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1. INTRODUCTION

A positive integer N is called a heptagonal (generalized heptagonal) number if
N = m(5m−3)

2 for some integer m > 0 (for any integer m). The first few are 1, 7, 18, 34, 55,
81, · · · , and are listed in [3] as sequence number A000566. These numbers have been identified
in the Fibonacci and Lucas sequence (see [4] and [5]). Now, in this paper we consider the Pell
sequence {Pn} defined by

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn for any integer n (1)

and show that 0, 1 and 70 are the only generalized heptagonal numbers in {Pn}. This can
also solve the Diophantine equations of the title. Earlier, McDaniel [1] has proved that 1 is
the only triangular number in the Pell sequence and in [2] it is established that 0, 1, 2, 5, 12
and 70 are the only generalized Pentagonal Numbers in {Pn}.

2. IDENTITIES AND PRELIMINARY LEMMAS

We recall that the associated Pell sequence {Qn} is defined by

Q0 = Q1 = 1 and Qn+2 = 2Qn+1 +Qn for any integer n, (2)

and that it is closely related to the Pell sequence {Pn}. We have the following well-known
properties of these sequences: For all integers m,n, k and t,

Pn = αn−βn

2
√

2
and Qn = αn+βn

2

where α = 1 +
√

2 and β = 1−
√

2

}
(3)

P−n = (−1)n+1Pn and Q−n = (−1)nQn (4)

Q2
n = 2P 2

n + (−1)n (5)

Q3n = Qn(Q2
n + 6P 2

n) (6)

Pm+n = 2PmQn − (−1)nPm−n (7)

Pn+2kt ≡ (−1)t(k+1)Pn (mod Qk) (8)

2|Pn iff 2|n and 2 - Qn for any n (9)

3|Pn iff 4|n and 3|Qn iff n ≡ 2 (mod 4) (10)
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5|Pn iff 3|n and 5 - Qn for any n (11)

9|Pn iff 12|n and 9|Qn iff n ≡ 6 (mod 12). (12)

If m is odd, then

(i) Qm ≡ ±1 (mod 4) according as m ≡ ±1 (mod 4),
(ii) Pm ≡ 1 (mod 4),

(iii) Q2
m + 6P 2

m ≡ 7 (mod 8).

 (13)

Since an integer N is generalized heptagonal if and only if 40N + 9 is the square of an
integer congruent to 7 (mod 10), we have to first identify those n for which 40Pn + 9 is a
perfect square. We begin with
Lemma 1: Suppose n ≡ ±1 (mod 22 · 5). Then 40Pn + 9 is a perfect square if and only if
n = ±1.

Proof: If n = ±1, then by (4) we have 40Pn + 9 = 40P±1 + 9 = 72.
Conversely, suppose n ≡ ±1 (mod 22 · 5) and n 6∈ {−1, 1}. Then n can be written as

n = 2 · 3r · 5m± 1, where r ≥ 0, 3 - m and 2|m. Then m ≡ ±2 (mod 6). Taking

k =
{

5m if m ≡ ±8 or ± 14 (mod 30)
m otherwise

we get that

k ≡ ±2,±4 or ± 10 (mod 30) and that n = 2kg ± 1, where g is odd. (14)

In fact, g = 3r · 5 or 3r. Now, by (8), (14) and (4) we get

40Pn + 9 = 40P2kg±1 + 9 ≡ 40(−1)g(k+1)P±1 + 9 (mod Qk) ≡ −31 (mod Qk).

Therefore, the Jacobi symbol(
40Pn + 9

Qk

)
=
(
−31
Qk

)
=
(
Qk
31

)
. (15)

But modulo 31, {Qn} has periodic with period 30. That is, Qn+30t ≡ Qn (mod 31) for all
integers t ≥ 0. Thus, by (14) and (4), we get Qk ≡ 3, 17 or 15 (mod 31) and in any case(

Qk
31

)
= −1. (16)

From (15) and (16), it follows that
(

40Pn+9
Qk

)
= −1 for n 6∈ {−1, 1} showing 40Pn + 9 is not a

perfect square. Hence the lemma.
Lemma 2: Suppose n ≡ 6 (mod 22 · 53 · 72). Then 40Pn + 9 is a perfect square if and only if
n = 6.

