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1. INTRODUCTION

Summation rules for various types of convolutions have been the subject of much interest
in The Fibonacci Quarterly. The following references are of particular relevance to this topic:
Cohen and Hudson [8], Corley [9], Filipponi and Freitag [11], Gould [14], Haukkanen [15], Hsu
[19], and finally Philippou and Georghiou [23]. Also consult Neuman and Schonbach’s SIAM
Review article [22], where sums of convolved powers of the integers are determined with the
help of Bernoulli numbers.

In a separate area of research, the Stirling numbers and their various generalizations have
also been the subject of sustained attention in The Fibonacci Quarterly. The reader is referred
to Branson [2], Cacoullos and Papageorghiou [3], Cakić [4], Carlitz [5] and [6], Charalambides
[7], El-Desouky [10], Fray [12], Hillman, Mana and McAbee [16], Howard [17] and [18], Khan
and Kwong [20], Sitgreaves [24], Toscano [25], and finally Yu [26].

In [19], Hsu relates Stirling numbers of the second kind to a summation formula. In [14],
Gould makes use of Stirling numbers of the second kind to reconsider the sums of convolved
powers of the integers of Neuman and Schonbach [22]. In [7], Charalambides discusses some
combinatorial applications of the weighted Stirling numbers introduced by Carlitz in [5] and
[6].

In the present Note, the weighted Stirling numbers of the second kind introduced by
Carlitz in [5] and [6] are used to formulate a convolution of the general Fibonacci sequence
{Gn ≡ Aαn +Bβn}+∞n=−∞ with the sequence of the integral powers of the consecutive integers,
{(a+ n)m}+∞n=−∞. A few applications are also presented at the end of the Note.

The following Theorem is established in the present Note:
Theorem: “For m ≥ 0, a, b integers and for A,B, α, β real numbers, with α + β = 1, αβ =
−1, the generalized convolution of the sequence of powers of the consecutive integers, {(a +
n)m}+∞n=−∞, with the general Fibonacci sequence,

{Gn ≡ Aαn +Bβn}+∞n=−∞
is

n∑
k=0

(a+ k)mGb−a−k =
m∑

l=0

l![c(l)m (a)Gb−a+2+l − c(l)m (a+ n+ 1)Gb−a−n+1+l], (1)

where, for v an arbitrary variable, the set of coefficients {c(l)m (v); 0 ≤ m; 0 ≤ l ≤ m} is the set
of Carlitzs weighted Stirling polynomials of the second kind.”

The general Fibonacci sequence {Gn}+∞n=−∞ obeys the usual second order recurrence re-
lation

Gn+2 = Gn+1 +Gn; Gn = Aαn +Bβn; (2)
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the real numbers A and B are assumed known. Also note that one recovers the set of Fibonacci
numbers, {Gn = Fn}+∞n=−∞, by choosing A = −B = (α− β)−1 in the above Binet form for the
general Fibonacci numbers, whereas one gets the set of Lucas numbers, {Gn = Ln}+∞n=−∞, by
choosing A = B = 1.

Theorem (1) refers to a generalized convolution because one recovers the standard form
for the convolution of the two sequences of interest here, i. e.

∑n
k=0 k

mGn−k, by putting a = 0
and b = n; see [15] for the definition of the standard form of the convolution of two sequences.

The polynomials introduced by Carlitz in [5] and [6] will be shown to appear in Theorem
(1) in Section II below; Section III will present some applications to generalized and to standard
convolutions.

2. PROOF OF THE THEOREM

The definitions introduced earlier will be used without further reference in what follows.
Let D ≡ x d

dx be a differential operator and, for x 6= 1, consider

n∑
k=0

xk+a =
xa

1− x
− xa+n+1

1− x
. (3)

Acting m times on this equation with D, for m a nonnegative integer, gives

n∑
k=0

(k + a)mxk+a = Dm xa

1− x
−Dmxa+n+1

1− x
. (4)

To determine Dm xv

1−x , for v arbitrary, note that

D0 xv

1− x
=

xv

1− x
; D1 xv

1− x
= v

xv

1− x
+

xv+1

(1− x)2
;

D2 xv

1− x
= v2 xv

1− x
+ (2v + 1)

xv+1

(1− x)2
+ 2

xv+2

(1− x)3
. . . ;

(5)

the general term being

Dm xv

1− x
=

m∑
l=0

d(l)
m (v)

xv+l

(1− x)l+1
, (6)

for m a nonnegative integer.

