ON THE PARITY OF THE PARTITION FUNCTION

Neville Robbins

Mathematics Department, San Francisco State University, San Francisco, CA 94132
(Submitted May 2002-Final Revision November 2002)
Let $p(n)$ denote the unrestricted partition function. Some time ago, O. Kolberg [3] proved that $p(n)$ changes parity infinitely often. In this note, we offer an alternate proof of this fact.
Lemma 1: Let $N=\{0,1,2, \ldots\}$. Let r be a function from N to N such that $r(k)-r(k-1) \rightarrow$ ∞ as $k \rightarrow \infty$. Consider the following functions of x, expressed as series with coefficients in GF(2):

$$
f(x)=\sum_{n=0}^{\infty} a(n) x^{n}
$$

where for each integer $n \geq 0$, we have

$$
\begin{aligned}
& a(n)=\left\{\begin{array}{l}
1 \text { if } \mathrm{n}=\mathrm{r}(\mathrm{k}) \text { for some } k \in N \\
0 \text { otherwise }
\end{array}\right. \\
& g(x)=\sum_{n=0}^{\infty} b(n) x^{n}
\end{aligned}
$$

where $b(0)=1$ and $b(n)=0$ if $n>m$ for some fixed m;

$$
h(x)=f(x) g(x)=\sum_{n=0}^{\infty} c(n) x^{n}
$$

Then $c(n)=1$ for infinitely many n.
Remark: There are many examples of functions from N to N that satisfy the conditions of Lemma 1. For example, let $r(k)=k^{m}$ where the integer $m \geq 2$.

Proof: Suppose that $c(n)=0 \quad \forall n>t$ for some t. By hypothesis, there exists k such that $r(k)-r(k-1)>t$. Choose $n=r(k)$. Now

$$
c(n)=\sum_{j=0}^{n} a(n-j) b(j)=a(r(k)) b(0)+\sum_{j \geq 1} a(r(k-j)) b(r(k)-r(k-j))
$$

But $\forall j \geq 1$ we have $r(k)-r(k-j) \geq r(k)-r(k-1)>t$ by hypothesis. Therefore $b(r(k)-$ $r(k-j))=0 \quad \forall j \geq 1$ by hypothesis, which in turn implies $c(n)=a(r(k))=1$, contrary to hypothesis. We are done.

In the proof of Theorem 1, which follows below, we will make use of the well-known identities:

$$
\begin{align*}
\prod_{n=1}^{\infty}\left(1-x^{n}\right)= & 1+\sum_{k=1}^{\infty}(-1)^{k}\left(x^{k(3 k-1) / 2}+x^{k(3 k+1) / 2}\right) \tag{1}\\
& \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-1}=\sum_{n=0}^{\infty} p(n) x^{n}
\end{align*}
$$

Remarks: Identity (1) is due to Euler. (See [1], p. 17, (1.3.1) or [2], p. 284, Theorem 353). Identity (2) may be found in [2], p. 274, (19.3.1). Both identities assume that x is a complex variable such that $|x|<1$.

Theorem 1: $p(n)$ changes parity infinitely often.
Proof: Assuming that x is a complex variable such that $|x|<1$, let

$$
P(x)=\prod_{n=1}^{\infty}\left(1+x^{n}\right)
$$

Now (1) implies

$$
P(x) \equiv 1+\sum_{k=1}^{\infty}\left(x^{k(3 k-1) / 2}+x^{k(3 k+1) / 2}\right) \quad(\bmod 2)
$$

Also, (2) implies

$$
Q(x) \equiv \prod_{n=1}^{\infty}\left(1+x^{n}\right)^{-1} \equiv \sum_{n=0}^{\infty} p(n) x^{n} \equiv \sum_{n=0}^{\infty} b(n) x^{n} \quad(\bmod 2)
$$

where

$$
b(n)=\left\{\begin{array}{l}
1 \text { if } p(n) \text { is odd } \\
0 \text { if } p(n) \text { is even. }
\end{array}\right.
$$

Moreover, we have

$$
h(x)=P(x) Q(x)=1
$$

Note that $P(x)$ satisfies the hypothesis of Lemma 1 with regard to $f(x)$. If $p(n)$ is odd for only finitely many n, then $Q(x)$ also satisfies the hypothesis of Lemma 1 with regard to $g(x)$. But we have a contradiction, since $h(x)=1$. Therefore $p(n)$ is odd for infinitely many n.

Now suppose that $p(n)$ is even for only finitely many n, that is,

$$
Q(x)=1+x+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{12}+\cdots+x^{s}+x^{r}+x^{r+1}+x^{r+2}+\cdots
$$

where $s \leq r-1$, that is

$$
Q(x) \equiv 1+x+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{12}+\cdots+x^{s}+\frac{x^{r}}{1+x} \quad(\bmod 2)
$$

Then we have

$$
(1+x) Q(x) \equiv(1+x)\left(1+x+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{12}+\cdots+x^{s}\right)+x^{r} \quad(\bmod 2)
$$

Now $(1+x) Q(x)$ satisfies the hypothesis of Lemma 1 with respect to $g(x)$. But

$$
h(x)=P(x)(1+x) Q(x)=1+x
$$

which contradicts Lemma 1. Therefore $p(n)$ is even for infinitely many n .

REFERENCES

[1] George E. Andrews. The Theory of Partitions, (1976) Cambridge University Press.
[2] G. H. Hardy \& E. M. Wright . An Introduction to the Theory of Numbers, $4^{\text {th }}$ Ed. (1960) Oxford University Press.
[3] O. Kolberg. "Note on the Parity of the Partition Function." Math. Scand. 7 (1959): 377-378.

AMS Classification Numbers: 11P83

※ ※

