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1. INTRODUCTION

The Pell sequence, denoted {Pn}, is defined for n ≥ 0 by:

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2. (1)

Let Un denote the number of partitions of the natural number n, all of whose parts belong
to {Pn}. In this note, we present a recursive algorithm for computing Un. The techniques
used here are also applicable to other second order linear recurrences that have the property
of being super-increasing, that is, where each term exceeds the sum of all its predecessors. In
[1], the second author solved the corresponding problem for the Fibonacci sequence.

2. MAIN RESULTS

Remarks: It is easily seen from (1) that {Pn} is strictly increasing. Furthermore, we have:
Theorem 1: If n ≥ 1, then

n∑
j=1

Pj =
1
2

(Pn+1 + Pn − 1). (2)

Proof: Use (1) and induction on n.
Next, we will show that every natural number has a unique greedy representation as a

sum of Pell numbers. Let k be the unique index such that Pk ≤ m < Pk+1. Now (1) implies
Pk ≤ m < 2Pk + Pk−1. In the greedy algorithm, we subtract from m the largest possible
multiple of Pk, that is, we write:

m = tPk + (m− tPk)

where the multiplier t ∈ {1, 2}. We then iterate the process on the remainder and continue
until we obtain a zero remainder. This yields a representation of m as a sum of Pell numbers.
At each iteration, the values of the index and of the multiplier are uniquely determined.
Therefore, the greedy Pell representation of m is unique.

For example, let m = 151. Since P6 = 70 < 151 < 169 = P7, we write 151 = 2(70) + 11.
Since P3 = 5 < 11 < 12 = P4, we write 11 = 2(5) + 1. Since 1 = P1, we have 151 =
2(70) + 2(5) + 1.
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Theorem 2: If m ∈ N , then m has a unique representation:

m =
k∑

i=1

ciPi

where each ci ∈ {0, 1, 2}, ck 6= 0, and if ci = 2, then i ≥ 2 and ci−1 = 0.
Proof: The statement is trivially true if m = Pk for some k ≥ 1 or if m = 2Pk for some

k ≥ 2. In particular, therefore, it is true when m ∈ {1, 2}. Otherwise, we let k be the unique
integer such that Pk < m < Pk+1, that is, Pk < m < 2Pk + Pk−1, and use induction on k.
Case 1: If Pk < m < 2Pk, then 0 < m− Pk < Pk, so by induction hypothesis, we have

m− Pk =
s∑

i=1

ciPi

where 1 ≤ s ≤ k − 1, cs 6= 0, ∀ci ∈ {0, 1, 2}, and if ci = 2, then i ≥ 2 and ci−1 = 0. Therefore

m = Pk +
s∑

i=1

ciPi =
k∑

i=1

ciPi

where ck = 1 and if s ≤ k − 2, then cs+1 = cs+2 = · · · = ck−1 = 0.
Case 2: If 2Pk < m < 2Pk + Pk−1, then 0 < m− 2Pk < Pk−1, so by induction hypothesis, we
have

m− 2Pk =
s∑

i=1

ciPi

where 1 ≤ s ≤ k − 1, cs 6= 0,∀ci ∈ {0, 1, 2}, and if ci = 2, then i ≥ 2 and ci−1 = 0. Therefore

m = 2Pk +
s∑

i=1

ciPi =
k∑

i=1

ciPi

where ck = 2 and cs+1 = cs+2 = · · · = ck−1 = 0. Since k is uniquely determined, it follows
that the greedy representation of m as a sum of Pell numbers is also unique.
Remarks: If m > 1, then by repeated use of (1), one may generate additional Pell represen-
tations of m that satisfy some, but not all of the conditions of the conclusion of Theorem 2.
For example,

30 = 29 + 1 = P5 + P1

but also
30 = 2(12) + 5 + 1 = 2P4 + P3 + P1.

