HEPTAGONAL NUMBERS IN THE PELL SEQUENCE

 AND DIOPHANTINE EQUATIONS $2 x^{2}=y^{2}(5 y-3)^{2} \pm 2$
B. Srinivasa Rao

1-5-478/1, New Maruthinagar, Dilsukhnagar, Hyderabad-500 060, A.P., India
(Submitted July 2002)

1. INTRODUCTION

A positive integer N is called a heptagonal (generalized heptagonal) number if $N=\frac{m(5 m-3)}{2}$ for some integer $m>0$ (for any integer m). The first few are $1,7,18,34,55$, $81, \cdots$, and are listed in [3] as sequence number $A 000566$. These numbers have been identified in the Fibonacci and Lucas sequence (see [4] and [5]). Now, in this paper we consider the Pell sequence $\left\{P_{n}\right\}$ defined by

$$
\begin{equation*}
P_{0}=0, P_{1}=1 \text { and } P_{n+2}=2 P_{n+1}+P_{n} \text { for any integer } n \tag{1}
\end{equation*}
$$

and show that 0,1 and 70 are the only generalized heptagonal numbers in $\left\{P_{n}\right\}$. This can also solve the Diophantine equations of the title. Earlier, McDaniel [1] has proved that 1 is the only triangular number in the Pell sequence and in [2] it is established that $0,1,2,5,12$ and 70 are the only generalized Pentagonal Numbers in $\left\{P_{n}\right\}$.

2. IDENTITIES AND PRELIMINARY LEMMAS

We recall that the associated Pell sequence $\left\{Q_{n}\right\}$ is defined by

$$
\begin{equation*}
Q_{0}=Q_{1}=1 \text { and } Q_{n+2}=2 Q_{n+1}+Q_{n} \text { for any integer } n \tag{2}
\end{equation*}
$$

and that it is closely related to the Pell sequence $\left\{P_{n}\right\}$. We have the following well-known properties of these sequences: For all integers m, n, k and t,

$$
\left.\begin{array}{c}
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}} \text { and } Q_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \\
\text { where } \alpha=1+\sqrt{2} \text { and } \beta=1-\sqrt{2}
\end{array}\right\}
$$

HEPTAGONAL NUMBERS IN THE PELL SEQUENCE ...

$$
\begin{gather*}
5 \mid P_{n} \text { iff } 3 \mid n \text { and } 5 \nmid Q_{n} \text { for any } n \tag{11}\\
9 \mid P_{n} \text { iff } 12 \mid n \text { and } 9 \mid Q_{n} \text { iff } n \equiv 6 \quad(\bmod 12) . \tag{12}
\end{gather*}
$$

If m is odd, then

$$
\left.\begin{array}{rl}
\text { (i) } & Q_{m} \equiv \pm 1(\bmod 4) \text { according as } m \equiv \pm 1(\bmod 4) \\
\text { (ii) } & P_{m} \equiv 1(\bmod 4), \tag{13}\\
\text { (iii) } & Q_{m}^{2}+6 P_{m}^{2} \equiv 7(\bmod 8) .
\end{array}\right\}
$$

Since an integer N is generalized heptagonal if and only if $40 N+9$ is the square of an integer congruent to $7(\bmod 10)$, we have to first identify those n for which $40 P_{n}+9$ is a perfect square. We begin with
Lemma 1: Suppose $n \equiv \pm 1\left(\bmod 2^{2} \cdot 5\right)$. Then $40 P_{n}+9$ is a perfect square if and only if $n= \pm 1$.

Proof: If $n= \pm 1$, then by (4) we have $40 P_{n}+9=40 P_{ \pm 1}+9=7^{2}$.
Conversely, suppose $n \equiv \pm 1\left(\bmod 2^{2} \cdot 5\right)$ and $n \notin\{-1,1\}$. Then n can be written as $n=2 \cdot 3^{r} \cdot 5 m \pm 1$, where $r \geq 0,3 \nmid m$ and $2 \mid m$. Then $m \equiv \pm 2(\bmod 6)$. Taking

$$
k= \begin{cases}5 m & \text { if } m \equiv \pm 8 \text { or } \pm 14(\bmod 30) \\ m & \text { otherwise }\end{cases}
$$

we get that

$$
\begin{equation*}
k \equiv \pm 2, \pm 4 \text { or } \pm 10 \quad(\bmod 30) \text { and that } n=2 k g \pm 1, \text { where } g \text { is odd. } \tag{14}
\end{equation*}
$$

