ON PELL PARTITIONS

Arnold Knopfmacher

John Knopfmacher Centre for Applicable Analysis and Number Theory, University of the Witwatersrand, Johannesburg, South Africa

Neville Robbins

Mathematics Department, San Francisco State University, San Francisco, CA 94132
(Submitted April 2002-Final Revision August 2002)

1. INTRODUCTION

The Pell sequence, denoted $\left\{P_{n}\right\}$, is defined for $n \geq 0$ by:

$$
\begin{equation*}
P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2} \quad \text { for } \quad n \geq 2 \tag{1}
\end{equation*}
$$

Let U_{n} denote the number of partitions of the natural number n, all of whose parts belong to $\left\{P_{n}\right\}$. In this note, we present a recursive algorithm for computing U_{n}. The techniques used here are also applicable to other second order linear recurrences that have the property of being super-increasing, that is, where each term exceeds the sum of all its predecessors. In [1], the second author solved the corresponding problem for the Fibonacci sequence.

2. MAIN RESULTS

Remarks: It is easily seen from (1) that $\left\{P_{n}\right\}$ is strictly increasing. Furthermore, we have:
Theorem 1: If $n \geq 1$, then

$$
\begin{equation*}
\sum_{j=1}^{n} P_{j}=\frac{1}{2}\left(P_{n+1}+P_{n}-1\right) \tag{2}
\end{equation*}
$$

Proof: Use (1) and induction on n.
Next, we will show that every natural number has a unique greedy representation as a sum of Pell numbers. Let k be the unique index such that $P_{k} \leq m<P_{k+1}$. Now (1) implies $P_{k} \leq m<2 P_{k}+P_{k-1}$. In the greedy algorithm, we subtract from m the largest possible multiple of P_{k}, that is, we write:

$$
m=t P_{k}+\left(m-t P_{k}\right)
$$

where the multiplier $t \in\{1,2\}$. We then iterate the process on the remainder and continue until we obtain a zero remainder. This yields a representation of m as a sum of Pell numbers. At each iteration, the values of the index and of the multiplier are uniquely determined. Therefore, the greedy Pell representation of m is unique.

For example, let $m=151$. Since $P_{6}=70<151<169=P_{7}$, we write $151=2(70)+11$. Since $P_{3}=5<11<12=P_{4}$, we write $11=2(5)+1$. Since $1=P_{1}$, we have $151=$ $2(70)+2(5)+1$.

Theorem 2: If $m \in N$, then m has a unique representation:

$$
m=\sum_{i=1}^{k} c_{i} P_{i}
$$

where each $c_{i} \in\{0,1,2\}, c_{k} \neq 0$, and if $c_{i}=2$, then $i \geq 2$ and $c_{i-1}=0$.
Proof: The statement is trivially true if $m=P_{k}$ for some $k \geq 1$ or if $m=2 P_{k}$ for some $k \geq 2$. In particular, therefore, it is true when $m \in\{1,2\}$. Otherwise, we let k be the unique integer such that $P_{k}<m<P_{k+1}$, that is, $P_{k}<m<2 P_{k}+P_{k-1}$, and use induction on k.
Case 1: If $P_{k}<m<2 P_{k}$, then $0<m-P_{k}<P_{k}$, so by induction hypothesis, we have

$$
m-P_{k}=\sum_{i=1}^{s} c_{i} P_{i}
$$

where $1 \leq s \leq k-1, c_{s} \neq 0, \forall c_{i} \in\{0,1,2\}$, and if $c_{i}=2$, then $i \geq 2$ and $c_{i-1}=0$. Therefore

$$
m=P_{k}+\sum_{i=1}^{s} c_{i} P_{i}=\sum_{i=1}^{k} c_{i} P_{i}
$$

where $c_{k}=1$ and if $s \leq k-2$, then $c_{s+1}=c_{s+2}=\cdots=c_{k-1}=0$.
Case 2: If $2 P_{k}<m<2 P_{k}+P_{k-1}$, then $0<m-2 P_{k}<P_{k-1}$, so by induction hypothesis, we have