Proof: If n = 6, then 40Pn + 9 = 40P6 + 9 = 532.
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Conversely, suppose n ≡ 6 (mod 22 · 53 · 72) and n 6= 6. Then n can be written as
n = 2 · 53 · 72 · 2r ·m + 6, where r ≥ 1, 2 - m. And since for r ≥ 1, 2r+60 ≡ 2r (mod 2790),
taking

k =



53 · 2r if r ≡ 13 (mod 60)
5 · 2r if r ≡ 4, 6, 16, 23, 24, 25, 27, 28, 29, 30, 51, 53, 55, 57 or 58 (mod 60)
72 · 2r if r ≡ 9, 18, 34, 38, 39, 43 or 56 (mod 60)
7 · 2r if r ≡ 11,±19, 42 or 48 (mod 60)
2r otherwise

we get that

k ≡2, 4, 8, 32, 70, 94, 112, 128, 226, 256, 350, 376, 386, 448, 466, 698,
700, 826, 862, 934, 940, 944, 962, 970, 994, 1024, 1058, 1090, 1118,
1148, 1166, 1250, 1306, 1322, 1396, 1400, 1442, 1504, 1570, 1652,
1682, 1802, 1834, 1862, 1876, 1888, 1924, 1940, 2078, 2236, 2296,
2326, 2434, 2686, 2732 or 2768 (mod 2790) (17)

and
n = 2kg + 6, where g is odd and k is even. (18)

Now, by (8) and (18), we get

40Pn + 9 = 40P2kg+6 + 9 ≡ 40(−1)g(k+1)P6 + 9 (mod Qk) ≡ −2791 (mod Qk).

Hence, the Jacobi symbol (
40Pn + 9

Qk

)
=
(
−2791
Qk

)
=
(
Qk

2791

)
(19)

But modulo 2791, the sequence {Qn} has period 2790. Therefore, by (17), we get

Qk ≡3, 17, 577, 489, 2583, 1422, 2410, 591, 1025, 811, 662, 127, 2248,
915, 1961, 2486, 113, 1934, 817, 1248, 544, 1680, 1969, 2679,
1288, 2585, 21, 2047, 1642, 158, 823, 1381, 2549, 2262, 1843, 418,
525, 2677, 2557, 831, 1330, 862, 1088, 952, 786, 1397, 523, 2759,
1761, 115, 2480, 1778, 1303, 2397, 1669 or 647 (mod 2791)

respectively and for all these values of k, the Jacobi symbol(
Qk

2791

)
= −1. (20)

From (19) and (20), it follows that
(

40Pn+9
Qk

)
= −1 for n 6= 6 showing 40Pn+9 is not a perfect

square. Hence the lemma.
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Lemma 3: Suppose n ≡ 0 (mod 2 · 7 · 53). Then 40Pn + 9 is a perfect square if and only if
n = 0.

Proof: If n = 0, then we have 40Pn + 9 = 40P0 + 9 = 32.
Conversely, suppose n ≡ 0 (mod 2 · 7 · 53) and for n 6= 0 put n = 2 · 7 · 53 · 3r · z, where

r ≥ 0 and 3 - z. Then n = 2m(3k ± 1) for some integer k and odd m. We choose m as follows

m =



53 · 3r if r ≡ 3 or 12 (mod 18)
52 · 3r if r ≡ 1, 7, 10, 14 or 16 (mod 18)
5 · 3r if r ≡ 2, 5 or 11 (mod 18)
7 · 3r if r ≡ 8 or 17 (mod 18)
3r otherwise.