The coefficients {d(l)
m (v); 0 ≤ m; 0 ≤ l ≤ m} may be found as follows:

First put m+ 1 in place of m in (6) and get

Dm+1 xv

1− x
=

m+1∑
l=0

d
(l)
m+1(v)

xv+l

(1− x)l+1
. (7)
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Then also consider the direct action of D on (6)

D

[
Dm xv

1− x

]
= D

[
m∑

l=0

d(l)
m (v)

xv+l

(1− x)l+1

]

=
m∑

l=0

d(l)
m (v)

[
(v + l)

xv+l

(1− x)l+1
+ (l + 1)

xv+l+1

(1− x)l+2

]

=
m+1∑
l=0

[
(v + l)d(l)

m (v) + ld(l−1)
m (v)

] xv+l

(1− x)l+1
,

(8)

where the last line was arrived at by shifting the dummy index in the second sum of the second
line of (8), l + 1 → l, and by defining d(−1)

m (v) ≡ 0 and d
(m+1)
m (v) ≡ 0. One can now equate

the right-hand member of (7) to that of the last line of (8), since D[Dm . . . ] = Dm+1[. . . ].
Furthermore, because x(6= 1) is an arbitrary variable, one can then equate the coefficients of
xv+l/(1− x)l+1 on both sides of the resulting equation and this gives the following recurrence
for the {d(l)

m } coefficients [13]:

d
(l)
m+1(v) = (v + l)d(l)

m (v) + ld(l−1)
m (v); 0 ≤ m; 0 ≤ l ≤ m;

d
(l=0)
m=0 (v) = 1; d(−1)

m (v) ≡ 0, d(m+1)
m (v) ≡ 0.

(9)

Next, introduce a set of new coefficients, as follows,

{d(l)
m (v) ≡ l!c(l)m (v)},

and get

c
(l)
m+1(v) = (v + l)c(l)m (v) + c(l−1)

m (v); 0 ≤ m; 0 ≤ l ≤ m;

c
(l=0)
m=0 (v) = 1, c(−1)

m (v) ≡ 0, c(m+1)
m (v) ≡ 0.

(10)

This recurrence is now examined.
First note that, for v = 0, (10) is the same as the recurrence for the Stirling numbers of

the second kind, {S(l)
m ; 0 ≤ m, 0 ≤ l ≤ m}; see Gould [14]. In fact, Gould’s convention [14] for

the Stirling numbers of the second kind is used, whereby the usual set of Stirling numbers
of the second kind, {S(l)

m ; 1 ≤ m, 1 ≤ l ≤ m}, as defined in Abramowitz and Stegun [1] for
example, is augmented by including S(0)

0 ≡ 1. This is the set {S(l)
m ; 0 ≤ m, 0 ≤ l ≤ m} which

is referred-to here.
It can thus be seen that (10) generalizes the Stirling numbers of the second kind to a set

of polynomials in the variable v. The corresponding sets of numbers seem to have originally
appeared in the work of Leonard Carlitz, who referred to them as “weighted Stirling numbers
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of the second kind”. In the notation of Carlitz, the coefficient c(l)m (v) would be written as
R(m, l, v): see [5], Section 3, and [6] in its entirety. The notation used in the present Note is
adopted for two main reasons:

a. To maintain the indices in c(l)m as close as possible to the now-standardized nomenclature
for the Stirling numbers of the second kind, S(l)

m , as given in Abramowitz and Stegun [1].
b. To ascribe the letter c to these polynomials, in honor of Carlitz.
A closed-form for Carlitz’s weighted Stirling polynomials of the second kind as a function

of the arbitrary variable v is

c(l)m (v) =
m−l∑
k=0

(
m

k

)
S

(l)
m−kv

k; (11)

a detailed proof was given by Carlitz in [5], Section 3. These polynomials should probably
be called the “Carlitz-Stirling polynomials of the second kind” if it can be ascertained that
Carlitz was indeed the first to study them in [5] and [6]. The first few polynomials are, for
0 ≤ m ≤ 3:

m = 0 : c
(0)
0 (v) = 1;

m = 1 : c
(0)
1 (v) = v; c

(1)
1 (v) = 1;

m = 2 : c
(0)
2 (v) = v2; c

(1)
2 (v) = 2v + 1; c

(2)
2 (v) = 1;

m = 3 : c
(0)
3 (v) = v3; c

(1)
3 (v) = 3v2 + 3v + 1; c

(2)
3 (v) = 3v + 3; c

(3)
3 (v) = 1.

(12)

The general term is given in terms of the augmented Stirling numbers by the closed-form
expression (11) but for l = 0 and for l = m, one gets the following simple expressions,
c
(0)
m (v) = vm and c

(m)
m (v) = 1, respectively. In general one can use (11) to evaluate these

polynomials for any value of the variable v. In particular, the Carlitz-Stirling polynomials of
the second kind can be determined for the values of v which are of interest in (3) and (4):
v = a and v = a+ n+ 1.