In fact, $g=3^{r} \cdot 5$ or 3^{r}. Now, by (8), (14) and (4) we get

$$
40 P_{n}+9=40 P_{2 k g \pm 1}+9 \equiv 40(-1)^{g(k+1)} P_{ \pm 1}+9 \quad\left(\bmod Q_{k}\right) \equiv-31 \quad\left(\bmod Q_{k}\right)
$$

Therefore, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{40 P_{n}+9}{Q_{k}}\right)=\left(\frac{-31}{Q_{k}}\right)=\left(\frac{Q_{k}}{31}\right) . \tag{15}
\end{equation*}
$$

But modulo 31, $\left\{Q_{n}\right\}$ has periodic with period 30. That is, $Q_{n+30 t} \equiv Q_{n}(\bmod 31)$ for all integers $t \geq 0$. Thus, by (14) and (4), we get $Q_{k} \equiv 3,17$ or $15(\bmod 31)$ and in any case

$$
\begin{equation*}
\left(\frac{Q_{k}}{31}\right)=-1 \tag{16}
\end{equation*}
$$

From (15) and (16), it follows that $\left(\frac{40 P_{n}+9}{Q_{k}}\right)=-1$ for $n \notin\{-1,1\}$ showing $40 P_{n}+9$ is not a perfect square. Hence the lemma.
Lemma 2: Suppose $n \equiv 6\left(\bmod 2^{2} \cdot 5^{3} \cdot 7^{2}\right)$. Then $40 P_{n}+9$ is a perfect square if and only if $n=6$.

Proof: If $n=6$, then $40 P_{n}+9=40 P_{6}+9=53^{2}$.

Conversely, suppose $n \equiv 6\left(\bmod 2^{2} \cdot 5^{3} \cdot 7^{2}\right)$ and $n \neq 6$. Then n can be written as $n=2 \cdot 5^{3} \cdot 7^{2} \cdot 2^{r} \cdot m+6$, where $r \geq 1,2 \nmid m$. And since for $r \geq 1,2^{r+60} \equiv 2^{r}(\bmod 2790)$, taking

$$
k= \begin{cases}5^{3} \cdot 2^{r} & \text { if } r \equiv 13(\bmod 60) \\ 5 \cdot 2^{r} & \text { if } r \equiv 4,6,16,23,24,25,27,28,29,30,51,53,55,57 \text { or } 58(\bmod 60) \\ 7^{2} \cdot 2^{r} & \text { if } r \equiv 9,18,34,38,39,43 \operatorname{or} 56(\bmod 60) \\ 7 \cdot 2^{r} & \text { if } r \equiv 11, \pm 19,42 \text { or } 48(\bmod 60) \\ 2^{r} & \text { otherwise }\end{cases}
$$

we get that

$$
\begin{align*}
k \equiv & 2,4,8,32,70,94,112,128,226,256,350,376,386,448,466,698 \\
& 700,826,862,934,940,944,962,970,994,1024,1058,1090,1118, \\
& 1148,1166,1250,1306,1322,1396,1400,1442,1504,1570,1652 \\
& 1682,1802,1834,1862,1876,1888,1924,1940,2078,2236,2296 \\
& 2326,2434,2686,2732 \text { or } 2768(\bmod 2790) \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
n=2 k g+6, \text { where } g \text { is odd and } k \text { is even. } \tag{18}
\end{equation*}
$$

Now, by (8) and (18), we get

$$
40 P_{n}+9=40 P_{2 k g+6}+9 \equiv 40(-1)^{g(k+1)} P_{6}+9 \quad\left(\bmod Q_{k}\right) \equiv-2791 \quad\left(\bmod Q_{k}\right)
$$

Hence, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{40 P_{n}+9}{Q_{k}}\right)=\left(\frac{-2791}{Q_{k}}\right)=\left(\frac{Q_{k}}{2791}\right) \tag{19}
\end{equation*}
$$

But modulo 2791, the sequence $\left\{Q_{n}\right\}$ has period 2790. Therefore, by (17), we get

$$
\begin{aligned}
Q_{k} \equiv & 3,17,577,489,2583,1422,2410,591,1025,811,662,127,2248 \\
& 915,1961,2486,113,1934,817,1248,544,1680,1969,2679 \\
& 1288,2585,21,2047,1642,158,823,1381,2549,2262,1843,418 \\
& 525,2677,2557,831,1330,862,1088,952,786,1397,523,2759 \\
& 1761,115,2480,1778,1303,2397,1669 \text { or } 647(\bmod 2791)
\end{aligned}
$$

respectively and for all these values of k, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{Q_{k}}{2791}\right)=-1 \tag{20}
\end{equation*}
$$

From (19) and (20), it follows that $\left(\frac{40 P_{n}+9}{Q_{k}}\right)=-1$ for $n \neq 6$ showing $40 P_{n}+9$ is not a perfect square. Hence the lemma.