Since for r ≥ 0, 3r+18 ≡ 3r (mod 152), we have

m ≡ 1, 23, 31, 45, 53, 75, 81, 107, 121, 147 or 151 (mod 152). (21)

Therefore, by (8), (4), (6) and the fact that m is odd, we have

40Pn + 9 = 40P2(3m)k±2m + 9 ≡ 40(−1)k(3m+1)P±2m + 9 (mod Q3m)

≡ ±40P2m + 9 (mod Q2
m + 6P 2

m)

according as z ≡ ±1 (mod 3). Letting wm = Q2
m + 6P 2

m and using (5), (7) and (13) we get
that the Jacobi symbol

(
40Pn + 9
wm

)
=
(
±40P2m + 9

wm

)
=
(
±80QmPm − 9Q2

m + 18P 2
m

wm

)
=
(
±80QmPm + 72P 2

m

wm

)

=
(

2
wm

)(
Pm
wm

)(
±10Qm + 9Pm

wm

)
= −

(
wm

±10Qm + 9Pm

)
. (22)

Now, if 3|m then by (11), 5|Pm and from (22) we get

(
40Pn + 9
wm

)
= −

(wm
5

)( wm

±2Qm + 9Pm

5

)

= −

((
±2Qm + 9Pm

5

) (
±2Qm − 9Pm

5

)
+ 681P

2
m

25

±2Qm + 9Pm

5

)

= −
(

681
±2Qm + 9Pm

5

)
= −

(
681

±10Qm + 9Pm

)
.
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And, if 3 - m then by (11), 3 - Pm and from (22) we get that

(
40Pn + 9
wm

)
= −

(
(±10Qm + 9Pm) (±10Qm − 9Pm) + 681P 2

m

±10Qm + 9Pm

)
= −

(
681

±10Qm + 9Pm

)
.

In any case, (
40Pn + 9
wm

)
= −

(
681

±10Qm + 9Pm

)
= −

(
±10Qm + 9Pm

681

)
. (23)

But since modulo 681, the sequence {±10Qm + 9Pm} is periodic with period 152, by (21) it
follows that

10Qm + 9Pm ≡ 19, 125, 251, 509, 395, 1, 10, 430, 172, 532, or 680 (mod 681)

and

−10Qm + 9Pm ≡ 680, 286, 172, 430, 556, 662, 149, 509, 251, 671 or 19 (mod 681).

In any case (
±10Qm + 9Pm

681

)
= 1. (24)

Therefore, from (23) and (24) we get
(

40Pn+9
wm

)
= −1. Hence the lemma.

As a consequence of Lemmas 1 to 3 we have the following.
Corollary 1: Suppose n ≡ 0, ±1 or 6 (mod 24500). Then 40Pn + 9 is a perfect square if
and only if n = 0, ±1 or 6.
Lemma 4: 40Pn + 9 is not a perfect square if n 6≡ 0,±1 or 6 (mod 24500).

Proof: We prove the lemma in different steps eliminating at each stage certain integers n
congruent modulo 24500 for which 40Pn + 9 is not a square. In each step we choose an integer
m such that the period p (of the sequence {Pn} mod m) is a divisor of 24500 and thereby
eliminate certain residue classes modulo p. For example
Mod 41: The sequence {Pn}mod 41 has period 10. We can eliminate n ≡ 2, 4 and 8 (mod 10),
since 40Pn+ 9 ≡ 7, 38 and 11 (mod 41) and they are quadratic nonresidue modulo 41. There
remain n ≡ 0, 1, 3, 5, 6, 7 or 9 (mod 10), equivalently, n ≡ 0, 1, 3, 5, 6, 7, 9, 10, 11, 13, 15, 16, 17,
or 19 (mod 20).

Similarly we can eliminate the remaining values of n. After reaching modulo 24500, if
there remain any values of n we eliminate them in the higher modulo (That is, in the multiples
of 24500). We tabulate them in the following way (Tables A and B).
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Period Modulus Required values of n where ( 40Pn+9
m )=−1 Left out values of n (mod t)

p m where t is a positive

integer

10 41 ±2 and 4 0, ±1, ±3, 5, or 6 (mod 10)

20 29 ±7 and ±9 0, ±1, ±3, ±5, 6, 10, or 16

(mod 20)

100 1549 ±3, ±5, 10, ±17, ±20, ±21, ±23, ±30, ±35,±37, 0,±1, 6, 16, ±19, ±25, 26,
40, ±43, 46, 56, 86, and 96 ±39, 50, or 76 (mod 100)