The first of these two Pell representations of 30 is greedy; the second is not.
If {un} is a strictly increasing sequence of natural numbers, let

g(z) =
∏
n≥1

(1− zun). (3)
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The product in (9) converges absolutely to an analytic function without zeroes on compact
subsets of the unit disc. Let g(z) have the Maclaurin series representation:

g(z) =
∑
n≥0

anzn. (4)

Here a0 = 1. If n ≥ 1, then an is the difference between the number of partitions of n into
evenly many distinct parts from {un} and the number of partitions of n into oddly many
distinct parts from {un}. If we let

f(z) = 1/g(z) (5)

then f(z) is also an analytic function without zeroes on compact subsets of the unit disc. We
have:

f(z) =
∏
n≥1

(1− zun)−1 =
∑
n≥0

Unzn (6)

with U0 = 0, where Un denotes the number of partitions of n into parts from {un}. Since
f(z)g(z) = 1, we obtain the recurrence relation:

n∑
k=0

an−kUk = 0 (7)

for n ≥ 1. This provides a convenient way to compute the Un, once the an are known. The
following theorem is helpful, not only for the Pell sequence, but for any sequence of natural
numbers that is super-increasing.
Theorem 3: Let {un} be a strictly increasing sequence of natural numbers. If z is a complex
variable such that |z| < 1, let

g(z) =
∏
n≥1

(1− zun) =
∑
n≥0

anzn.

Suppose that

un >

n−1∑
j=1

uj ∀n ≥ 2.

Then ∀n ≥ 0, we have
an ∈ {−1, 0, 1}.

Proof: If m ≥ 1, let

gm(z) =
m∏

k=1

(1− zuk) =
∑
n≥0

am,nzn.

An elementary argument shows that

lim
m→∞

gm(z) = g(z)

so that
lim

m→∞
am,n = an ∀n.
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Therefore it suffices to prove that am,n ∈ {−1, 0, 1} ∀m, n. This will be done by induction
on m. Now

g1(z) = 1− zu1

so the statement holds for m = 1. Also

gm+1(z) = (1− zum+1)gm(z).

Since um+1 >
∑m

j=1 uj by hypothesis, it follows that am+1,n = am,n∀n ≤
∑m

j=1 uj . The
conclusion now follows by applying the induction hypothesis.

The following theorem shows the relation between the greedy Pell representation of n and
the coefficient an:
Theorem 4: Let

g(z) =
∏
n≥1

(1− zPn) =
∑
n≥0

anzn.

Let n have the greedy Pell representation:

n =
r∑

i=1

ciPi

where each ci ∈ {0, 1, 2} and cr 6= 0. If there exists i such that ci = 2, then an = 0. Otherwise,
an = (−1)t where t is the number of indices, i, such that ci = 1.

Proof: First, we verify that by (1) and Theorem 1, {Pn} is super-increasing, that is,

Pn+1 >

n∑
j=1

Pj ∀n ≥ 1.

If 2 occurs as a digit, then since {Pn} is super-increasing, there can be no representation of n
as a sum of distinct Pell numbers, so an = 0. If the greedy Pell representation of n has t 1′s
and no 2′s, then n is the unique sum of t Pell numbers, so an = 1 if t is even and an = −1 if t
is odd, that is, an = (−1)t.

351



ON PELL PARTITIONS

We conclude by listing some numerical results in Table 1 below. For each n such that
0 ≤ n ≤ 50, we list the greedy Pell representation of n, followed by an and Un.

n Pell(n) an Un n Pell(n) an Un

0 0 1 1 26 2010 0 63
1 1 −1 1 27 2011 0 68
2 10 −1 2 28 2020 0 74
3 11 1 2 29 10000 −1 81
4 20 0 3 30 10001 1 88
5 100 −1 4 31 10010 1 95
6 101 1 5 32 10011 −1 103
7 110 1 6 33 10020 0 110
8 111 −1 7 34 10100 1 120
9 120 0 8 35 10101 −1 128

10 200 0 10 36 10110 −1 139
11 201 0 11 37 10111 1 148
12 1000 −1 14 38 10120 0 159
13 1001 1 15 39 10200 0 170
14 1010 1 18 40 10201 0 182
15 1011 −1 20 41 11000 1 195
16 1020 0 23 42 11001 −1 208
17 1100 1 26 43 11010 −1 221
18 1101 −1 29 44 11011 1 236
19 1110 −1 32 45 11020 0 250
20 1111 1 36 46 11100 −1 267
21 1120 0 39 47 11101 1 282
22 1200 0 44 48 11110 1 300
23 1201 0 47 49 11111 −1 317
24 2000 0 53 50 11120 0 336
25 2001 0 57

Table 1: Pell Partitions

REFERENCES

[1] N. Robbins. “Fibonacci partitions.” The Fibonacci Quarterly 34 (1996): 306-313.

AMS Classification Numbers: 11P83

z z z

352


