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ABSTRACT

A positive integer n is called a balancing number if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some natural number r. We prove that there is no Fibonacci balancing number except 1.

1. INTRODUCTION

The sequence {Rn}∞n=0 = R(A,B,R0, R1) is called a second order linear recurrence if the
recurrence relation

Rn = ARn−1 +BRn−2 (n > 1)

holds for its terms, where A, B 6= 0, R0 and R1 are fixed rational integers and |R0|+ |R1| > 0.
The polynomial x2 − Ax − B is called the companion polynomial of the second order linear
recurrence sequence R = R(A,B,R0, R1). The zeros of the companion polynomial will be
denoted by α and β. Using this notation, as it is well known, we get

Rn =
aαn − bβn

α− β
, (1)

where a = R1 −R0β and b = R1 −R0α (see [6]).
A positive integer n is called a balancing number [3] if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some r ∈ Z+. Here r is called the balancer corresponding to the balancing number n. For
example 6 and 35 are balancing numbers with balancers 2 and 14. In a joint paper A. Behera
and G. K. Panda [3] proved that the balancing numbers fulfil the following recurrence relation

Bn+1 = 6Bn −Bn−1 (n > 1) (2)

where B0 = 1 and B1 = 6.
We call a balancing number a Fibonacci balancing number if it is a Fibonacci number,

too. In the next section we prove that there are no Fibonacci balancing numbers.

2. FIBONACCI BALANCING NUMBERS

The equation x2−Dy2 = N with given integers D and N and variables x and y, is called
Pell’s equation. First we prove that the balancing numbers are solutions of a Pell’s equation.
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Theorem 1: The terms of the second order linear recurrence B(6,−1, 1, 6) are the solutions
of the equation

z2 − 8y2 = 1 (3)

for some integer z.
Proof: Let B(6,−1, 1, 6) be a second order linear recurrence and denote by α and β the

zeros of their companion polynomials and D the discriminant of the companion polynomial.
Using (1) and the definition of α and β we get

Bn =
(3 + 2

√
2)αn − (3− 2

√
2)βn

4
√

2
and αβ = 1,

therefore, with y = Bn, we have

1 + 8y2 = 1 + 8B2
n = 1 +

8
32

(
(3 + 2

√
2)2α2n

−2(3 + 2
√

2)(3− 2
√

2)αnβn + (3− 2
√

2)2β2n
)

= 1 +

(
(3 + 2

√
2)αn

2

)2

− 1
2

+

(
(3− 2

√
2)βn

2

)2

=

(
(3 + 2

√
2)αn

2
+

(3− 2
√

2)βn

2

)2

= z2.

Using that α = 3 + 2
√

2, β = 3 − 2
√

2 and the binomial formula it can be proved that z is a
rational integer.

To prove our main result we need the following theorem of P. E. Ferguson [4].
Theorem 2: The only solutions of the equation

x2 − 5y2 = ±4 (4)

are x = ±Ln, y = ±Fn (n = 0, 1, 2, . . . ), where Ln and Fn are the nth terms of the Lucas and
Fibonacci sequences, respectively.

Using the method of A. Baker and H. Davenport we prove that there are finitely many
common solutions of the Pell’s equations (3) and (4). We remark that this result follows from
a theorem of P. Kiss [5], too. In the process we show that there are no Fibonacci balancing
numbers. In the proof we use the following theorem of A. Baker and H. Wüstholz [2].
Theorem 3: Let α1, . . . , αn be algebraic numbers not 0 or 1, and let

Λ = b1 logα1 + · · ·+ bn logαn,

where b1, . . . , bn are rational integers not all zeros.
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We suppose that B = max(|b1|, . . . , |bk|, e) and Ai = max{(H(αi), e} (i = 1, 2, . . . n).
Assume that the field K generated by α1, α2, . . . , αn over the rationals has degree at most d.
If Λ 6= 0 then

log |Λ| > −(16nd)2(n+2) logA1 logA2 . . . logAn logB.

(H(α) is equal to the maximum of absolute values of the coefficients of the minimal defining
polynomial of α.)

The following theorem is the main result of this paper.
Theorem 4: There is no Fibonacci balancing number except 1.

