SOME RESULTS ON GENERALIZED FIBONACCI AND LUCAS NUMBERS AND DEDEKIND SUMS

Feng-Zhen Zhao

Dalian University of Technology, 116024 Dalian, China

Tianming Wang

Dalian University of Technology, 116024 Dalian, China (Submitted December 2001-Final Revision September 2003)

Abstract

In this paper, by using the reciprocity formula of Dedekind sums and the properties of generalized Fibonacci and Lucas numbers, the authors investigate Dedekind sums for generalized Fibonacci and Lucas numbers and generalize some conclusions of other authors.

1. INTRODUCTION

Recently, Dedekind sums for Fibonacci numbers were investigated and some meaningful results were obtained (see [7]). In this paper, the authors will consider Dedekind sums for generalized Fibonacci and Lucas numbers.

The Binet forms of generalized Fibonacci and Lucas numbers are:

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}
$$

where $n \geq 0, \alpha=(p+\sqrt{\Delta}) / 2, \beta=(p-\sqrt{\Delta}) / 2, \Delta=p^{2}-4 q>0$, and p and q are integers with $p q \neq 0$. Throughout this paper, we assume that $p>0$. When $n<0$, we define $U_{n}=(-1)^{n} U_{-n}$ and $V_{n}=(-1)^{n} V_{-n}$. It is well known that $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ satisfy the recurrence relation

$$
\begin{equation*}
W_{n+2}=p W_{n+1}-q W_{n}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

For $p=-q=1,\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are the classical Fibonacci and Lucas sequences $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$, respectively.

The Dedekind sum $S(h, t)$ is defined by

$$
\begin{equation*}
S(h, t)=\sum_{a=1}^{t}\left(\left(\frac{a}{t}\right)\right)\left(\left(\frac{a h}{t}\right)\right), \tag{2}
\end{equation*}
$$

where t is a positive integer, h is an arbitrary integer, and

$$
((x))= \begin{cases}x-[x]-1 / 2, & \text { if } x \text { is not an integer } \\ 0, & \text { if } x \text { is an integer } .\end{cases}
$$

For various arithmetical properties of $S(h, t)$, several articles have been written (see [1], [4], and [6]). Regarding Dedekind sums and uniform distribution, Myerson [5] and Zheng [8] have obtained some meaningful results. In [7], Zhang studied the distribution problem of Dedekind sums for Fibonacci numbers F_{n} and obtained some interesting results. Zhang discussed the mean value distribution of $S\left(F_{n}, F_{n+1}\right)$ and presented a sharper asymptotic formula for $\sum_{n=1}^{m} S\left(F_{n}, F_{n+1}\right)$. Inspired by Zhang's results, we decided to investigate Dedekind sums for U_{n} and V_{n}. The principal purpose of this paper is to compute the values of $S\left(U_{n}, U_{n+1}\right)$ and $S\left(V_{n}, V_{n+1}\right)$ for $|q|=1$, by the reciprocity formula of Dedekind sums and properties of $\left\{U_{n}\right\}$

SOME RESULTS ON GENERALIZED FIBONACCI AND LUCAS NUMBERS AND DEDEKIND SUMS
and $\left\{V_{n}\right\}$. In the meantime, we present the sharper asymptotic formulas of $\sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right)$ and $\sum_{n=1}^{m} S\left(V_{n}, V_{n+1}\right)$ when $|q|=1$.

2. MAIN RESULTS

In this section, we state and prove the main results of this paper.
Theorem 1: Assume that $q=-1$ and m is a positive integer. Then