Now return to (4) and make the following substitution: x → x−1. With the help of (6),
for v = a and for v = a+ n+ 1, (4) then becomes

n∑
k=0

(k + a)mx−k−a =
m∑

l=0

l!
[
c(l)m (a)

x−a+1

(x− 1)l+1
− c(l)m (a+ n+ 1)

x−a−n

(x− 1)l+1

]
. (13)

Next multiply both sides of this expression by Axb, set x = α and use x− 1 = −β = +α−1 to
get

n∑
k=0

(k + a)mAαb−k−a =
m∑

l=0

l!
[
c(l)m (a)Aαb−a+2+l − c(l)m (a+ n+ 1)Aαb−a−n+1+l

]
. (14)
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Finally return to (13) and multiply both sides by Bxb but this time set x = β, x− 1 = +β−1.
This procedure then gives the β-complement of (14), whereby α and A are simply replaced
everywhere in (14) by β and B, respectively. Finally add (14) to its β-complement and use
the Binet form (2) for the nth general Fibonacci number to get the generalized Fibonacci
convolution theorem which is given in (1).

3. APPLICATIONS OF THE THEOREM

Some direct applications are now considered.
For m = 0 in the general form of the theorem (1), one gets that

n∑
k=0

Gb−a−k = c
(0)
0 (a)Gb−a+2 − c(0)0 (a+ n+ 1)Gb−a−n+1

= Gb−a+2 −Gb−a−n+1,

(15)

upon use of the first line of (12) to determine the coefficients. This is a known result and it is
readily established by rewriting (2) in the following form, Gb−a+2−k − Gb−a+1−k = Gb−a−k,
since the left-hand side then telescopes when summing over the index k.

For m = 1 in (1), get

n∑
k=0

(a+ k)Gb−a−k =
1∑

l=0

l!
[
c
(l)
1 (a)Gb−a+2+l − c(l)1 (a+ n+ 1)Gb−a−n+1+l

]

= c
(0)
1 (a)Gb−a+2 + c

(1)
1 (a)Gb−a+3

−
[
c
(0)
1 (a+ n+ 1)Gb−a−n+1 + c

(1)
1 (a+ n+ 1)Gb−a−n+2

]
= aGb−a+2 +Gb−a+3 − [(a+ n+ 1)Gb−a−n+1 +Gb−a−n+2]

(16)

upon use of the second line of (12).
Next, set a = n and b = 2n in (1) to get

n∑
k=0

(n+ k)mGn−k =
m∑

l=0

l!
[
c(l)m (n)Gn+2+l − c(l)m (2n+ 1)Gl+1

]
. (17)
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For m = 1, this then gives, upon using the second line of (12)),

n∑
k=0

(n+ k)Gn−k =
1∑

l=0

l!
[
c
(l)
1 (n)Gn+2+l − c(l)1 (2n+ 1)Gl+1

]

= c
(0)
1 (n)Gn+2 + c

(1)
1 (n)Gn+3 −

[
c
(0)
1 (2n+ 1)G1 + c

(1)
1 (2n+ 1)G2

]
= nGn+2 +Gn+3 − [(2n+ 1)G1 +G2]
= nGn+2 +Gn+3 − [2(n+ 1)G1 +G0] ;

(18)

(2) was finally used to get the last line of this expression. This result also follows directly from
(16) upon setting a = n and b = 2n.

Now, setting a = 0 and b = n in (1) gives the usual number-theoretic convolution of
the mth powers of the consecutive integer sequence {nm}+∞n=−∞ with the general Fibonacci
sequence {Gn}+∞n=−∞:

n∑
k=0

kmGn−k =
m∑

l=0

l!
[
c(l)m (0)Gn+2+l − c(l)m (n+ 1)Gl+1

]
. (19)

see [15] for the usual definition. For m = 1, for example, one recovers the convolution result
given in [21]. Indeed, putting a = 0 and b = n in (16) yields the convolution of first powers of
the integers with the general Fibonacci numbers,

n∑
k=0

kGn−k = Gn+3 − [(n+ l)G1 +G2]

= Gn+3 − [(n+ 2)G1 +G0]

(20)

upon use of G2 = G1 +G0, from (2).
Similarly, with m = 2 in (19), one finds that

n∑
k=0

k2Gn−k = c
(0)
2 (0)Gn+2 + c

(1)
2 (0)Gn+3 + 2c(2)2 (0)Gn+4

−
[
c
(0)
2 (n+ 1)G1 + c

(1)
2 (n+ 1)G2 + 2c(2)2 (n+ 1)G3

]
= Gn+3 + 2Gn+4 −

[
(n+ 1)2G1 + (2(n+ 1) + 1)G2 + 2G3

]
= Gn+6 −

[
(n2 + 4n+ 8)G1 + (2n+ 5)G0

]
(21)
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with the help of the third line of (12), and of (2).
Finally, proceeding in the same manner, one has the following regular convolution of the

third powers with the general Fibonacci sequence, from (19):

n∑
k=0

k3Gn−k =
3∑

l=0

l!
[
c
(l)
3 (0)Gn+2+l − c(l)3 (n+ 1)Gl+1

]

= 12Gn+4 + 7Gn+3 −
[
(n3 + 6n2 + 24n+ 50)G1 + (3n2 + 15n+ 31)G0

]
.

(22)

The details are omitted because they follow directly from the last line of (12), and from (2),
just as in the previous examples.

Generally speaking, the ease with which the results (15) to (22) can be obtained is quite
remarkable.
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