Proof: First we show that there are finitely many common solutions of the equations (5),
(6) and (5′), (6′)

5x2 + 4 = y2 (5) 5x2 − 4 = y2 (5′)

8x2 + 1 = z2 (6) 8x2 + 1 = z2 (6′)

The equations (5) and (5′) can be written as

(y + x
√

5)(y − x
√

5) = 4 (7)

and
(y + x

√
5)(y − x

√
5) = −4. (8)

If we put
y + x

√
5 = (y0 + x0

√
5)(9 + 4

√
5)m

where m ≥ 0, it is easily verified (by combining this equation with its conjugate) that y0 is
always positive but x0 is negative if m is large. Hence we can choose m so that x0 > 0; but if
x1 is defined by

y0 + x0

√
5 = (y1 + x1

√
5)(9 + 4

√
5)

then x1 ≤ 0. Since
y0 + x0

√
5 = (9y1 + 20x1) + (9x1 + 4y1)

√
5

we have y0 = 9y1 + 20x1 and x0 = 9x1 + 4y1. From the previous equations we have x1 =
9x0 − 4y0 and x0 ≤ 4y0

9 . Using equation (5) we have

y2
0 − 4 = 5x2

0 ≤
80
81
y2

0 .

Hence y0 = 3, 7, 18 and x0 = 1, 3, 8, respectively. Thus the general solution of equation (5) is
given by

y + x
√

5 = (3 +
√

5)(9 + 4
√

5)m (9)

y + x
√

5 = (7 + 3
√

5)(9 + 4
√

5)m (10)

y + x
√

5 = (18 + 8
√

5)(9 + 4
√

5)m (11)

where m = 0, 1, 2 . . .
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Using the same method as before with (5′), we find that y1 = 9y0− 20x0 ≤ 0 (in this case
x0 is always positive), whence y2

0 = 5x2
0 − 4 ≤ 400

81 x
2
0, so that x0 = 1, 2, 5 and y0 = 1, 4, 11,

respectively. Thus the general solution of equation (5′) is given by

y + x
√

5 = (1 +
√

5)(9 + 4
√

5)m (12)

y + x
√

5 = (4 + 2
√

5)(9 + 4
√

5)m (13)

y + x
√

5 = (11 + 5
√

5)(9 + 4
√

5)m (14)

where m = 0, 1, 2, . . .
The general solution of equations (6) and (6′) is given by

z +
√

8x = (3 +
√

8)n (15)
where n = 0, 1, 2, . . . We are looking for the common solutions of the equation (9), (10), (11),
(12), (13), (14) with the equations (15). Using (9), (15) and their conjugates we have

2x =
(3 +

√
8)n

√
8

− (3−
√

8)n

√
8

=
3 +
√

5√
5

(9 + 4
√

5)m − 3−
√

5√
5

(9− 4
√

5)m

and so

1√
8

(3 +
√

8)n − (3 +
√

8)−n

√
8

=

√
5 + 3√

5
(9 + 4

√
5)m +

√
5− 3√

5
(9 + 4

√
5)−m.

(16)

Putting

Q =
1√
8

(3 +
√

8)n, P =
√

5 + 3√
5

(9 + 4
√

5)m,

in equation (16) we obtain

Q− 1
8
Q−1 = P − 4

5
P−1. (17)

Since

Q− P =
1
8
Q−1 − 4

5
P−1 <

4
5

(Q−1 − P−1) =
4
5
P −Q
QP

and plainly P > 1 and Q > 1, we have Q < P . Also P − Q = 4
5P
−1 − 1

8Q
−1 < 4

5P
−1 and

P > 20.
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It follows that

0 < log
P

Q
= − log

(
1− P −Q

P

)
<

4
5
P−2 +

(
4
5
P−2

)2

=

4
5
P−2 +

16
25
P−4 < 0.81P−2 <

0.15
(9 + 4

√
5)2m

.

Using the previous inequality and the definitions of P and Q, we get

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
(3 +

√
5)
√

8√
5

<
0.15

(9 + 4
√

5)2m
. (18)

We apply Theorem 3 with n = 3 and

α1 = 9 + 4
√

5 α2 = 3 +
√

8 α3 =
(3 +

√
5)
√

8√
5

.

We use that 0.15((9 + 4
√

5)2)−m < e−5.77m. The equations satisfied by α1, α2, α3 are

α2
1 − 18α1 + 1 = 0 α2

2 − 6α2 + 1 = 0 25α4
3 − 1120α2

3 + 1024 = 0.

Hence A1 = 18, A2 = 6, A3 = 1120 and d = 4. Using Theorem 3 and the previous inequality
we have

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 1120 logm < 1024 logm.

Thus we have
m < 1026.

Using the same method we investigate the equations (10) and (15). We have

2x =
3
√

5 + 7√
5

(9 + 4
√

5)m − 7− 3
√

5√
5

(9− 4
√

5)m =
(3 +

√
8)n

√
8

− (3−
√

8)n

√
8

that is

3
√

5 + 7√
5

(9 + 4
√

5)m − 7− 3
√

5√
5

(9 + 4
√

5)−m =
(3 +

√
8)n

√
8

− (3 +
√

8)−n

√
8

. (19)

If we put

P1 =
7 + 3

√
5√

5
(9 + 4

√
5)m, Q =

1√
8

(3 +
√

8)n (20)
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using (19) and (20) we have

Q− 1
8
Q−1 = P1 −

4
5
P−1

1 .

