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In [2], Weiss and Dishon improved an earlier result of Narayana and Kreweras, by proving
that for r, s ≥ 1
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(the notation [urvs]f(u, v) refers to the coefficient of urvs in the power series expansion of
f(u, v)).

However, the really easy method in this context is the Lagrange inversion formula as will be
demonstrated now. If S = (1−u−v−

√
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Now the Lagrange inversion formula tells us (see, e.g., [1]) that
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or, with v = St,
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which is clearly equivalent to the statement to be proved.
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