$$
\begin{gather*}
S\left(U_{2 m}, U_{2 m+1}\right)=0, \tag{3}\\
S\left(U_{2 m+1}, U_{2 m+2}\right)=-\frac{U_{2 m}}{6 p U_{2 m+2}}+\frac{(p-1)(p-2)}{12 p}, \tag{4}\\
S\left(V_{2 m}, V_{2 m+1}\right)=-\frac{U_{2 m}+V_{2 m-1}}{12 p V_{2 m+1}}+\frac{(p-1)(p-5)}{24 p}-\frac{1}{12 p},(2 \not x p), \tag{5}\\
S\left(V_{2 m+1}, V_{2 m+2}\right)=\frac{U_{2 m}}{12 p V_{2 m+1}}+\frac{V_{2 m+1}}{12 V_{2 m+2}}+\frac{1}{12 V_{2 m+1} V_{2 m+2}} \\
+\frac{1}{6 p}+\frac{p-3}{12}-\frac{(p-1)(p-5)}{24 p},(2 \nmid p), \tag{6}\\
+\frac{1}{24 \alpha}+\frac{1}{6} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n} U_{2 n}}+0\left(\frac{1}{\alpha^{4 m}}\right), \\
\sum_{n=1}^{2 m} S\left(U_{n}, U_{n+1}\right)=\frac{m}{6 \alpha}+\frac{(p-3) m}{12}-\frac{U_{2 m}}{24 U_{2 m+1}}-\frac{1}{24 \alpha^{2 m+1} U_{2 m+1}} \tag{7}\\
+\frac{1}{24 \alpha}-\frac{U_{2 m}}{12 p U_{2 m+2}}+\frac{(p-1)(p-2)}{24 p}+\frac{1}{6} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n} U_{2 n}}+0\left(\frac{1}{\alpha^{4 m}}\right),
\end{gather*}
$$

$$
\begin{align*}
\sum_{n=1}^{2 m} S\left(V_{n}, V_{n+1}\right) & =\frac{(p-1)(p-5)}{48 p}+\frac{m}{6 \alpha}+\frac{(p-3) m}{12} \\
& -\frac{\Delta-1}{12 \sqrt{\Delta}} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n} V_{2 n}}+\frac{\Delta+1}{12 \sqrt{\Delta}} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n+1} V_{2 n+1}}+0\left(\frac{1}{\alpha^{4 m}}\right), \quad(2 \nprec p), \tag{9}
\end{align*}
$$

$$
\begin{align*}
\sum_{n=1}^{2 m+1} S\left(V_{n}, V_{n+1}\right) & =-\frac{(p-1)(p-5)}{48 p}+\frac{(p-3)(m+1)}{12}+\frac{1}{6 p}+\frac{m}{6 \alpha}+\frac{U_{2 m}}{12 p V_{2 m+1}}+\frac{V_{2 m+1}}{12 V_{2 m+2}} \\
& +\frac{1}{12 V_{2 m+1} V_{2 m+2}}-\frac{\Delta-1}{12 \sqrt{\Delta}} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n} V_{2 n}} \\
& +\frac{\Delta+1}{12 \sqrt{\Delta}} \sum_{n=1}^{\infty} \frac{1}{\alpha^{2 n+1} V_{2 n+1}}+0\left(\frac{1}{\alpha^{4 m}}\right), \quad(2 \nmid p) . \tag{10}
\end{align*}
$$

Proof: We can show that $\left(U_{m}, U_{m+1}\right)=1(m \geq 1)$ by induction. From the reciprocity formula of Dedekind sums (see [1]), we obtain

$$
S\left(U_{m}, U_{m+1}\right)+S\left(U_{m+1}, U_{m}\right)=\frac{U_{m}^{2}+U_{m+1}^{2}+1}{12 U_{m} U_{m+1}}-\frac{1}{4}
$$

By using (1) and (2), we get $S\left(U_{m+1}, U_{m}\right)=S\left(U_{m-1}, U_{m}\right)$. Thus,

$$
\begin{align*}
S\left(U_{m}, U_{m+1}\right)+S\left(U_{m-1}, U_{m}\right) & =\frac{1}{12}\left(\frac{U_{m-1}}{U_{m}}+\frac{U_{m}}{U_{m+1}}+\frac{1}{U_{m} U_{m+1}}\right)-\frac{1}{4}+\frac{p}{12} \\
& =\frac{1}{12 U_{m} U_{m+1}}-\frac{U_{m-1}}{12 p U_{m+1}}-\frac{U_{m-2}}{12 p U_{m}}-\frac{1}{4}+\frac{p}{12}+\frac{1}{6 p} \tag{11}
\end{align*}
$$