Lemma 3: Suppose $n \equiv 0\left(\bmod 2 \cdot 7 \cdot 5^{3}\right)$. Then $40 P_{n}+9$ is a perfect square if and only if $n=0$.

Proof: If $n=0$, then we have $40 P_{n}+9=40 P_{0}+9=3^{2}$.
Conversely, suppose $n \equiv 0\left(\bmod 2 \cdot 7 \cdot 5^{3}\right)$ and for $n \neq 0$ put $n=2 \cdot 7 \cdot 5^{3} \cdot 3^{r} \cdot z$, where $r \geq 0$ and $3 \nmid z$. Then $n=2 m(3 k \pm 1)$ for some integer k and odd m. We choose m as follows

$$
m= \begin{cases}5^{3} \cdot 3^{r} & \text { if } r \equiv 3 \text { or } 12(\bmod 18) \\ 5^{2} \cdot 3^{r} & \text { if } r \equiv 1,7,10,14 \operatorname{or} 16(\bmod 18) \\ 5 \cdot 3^{r} & \text { if } r \equiv 2,5 \text { or } 11(\bmod 18) \\ 7 \cdot 3^{r} & \text { if } r \equiv 8 \text { or } 17(\bmod 18) \\ 3^{r} & \text { otherwise }\end{cases}
$$

Since for $r \geq 0,3^{r+18} \equiv 3^{r}(\bmod 152)$, we have

$$
\begin{equation*}
m \equiv 1,23,31,45,53,75,81,107,121,147 \text { or } 151 \quad(\bmod 152) \tag{21}
\end{equation*}
$$

Therefore, by (8), (4), (6) and the fact that m is odd, we have

$$
\begin{aligned}
40 P_{n}+9 & =40 P_{2(3 m) k \pm 2 m}+9 \equiv 40(-1)^{k(3 m+1)} P_{ \pm 2 m}+9\left(\bmod Q_{3 m}\right) \\
& \equiv \pm 40 P_{2 m}+9\left(\bmod Q_{m}^{2}+6 P_{m}^{2}\right)
\end{aligned}
$$

according as $z \equiv \pm 1(\bmod 3)$. Letting $w_{m}=Q_{m}^{2}+6 P_{m}^{2}$ and using (5), (7) and (13) we get that the Jacobi symbol

$$
\begin{align*}
\left(\frac{40 P_{n}+9}{w_{m}}\right) & =\left(\frac{ \pm 40 P_{2 m}+9}{w_{m}}\right)=\left(\frac{ \pm 80 Q_{m} P_{m}-9 Q_{m}^{2}+18 P_{m}^{2}}{w_{m}}\right)=\left(\frac{ \pm 80 Q_{m} P_{m}+72 P_{m}^{2}}{w_{m}}\right) \\
& =\left(\frac{2}{w_{m}}\right)\left(\frac{P_{m}}{w_{m}}\right)\left(\frac{ \pm 10 Q_{m}+9 P_{m}}{w_{m}}\right)=-\left(\frac{w_{m}}{ \pm 10 Q_{m}+9 P_{m}}\right) \tag{22}
\end{align*}
$$

Now, if $3 \mid m$ then by (11), $5 \mid P_{m}$ and from (22) we get

$$
\begin{aligned}
\left(\frac{40 P_{n}+9}{w_{m}}\right) & =-\left(\frac{w_{m}}{5}\right)\left(\frac{w_{m}}{ \pm 2 Q_{m}+9 \frac{P_{m}}{5}}\right) \\
& =-\left(\frac{\left(\pm 2 Q_{m}+9 \frac{P_{m}}{5}\right)\left(\pm 2 Q_{m}-9 \frac{P_{m}}{5}\right)+681 \frac{P_{m}^{2}}{25}}{ \pm 2 Q_{m}+9 \frac{P_{m}}{5}}\right) \\
& =-\left(\frac{681}{ \pm 2 Q_{m}+9 \frac{P_{m}}{5}}\right)=-\left(\frac{681}{ \pm 10 Q_{m}+9 P_{m}}\right)
\end{aligned}
$$

And, if $3 \nmid m$ then by (11), $3 \nmid P_{m}$ and from (22) we get that

$$
\left(\frac{40 P_{n}+9}{w_{m}}\right)=-\left(\frac{\left(\pm 10 Q_{m}+9 P_{m}\right)\left(\pm 10 Q_{m}-9 P_{m}\right)+681 P_{m}^{2}}{ \pm 10 Q_{m}+9 P_{m}}\right)=-\left(\frac{681}{ \pm 10 Q_{m}+9 P_{m}}\right)
$$