$$
m-2 P_{k}=\sum_{i=1}^{s} c_{i} P_{i}
$$

where $1 \leq s \leq k-1, c_{s} \neq 0, \forall c_{i} \in\{0,1,2\}$, and if $c_{i}=2$, then $i \geq 2$ and $c_{i-1}=0$. Therefore

$$
m=2 P_{k}+\sum_{i=1}^{s} c_{i} P_{i}=\sum_{i=1}^{k} c_{i} P_{i}
$$

where $c_{k}=2$ and $c_{s+1}=c_{s+2}=\cdots=c_{k-1}=0$. Since k is uniquely determined, it follows that the greedy representation of m as a sum of Pell numbers is also unique.
Remarks: If $m>1$, then by repeated use of (1), one may generate additional Pell representations of m that satisfy some, but not all of the conditions of the conclusion of Theorem 2. For example,

$$
30=29+1=P_{5}+P_{1}
$$

but also

$$
30=2(12)+5+1=2 P_{4}+P_{3}+P_{1}
$$

The first of these two Pell representations of 30 is greedy; the second is not.
If $\left\{u_{n}\right\}$ is a strictly increasing sequence of natural numbers, let

$$
\begin{equation*}
g(z)=\prod_{n \geq 1}\left(1-z^{u_{n}}\right) \tag{3}
\end{equation*}
$$

The product in (9) converges absolutely to an analytic function without zeroes on compact subsets of the unit disc. Let $g(z)$ have the Maclaurin series representation:

$$
\begin{equation*}
g(z)=\sum_{n \geq 0} a_{n} z^{n} \tag{4}
\end{equation*}
$$

Here $a_{0}=1$. If $n \geq 1$, then a_{n} is the difference between the number of partitions of n into evenly many distinct parts from $\left\{u_{n}\right\}$ and the number of partitions of n into oddly many distinct parts from $\left\{u_{n}\right\}$. If we let

$$
\begin{equation*}
f(z)=1 / g(z) \tag{5}
\end{equation*}
$$

then $f(z)$ is also an analytic function without zeroes on compact subsets of the unit disc. We have:

$$
\begin{equation*}
f(z)=\prod_{n \geq 1}\left(1-z^{u_{n}}\right)^{-1}=\sum_{n \geq 0} U_{n} z^{n} \tag{6}
\end{equation*}
$$

with $U_{0}=0$, where U_{n} denotes the number of partitions of n into parts from $\left\{u_{n}\right\}$. Since $f(z) g(z)=1$, we obtain the recurrence relation:

$$
\begin{equation*}
\sum_{k=0}^{n} a_{n-k} U_{k}=0 \tag{7}
\end{equation*}
$$

for $n \geq 1$. This provides a convenient way to compute the U_{n}, once the a_{n} are known. The following theorem is helpful, not only for the Pell sequence, but for any sequence of natural numbers that is super-increasing.
Theorem 3: Let $\left\{u_{n}\right\}$ be a strictly increasing sequence of natural numbers. If z is a complex variable such that $|z|<1$, let

$$
g(z)=\prod_{n \geq 1}\left(1-z^{u_{n}}\right)=\sum_{n \geq 0} a_{n} z^{n}
$$

Suppose that

$$
u_{n}>\sum_{j=1}^{n-1} u_{j} \quad \forall n \geq 2
$$

Then $\forall n \geq 0$, we have

$$
a_{n} \in\{-1,0,1\}
$$

Proof: If $m \geq 1$, let

$$
g_{m}(z)=\prod_{k=1}^{m}\left(1-z^{u_{k}}\right)=\sum_{n \geq 0} a_{m, n} z^{n}
$$