so that

$$
\begin{aligned}
S\left(U_{m}, U_{m+1}\right)+\frac{U_{m-1}}{12 p U_{m+1}} & =\frac{1}{12 U_{m} U_{m+1}}-\left[S\left(U_{m-1}, U_{m}\right)+\frac{U_{m-2}}{12 p U_{m}}\right]-\frac{1}{4}+\frac{p}{12}+\frac{1}{6 p} \\
& =\frac{1}{12 U_{m} U_{m+1}}-\frac{1}{12 U_{m-1} U_{m}}+\left[S\left(U_{m-2}, U_{m-1}\right)+\frac{U_{m-3}}{12 p U_{m-1}}\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S\left(U_{2 m}, U_{2 m+1}\right)+\frac{U_{2 m-1}}{12 p U_{2 m+1}} & =\frac{1}{12 U_{2 m} U_{2 m+1}}-\frac{1}{12 U_{2 m-1} U_{2 m}}+\frac{1}{12 U_{2 m-2} U_{2 m-1}} \\
& -\cdots+\frac{1}{12 U_{2} U_{3}}-\left[S\left(U_{1}, U_{2}\right)+\frac{U_{0}}{12 p U_{2}}\right]-\frac{1}{4}+\frac{p}{12}+\frac{1}{6 p}
\end{aligned}
$$

and

$$
\begin{aligned}
S\left(U_{2 m+1}, U_{2 m+2}\right)+\frac{U_{2 m}}{12 p U_{2 m+2}} & =\frac{1}{12 U_{2 m+1} U_{2 m+2}}-\frac{1}{12 U_{2 m} U_{2 m+1}}+\frac{1}{12 U_{2 m-1} U_{2 m}} \\
& -\cdots+\left[S\left(U_{1}, U_{2}\right)+\frac{U_{0}}{12 p U_{2}}\right]
\end{aligned}
$$

From the definition of U_{n}, we can prove that

$$
\begin{equation*}
\frac{1}{\alpha^{m} U_{m}}+\frac{1}{\alpha^{m+1} U_{m+1}}=\frac{1}{U_{m} U_{m+1}} \tag{12}
\end{equation*}
$$

On the other hand, $S\left(U_{1}, U_{2}\right)=S(1, p)=\frac{(p-1)(p-2)}{12 p}$ and $U_{0}=0$. Therefore, we have (3) and (4).

Using the same method for getting (3-4), and the formula $S\left(V_{0}, V_{1}\right)=S(2, p)=$ $\frac{(p-1)(p-5)}{24 p}(2 \npreceq p)$ in the meantime, we can show that (5) and (6) hold.

Summing both sides of (11), we obtain

$$
\begin{aligned}
\sum_{n=1}^{m}\left[S\left(U_{n}, U_{n+1}\right)+S\left(U_{n-1}, U_{n}\right)\right] & =2 \sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right)-S\left(U_{m}, U_{m+1}\right) \\
& =\frac{1}{12} \sum_{n=1}^{m}\left(\frac{U_{n}}{U_{n+1}}+\frac{U_{n-1}}{U_{n}}+\frac{1}{U_{n} U_{n+1}}\right)-\frac{m}{4}+\frac{p m}{12} \\
& =\frac{1}{6} \sum_{n=1}^{m} \frac{U_{n}}{U_{n+1}}+\frac{1}{12} \sum_{n=1}^{m} \frac{1}{U_{n} U_{n+1}}-\frac{U_{m}}{12 U_{m+1}}-\frac{m}{4}+\frac{p m}{12}
\end{aligned}
$$

It follows from the definition of U_{n} that $\sum_{n=1}^{m} \frac{U_{n}}{U_{n+1}}=\frac{1}{\alpha} \sum_{n=1}^{m} \frac{U_{n+1}-(-1 / \alpha)^{n}}{U_{n+1}}$. Then

$$
\begin{aligned}
& \sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right)=\frac{S\left(U_{m}, U_{m+1}\right)}{2}+\frac{1}{12} \sum_{n=1}^{m} \frac{U_{n}}{U_{n+1}}+\frac{1}{24} \sum_{n=1}^{m} \frac{1}{U_{n} U_{n+1}}-\frac{U_{m}}{24 U_{m+1}}+\frac{(p-3) m}{24} \\
& =\frac{S\left(U_{m}, U_{m+1}\right)}{2}+\frac{m}{12 \alpha}+\frac{(p-3) m}{24}+\frac{1}{12} \sum_{n=1}^{m} \frac{(-1)^{n+1}}{\alpha^{n+1} U_{n+1}}-\frac{U_{m}}{24 U_{m+1}}+\frac{1}{24} \sum_{n=1}^{m} \frac{1}{U_{n} U_{n+1}} .
\end{aligned}
$$