29201 ±15, 36, ±41, ±45, 60, 66, and 90

700 349 26, ±50, ±61, ±75, ±81, ±99, 126, ±161, ±181, 0, ±1, 6, ±201, or 350

216, ±219, ±225, ±239, ±261, ±300, ±301, (mod 700)

326, ±339, 376, 426, 576, 616, and 676

15401 ±19, ±39, 76, 100, ±101, 106, 116, ±125,
±139, ±150, ±200, 206, 226, 250, 276, ±319,

406, 416, 506, 606, and 626

53549 ±119, ±275, ±281, 316, 450, 476, 516, and 600

70 71 ±11, 16, ±25, 26, 35, and 36

28 13 ±9

98 1471 ±5, ±29, ±33, 34, ±41, ±42, and ±43 0, ±1, 6, 700, 1750,
196 293 14, ±23, ±28, ±51, ±70, ±79, ±83, 84, ±85, ±1899, 2450,or 2806

±89, 90, and 174 (mod 4900)

2450 85751 706, ±1399, and 2106

3500 7001 350, ±499, ±699, ±701, 706, ±1199, 1400, 0, ±1, 6, 1750, 4906, 5600,
±1401, ±1601, 2106, and 2806 6650, ±6799, 10500,

500 129749 ±99, ±101, 300, and 450 12250, 17150, 17506,
286001 50 and 200 19600,or 22406

(mod 24500)

Table A.
We now eliminate: n ≡ 1750, 4906, 5600, 6650, 6799, 10500, 12250, 17150, 17506, 17701,
19600, and 22406 (mod 24500).
Equivalently: n ≡ 1750, 4906, 5600, 6650, 6799, 10500, 12250, 17150, 17506, 17701, 19600,
22406, 26250, 29406, 30100, 31150, 31299, 35000, 36750, 41650, 42006, 42201, 44100 and
46906 (mod 49000).
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Period Modulus Required values of n where Left out values of n (mod t)

p m
(

40Pn+9
m

)
=−1 where t is a positive integer

7000 3499 ±1750, 3150, ±3299, 3506, 5600 10500, 35000, or 42006 (mod 49000)

and 6650 ⇔10500, 35000, 42006, 59500,
217001 1406 and 2100 84000, or 91006 (mod 98000)

1000 499 ±201 and 906

3920 7841 846, 2660, 2806, and 3640 84000 (mod 98000)⇔84000,
80 5521 60 182000 or 280000 (mod 294000)

1176 13523 112 and 504 Completely eliminated in modulo

2100 15749 1400 294000

Table B.

3. MAIN THEOREM

Theorem 1: (a) Pn is a generalized heptagonal number only for n = 0,±1 or 6;
and (b) Pn is a heptagonal number only for n = ±1.

Proof: Part (a) of the theorem follows from Corollary 1 and Lemma 4. For part (b),
since, an integer N is heptagonal if and only if 40N + 9 = (10 ·m− 3)2 where m is a positive
integer, we have the following table.

n 0 ±1 6
Pn 0 1 70

40Pn + 9 32 72 532

m 0 1 −5
Qn 1 ±1 99

Table C.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

If D is a positive integer which is not a perfect square it is well known that x2−Dy2 = ±1
is called the Pell’s equation and that if x1 + y1

√
D is the fundamental solution of it (that is,

x1 and y1 are least positive integers), then xn + yn
√
D =

(
x1 + y1

√
D
)n

is also a solution of

the same equation; and conversely every solution of it is of this form.
Now by (5), we have Q2

n = 2P 2
n + (−1)n for every n. Therefore, it follow that

Q2n +
√

2P2n is a solution of x2 − 2y2 = 1, (25)

while
Q2n+1 +

√
2P2n+1 is a solution of x2 − 2y2 = −1. (26)

We have, by (25), (26), Theorem 1, and Table C, the following two corollaries.
Corollary 2: The solution set of the Diophantine equation 2x2 = y2(5y−3)2−2 is {(±1, 1)}.
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Corollary 3: The solution set of the Diophantine equation 2x2 = y2(5y − 3)2 + 2 is
{(±1, 0), (±99,−5)}.
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