An elementary argument shows that

$$
\lim _{m \rightarrow \infty} g_{m}(z)=g(z)
$$

so that

$$
\lim _{m \rightarrow \infty} a_{m, n}=a_{n} \quad \forall n
$$

Therefore it suffices to prove that $a_{m, n} \in\{-1,0,1\} \quad \forall m, n$. This will be done by induction on m. Now

$$
g_{1}(z)=1-z^{u_{1}}
$$

so the statement holds for $m=1$. Also

$$
g_{m+1}(z)=\left(1-z^{u_{m+1}}\right) g_{m}(z)
$$

Since $u_{m+1}>\sum_{j=1}^{m} u_{j}$ by hypothesis, it follows that $a_{m+1, n}=a_{m, n} \forall n \leq \sum_{j=1}^{m} u_{j}$. The conclusion now follows by applying the induction hypothesis.

The following theorem shows the relation between the greedy Pell representation of n and the coefficient a_{n} :
Theorem 4: Let

$$
g(z)=\prod_{n \geq 1}\left(1-z^{P_{n}}\right)=\sum_{n \geq 0} a_{n} z^{n}
$$

Let n have the greedy Pell representation:

$$
n=\sum_{i=1}^{r} c_{i} P_{i}
$$

where each $c_{i} \in\{0,1,2\}$ and $c_{r} \neq 0$. If there exists i such that $c_{i}=2$, then $a_{n}=0$. Otherwise, $a_{n}=(-1)^{t}$ where t is the number of indices, i, such that $c_{i}=1$.

Proof: First, we verify that by (1) and Theorem $1,\left\{P_{n}\right\}$ is super-increasing, that is,

$$
P_{n+1}>\sum_{j=1}^{n} P_{j} \quad \forall n \geq 1
$$

If 2 occurs as a digit, then since $\left\{P_{n}\right\}$ is super-increasing, there can be no representation of n as a sum of distinct Pell numbers, so $a_{n}=0$. If the greedy Pell representation of n has $t 1^{\prime} s$ and no $2^{\prime} s$, then n is the unique sum of t Pell numbers, so $a_{n}=1$ if t is even and $a_{n}=-1$ if t is odd, that is, $a_{n}=(-1)^{t}$.

We conclude by listing some numerical results in Table 1 below. For each n such that $0 \leq n \leq 50$, we list the greedy Pell representation of n, followed by a_{n} and U_{n}.

n	$P e l l(n)$	a_{n}	U_{n}	n	$\operatorname{Pell}(n)$	a_{n}	U_{n}
0	0	1	1	26	2010	0	63
1	1	-1	1	27	2011	0	68
2	10	-1	2	28	2020	0	74
3	11	1	2	29	10000	-1	81
4	20	0	3	30	10001	1	88
5	100	-1	4	31	10010	1	95
6	101	1	5	32	10011	-1	103
7	110	1	6	33	10020	0	110
8	111	-1	7	34	10100	1	120
9	120	0	8	35	10101	-1	128
10	200	0	10	36	10110	-1	139
11	201	0	11	37	10111	1	148
12	1000	-1	14	38	10120	0	159
13	1001	1	15	39	10200	0	170
14	1010	1	18	40	10201	0	182
15	1011	-1	20	41	11000	1	195
16	1020	0	23	42	11001	-1	208
17	1100	1	26	43	11010	-1	221
18	1101	-1	29	44	11011	1	236
19	1110	-1	32	45	11020	0	250
20	1111	1	36	46	11100	-1	267
21	1120	0	39	47	11101	1	282
22	1200	0	44	48	11110	1	300
23	1201	0	47	49	11111	-1	317
24	2000	0	53	50	11120	0	336
25	2001	0	57				

Table 1: Pell Partitions

REFERENCES

[1] N. Robbins. "Fibonacci partitions." The Fibonacci Quarterly 34 (1996): 306-313.
AMS Classification Numbers: 11P83

世至