By (12), we have

$$
\begin{aligned}
\sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right) & =\frac{S\left(U_{m}, U_{m+1}\right)}{2}+\frac{m}{12 \alpha}+\frac{(p-3) m}{24}-\frac{U_{m}}{24 U_{m+1}}+\frac{1}{12} \sum_{n=1}^{m} \frac{(-1)^{n+1}}{\alpha^{n+1} U_{n+1}} \\
& +\frac{1}{24} \sum_{n=1}^{m}\left(\frac{1}{\alpha^{n} U_{n}}+\frac{1}{\alpha^{n+1} U_{n+1}}\right) .
\end{aligned}
$$

Due to $\sum_{n=1}^{m} \frac{1}{\alpha^{n} U_{n}}=\sum_{n=1}^{\infty} \frac{1}{\alpha^{n} U_{n}}+0\left(\frac{1}{\alpha^{2 m}}\right)$, the equalities (7-8) hold.
Similarly, we can prove that (9) and (10) hold.
Theorem 2: Suppose that $q=1$ and m is a positive integer. Then

$$
\begin{equation*}
S\left(U_{m}, U_{m+1}\right)=\frac{U_{m}}{6 U_{m+1}}+\frac{m(p-3)}{12}, \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
S\left(V_{m}, V_{m+1}\right)=\frac{p-6}{24}+\frac{V_{m}}{12 V_{m+1}}+\frac{(p-3) m}{12}+\frac{1}{12 \sqrt{\Delta}}\left(\frac{1}{2}-\frac{1}{\alpha^{m+1} V_{m+1}}\right) \quad(2 \nmid p), \tag{14}\\
\sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right)=\frac{(p-3) m(m+1)}{24}+\frac{m}{6 \alpha}-\frac{1}{6} \sum_{n=1}^{\infty} \frac{1}{\alpha^{n+1} U_{n+1}}+0\left(\frac{1}{\alpha^{2 m}}\right), \tag{15}\\
\sum_{n=1}^{m} S\left(V_{n}, V_{n+1}\right)=\frac{[2 p-9+(p-3) m] m}{24}+\frac{m}{12 \alpha}+\frac{m}{24 \sqrt{\Delta}} \\
+\frac{\Delta-1}{12 \sqrt{\Delta}} \sum_{n=1}^{\infty} \frac{1}{\alpha^{n+1} V_{n+1}}+0\left(\frac{1}{\alpha^{2 m}}\right) . \tag{16}
\end{gather*}
$$

Proof: One can verify that $\left(U_{m}, U_{m+1}\right)=1(m \geq 1)$ by induction. So,

$$
S\left(U_{m}, U_{m+1}\right)+S\left(U_{m+1}, U_{m}\right)=\frac{U_{m}^{2}+U_{m+1}^{2}+1}{12 U_{m} U_{m+1}}-\frac{1}{4}
$$

It follows from (1-2) and $((-x))=-((x))$ that

$$
S\left(U_{m+1}, U_{m}\right)=-S\left(U_{m-1}, U_{m}\right)
$$

Thus, the following identity holds:

$$
\begin{equation*}
S\left(U_{m}, U_{m+1}\right)-S\left(U_{m-1}, U_{m}\right)=\frac{1}{12}\left(\frac{U_{m}}{U_{m+1}}-\frac{U_{m-1}}{U_{m}}+\frac{1}{U_{m} U_{m+1}}\right)+\frac{p}{12}-\frac{1}{4} \tag{17}
\end{equation*}
$$

Summing both sides of (17) and noticing that $S\left(U_{0}, U_{1}\right)=0$, we get

$$
S\left(U_{m}, U_{m+1}\right)=\frac{U_{m}}{12 U_{m+1}}+\frac{(p-3) m}{12}+\frac{1}{12} \sum_{n=1}^{m} \frac{1}{U_{n} U_{n+1}}
$$

From [2] or [3], we know that $\sum_{n=1}^{m} \frac{1}{U_{n} U_{n+1}}=\frac{\alpha^{m} U_{m+1}-1}{\alpha^{m+1} U_{m+1}}$. Hence,

$$
S\left(U_{m}, U_{m+1}\right)=\frac{\alpha^{m+1} U_{m}+\alpha^{m} U_{m+1}-1}{12 \alpha^{m+1} U_{m+1}}+\frac{(p-3) m}{12}
$$