Using the previous method we have

0 < log
P1

Q
< 0.81P−2

1 <
0.022

(9 + 4
√

5)2m
.

Substituting from (20), we obtain

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
(7 + 3

√
5)
√

8√
5

<
0.022

(9 + 4
√

5)2m
. (21)

We apply Theorem 3 with n = 3 and

α1 = 9 + 4
√

5 α2 = 3 +
√

8 α3 =
(7 + 3

√
5)
√

8√
5

.

The equation
25α4

3 − 7520α2
3 + 1024 = 0

is satisfied by α3, that is A3 = 7520. Using Theorem 3 as above we have

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 7520 logm < 1024 logm.

It follows that
m < 1026.

From the equations (11) and (15) we have

2x =
18 + 8

√
5√

5
(9 + 4

√
5)m − 18− 8

√
5√

5
(9− 4

√
5)m =

(3 +
√

8)n

√
8

− (3−
√

8)n

√
8

that is

18 + 8
√

5√
5

(9 + 4
√

5)m − 18− 8
√

5√
5

(9 + 4
√

5)−m

=
(3 +

√
8)n

√
8

− (3 +
√

8)−n

√
8

. (22)

If we put

P2 =
18 + 8

√
5√

5
(9 + 4

√
5)m, Q =

(3 +
√

8)n

√
8

. (23)
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Using (22) and (23) we have

Q− 1
8
Q−1 = P2 −

4
5
P−1

2 .

As before we obtain

0 < log
P2

Q
= − log

(
1− P2 −Q

P2

)
<

0.004
(9 + 4

√
5)2m

.

Substituting from (23) we have

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
(18 + 8

√
5)
√

8√
5

<
0.004

(9 + 4
√

5)2m
. (24)

We apply Theorem 3 as above with n = 3 and

α1 = 9 + 4
√

5 α2 = 3 +
√

8 α3 =
(18 + 8

√
5)
√

8√
5

.

The equation
25α4 − 51520α2 + 1024 = 0

is satisfied by α3 and so A3 = 51520.

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 51520 logm < 1024 logm.

It follows that
m < 1026.

¿From the equations (12) and (15) we have

2x =
1 +
√

5√
5

(9 + 4
√

5)m − 1−
√

5√
5

(9− 4
√

5)m =
(3 +

√
8)n

√
8

− (3−
√

8)n

√
8

that is

1 +
√

5√
5

(9 + 4
√

5)m − 1−
√

5√
5

(9 + 4
√

5)−m =
(3 +

√
8)n

√
8

− (3 +
√

8)−n

√
8

. (25)

If we put

P3 =
1 +
√

5√
5

(9 + 4
√

5)m, Q =
(3 +

√
8)n

√
8

. (26)
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Using (25) and (26) we have

Q− 1
8
Q−1 = P3 +

4
5
P−1

3 .

From the previous equation we have

Q− P3 =
4
5
P−1

3 +
1
8
Q−1 > 0

that is Q > P3 and

Q− P3 <
4
5
P−1

3 +
1
8
P−1

3 =
37
40
P−1

3 .

It follows that

0 < log
Q

P3
= log

(
1 +

Q− P3

P3

)
<

37
40
P−2

3

+
(

37
40
P−2

3

)2

< 0.926P−2
3 < 0.443

1
(9 + 4

√
5)2m

and so

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
√

5
(1 +

√
5)
√

8
<

0.443
(9 + 4

√
5)2m

. (27)

Using the previous method and that the equation

1024α4 − 480α2 + 25 = 0

is satisfied by α3 =
√

5
(1+
√

5)
√

8
and so A3 = 1024. It follows that

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 1024 logm < 1024 logm.

It follows that
m < 1026.

¿From the equations (13) and (15) we have

4 + 2
√

5√
5

(9 + 4
√

5)m − 4− 2
√

5√
5

(9− 4
√

5)m =
(3 +

√
8)n

√
8

− (3−
√

8)n

√
8

.

337



FIBONACCI BALANCING NUMBERS

If we put

P4 =
4 + 2

√
5√

5
(9 + 4

√
5)m, Q =

(3 +
√

8)n

√
8

we get similar inequalities as before. We have

0 < log
Q

P4
< 0.926P−2

4 < 0.065
1

(9 + 4
√

5)2m

and

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
√

5
(4 + 2

√
5)
√

8
< 0.065

1
(9 + 4

√
5)2m

. (28)

The equation
62464α4 − 2880α2 + 5 = 0

is satisfied by α3 =
√

5
(4+2

√
5)
√

8
and so A3 = 62464. We use the Theorem of A. Baker and G.

