these problems.

7. CONCLUSION

Pascal decompositions, generalized to the geometric case, are an interesting new tool
for understanding a rather broad category of matrices. Within the broad category, several
subcategories with handy properties have been singled out, such as convolution matrices,
recursion relation matrices and preservative matrices. In the future, we hope to apply these
techniques to understand the inverses of these matrices.
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