By the definition of U_{n}, we have $\frac{\alpha^{m+1} U_{m}+\alpha^{m} U_{m+1}-1}{\alpha^{m+1} U_{m}}=\frac{2 U_{m}}{U_{m+1}}$. Hence, equality (13) holds.
By (13), we have

$$
\sum_{n=1}^{m} S\left(U_{n}, U_{n+1}\right)=\frac{(p-3) m(m+1)}{24}+\frac{1}{6} \sum_{n=1}^{m} \frac{U_{n}}{U_{n+1}}
$$

From the definition of U_{n}, we can deduce that

$$
\frac{\alpha U_{n}}{U_{n+1}}=\frac{U_{n+1}-\beta^{n}}{U_{n+1}}=1-\frac{1}{\alpha^{n} U_{n+1}} .
$$

Therefore, equality (15) holds.
Similarly, we can show that (14) and (16) hold.
We note that (7) and (8) generalize Zhang's results (see [7]):

$$
\sum_{n=1}^{m} S\left(F_{n}, F_{n+1}\right)=-\frac{(\sqrt{5}-1)^{2} m}{48}+C(m)+0\left(\frac{2^{2 m}}{(\sqrt{5}+1)^{2 m}}\right)
$$

where

$$
C(m)= \begin{cases}\frac{1}{12} \sum_{n=1}^{\infty} \frac{1}{F_{2 n} F_{2 n+1}}+\frac{1}{12} \sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{(\sqrt{5}+1)^{n+1} F_{n+1}}, & \text { if } m \text { is an even number } \\ \frac{1}{12} \sum_{n=1}^{\infty} \frac{1}{F_{2 n+1} F_{2 n+2}}+\frac{1}{12} \sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{(\sqrt{5}+1)^{n+1} F_{n+1}}, & \text { if } m \text { is an odd number }\end{cases}
$$

(in [7],

$$
C(m)= \begin{cases}\frac{1}{12} \sum_{n=1}^{\infty} \frac{1}{F_{2 n} F_{2 n+1}}+\frac{1}{12} \sum_{n=1}^{\infty} \frac{2^{n+1}}{(\sqrt{5}+1)^{n+1} F_{n}}, & \text { if } m \text { is an even number } \\ \frac{1}{12} \sum_{n=1}^{\infty} \frac{1}{F_{2 n+1} F_{2 n+2}}+\frac{1}{12} \sum_{n=1}^{\infty} \frac{2^{n+1}}{(\sqrt{5}+1)^{n+1} F_{n}}, & \text { if } m \text { is an odd number }\end{cases}
$$

in which there exist printing errors, 2^{n+1} and F_{n} should be $(-2)^{n+1}$ and F_{n+1}, respectively).

REFERENCES

[1] L. Carlitz. "The Reciprocity Theorem for Dedekind Sums." Pacific J. Math. 3 (1953): 523-527.
[2] Hong Hu, Zhi-Wei Sun and Jian-Xin Liu. "Reciprocal Sums of Second-Order Recurrent Sequences." The Fibonacci Quarterly 39.3 (2001): 214-220.
[3] R.S. Melham and A.G. Shannon. "On Reciprocal Sums of Chebyshev Related Sequences." The Fibonacci Quarterly 33.3 (1995): 194-202.
[4] L. J. Mordell. "The Reciprocity Formula for Dedekind Sums." Amer. J. Math. 73 (1951): 593-98.
[5] G. Myerson. "Dedekind Sums and Uniform Distribution." J. Number Theory 28 (1991): 1803-07.
[6] H. Rademacher. "On the Transformation of $\log \eta(\pi) . " ~ J . ~ I n d i a ~ M a t h . ~ S o c . ~ 19 ~(1955): ~$ 25-30.
[7] Zhang Wenpeng and Yi Yuan. "On the Fibonacci Numbers and the Dedekind Sums." The Fibonacci Quarterly 38.3 (2000): 223-226.
[8] Z. Zheng. "Dedekind Sums and Uniform Distribution (mod 1)." Acta Mathematica Sinica 11 (1995): 62-67.

AMS Classification Numbers: 11B39, 11B37

玉 ※