Wüstholz again and we have

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 62464 logm < 1024 logm.

It follows that
m < 1026.

Finally let’s consider the equations (14) and (15). We have

11 + 5
√

5√
5

(9 + 4
√

5)m − 11− 5
√

5√
5

(9− 4
√

5)m =
(3 +

√
8)n

√
8

− (3−
√

8)n

√
8

.

If we put

P5 =
11 + 5

√
5√

5
(9 + 4

√
5)m, Q =

(3 +
√

8)n

√
8

and we use the previous steps we have

0 < log
Q

P5
< 0.926P−2

5 < 0.0095
1

(9 + 4
√

5)2m

and

0 < m log(9 + 4
√

5)− n log(3 +
√

8) + log
√

5
(11 + 5

√
5)
√

8
<

0.0095
(9 + 4

√
5)2m

. (29)

The equation
1024α4 − 19680α2 + 25 = 0
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is satisfied by α3 =
√

5
(11+5

√
5)
√

8
and so A3 = 19680. We apply again Theorem 3 and we have

m <
1

5.77
(16× 3× 4)10 log 18 log 6 log 19680 logm < 1024 logm.

It follows that
m < 1026.

We get that there are finitely many common solutions of simultaneous equations, that is,
there are finitely many Fibonacci balancing numbers. Since the bounds for m are too high
(m < 1026) we can’t investigate all of them. In order to get a lower bound we use the following
lemma of A. Baker and H. Davenport [1].
Lemma: Suppose that K > 6. For any positive integer M , let p and q be integers satisfying

1 ≤ q ≤ KM, |θq − p| < 2(KM)−1.

Then, if ‖qβ‖ ≥ 3K−1, there is no solution of the equation

|mθ − n+ β| < C−m

in the range

logK2M

logC
< m < M.

(It is supposed that θ, β are real numbers and C > 1. ‖z‖ denotes the distance of a real
number z from the nearest integer.)

We divide the inequality (18) by log(3 +
√

8) and we show the steps of reduction. In the
other cases, (21), (24), (27), (28) and (29), the method is similar. Using the lemma we have

C = (9 + 4
√

5)2 = 321.997 . . . , θ =
log(9 + 4

√
5)

log(3 +
√

8)

and

β = log
(3 +

√
5)
√

8√
5

(log(3 +
√

8))−1.

In our case we take M = 1026,K = 100. Let θ0 be the value of θ correct to 56 decimal places,
so that

|θ − θ0| < 10−56.

Let p
q be the last convergent to the continued fraction for θ0 which satisfies q < 1028; then

|qθ0 − p| < 10−28. We therefore have

|qθ − p| ≤ q|θ − θ0|+ |qθ0 − p| < 2× 10−28.

In this case the first and the second inequalities of the Lemma are satisfied. The values of θ, β
and q computed by Maple are given in Appendix. We have that ‖qβ‖ = 0.4049 . . . . It follows
from the lemma, since ‖qβ‖ ≥ 0.03, there is no solution of (18) in the range

log 1030

log 321, 997
< m < 1026.

339



FIBONACCI BALANCING NUMBERS

That is m less than 12, so we can calculate by hand that there is no Fibonacci balancing
number in this case. We get the same result in the other cases, too.
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APPENDIX

θ = 1.63793820967634701166977102458136522855627526286714168251888
q = 7850704948944850577723978282

β = 0.683802570095316530188645755603264115583997429421277165474604

‖qβ‖ = 0.40491601596865450151807911061885

β1 = 0.927971982080690912034348902586612330166885855136454628067058

‖qβ1‖ = 0.37968838470510105521228687874339

β2 = 1.17214139406606529388005204956996054474977428085163209065951

‖qβ2‖ = 0.16429278537885661194265286810565

β3 = 0.154978562941451479440940970305750253328169371359925159498283

‖qβ3‖ = 0.33226779145594849106219897740840

β4 = 0.0591965435160195851616114482936309354429984974481845288541785

‖qβ4‖ = 0.430569855681915879338549291400673

β5 = 0.0226110676066072760438933745751425530008261209846284270642526

‖qβ5‖ = 0.376022641498303870922153148389585

REFERENCES

[1] A. Baker and H. Davenport. “The Equations 3x2 − 2 = y2 and 8x2 − 7 = z2.” Quart. J.
Math. Oxford 20.2 (1969): 129–137.
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