In any case,

$$
\begin{equation*}
\left(\frac{40 P_{n}+9}{w_{m}}\right)=-\left(\frac{681}{ \pm 10 Q_{m}+9 P_{m}}\right)=-\left(\frac{ \pm 10 Q_{m}+9 P_{m}}{681}\right) \tag{23}
\end{equation*}
$$

But since modulo 681 , the sequence $\left\{ \pm 10 Q_{m}+9 P_{m}\right\}$ is periodic with period 152 , by (21) it follows that

$$
10 Q_{m}+9 P_{m} \equiv 19,125,251,509,395,1,10,430,172,532, \text { or } 680(\bmod 681)
$$

and

$$
-10 Q_{m}+9 P_{m} \equiv 680,286,172,430,556,662,149,509,251,671 \text { or } 19(\bmod 681)
$$

In any case

$$
\begin{equation*}
\left(\frac{ \pm 10 Q_{m}+9 P_{m}}{681}\right)=1 \tag{24}
\end{equation*}
$$

Therefore, from (23) and (24) we get $\left(\frac{40 P_{n}+9}{w_{m}}\right)=-1$. Hence the lemma.
As a consequence of Lemmas 1 to 3 we have the following.
Corollary 1: Suppose $n \equiv 0, \pm 1$ or $6(\bmod 24500)$. Then $40 P_{n}+9$ is a perfect square if and only if $n=0, \pm 1$ or 6 .
Lemma 4: $40 P_{n}+9$ is not a perfect square if $n \not \equiv 0, \pm 1$ or $6(\bmod 24500)$.
Proof: We prove the lemma in different steps eliminating at each stage certain integers n congruent modulo 24500 for which $40 P_{n}+9$ is not a square. In each step we choose an integer m such that the period p (of the sequence $\left\{P_{n}\right\} \bmod m$) is a divisor of 24500 and thereby eliminate certain residue classes modulo p. For example
Mod 41: The sequence $\left\{P_{n}\right\} \bmod 41$ has period 10 . We can eliminate $n \equiv 2,4$ and $8(\bmod 10)$, since $40 P_{n}+9 \equiv 7,38$ and $11(\bmod 41)$ and they are quadratic nonresidue modulo 41 . There remain $n \equiv 0,1,3,5,6,7$ or $9(\bmod 10)$, equivalently, $n \equiv 0,1,3,5,6,7,9,10,11,13,15,16,17$, or $19(\bmod 20)$.

Similarly we can eliminate the remaining values of n. After reaching modulo 24500, if there remain any values of n we eliminate them in the higher modulo (That is, in the multiples of 24500). We tabulate them in the following way (Tables A and B).

HEPTAGONAL NUMBERS IN THE PELL SEQUENCE ...

Period p	Modulus m	Required values of \mathbf{n} where $\left(\frac{40 P_{n}+9}{m}\right)=-1$	Left out values of $n(\bmod t)$ where t is a positive integer
10	41	± 2 and 4	$0, \pm 1, \pm 3,5$, or $6(\bmod 10)$
20	29	± 7 and ± 9	$\begin{gathered} 0, \pm 1, \pm 3, \pm 5,6,10, \text { or } 16 \\ (\bmod 20) \end{gathered}$
100	$\begin{gathered} 1549 \\ \hline 29201 \end{gathered}$	$\begin{gathered} \pm 3, \pm 5,10, \pm 17, \pm 20, \pm 21, \pm 23, \pm 30, \pm 35, \pm 37, \\ 40, \pm 43,46,56,86, \text { and } 96 \\ \hline 15,36, \pm 41, \pm 45,60,66, \text { and } 90 \end{gathered}$	$\begin{gathered} 0, \pm 1,6,16, \pm 19, \pm 25,26 \\ \pm 39,50, \text { or } 76(\bmod 100) \end{gathered}$
700	349 15401 53549	$\begin{gathered} 26, \pm 50, \pm 61, \pm 75, \pm 81, \pm 99,126, \pm 161, \pm 181, \\ 216, \pm 219, \pm 225, \pm 239, \pm 261, \pm 300, \pm 301 \\ 326, \pm 339,376,426,576,616, \text { and } 676 \\ \hline \pm 19, \pm 39,76,100, \pm 101,106,116, \pm 125 \\ \pm 139, \pm 150, \pm 200,206,226,250,276, \pm 319, \\ 406,416,506,606, \text { and } 626 \\ \hline \pm 119, \pm 275, \pm 281,316,450,476,516, \text { and } 600 \end{gathered}$	$\begin{gathered} 0, \pm 1,6, \pm 201, \text { or } 350 \\ (\bmod 700) \end{gathered}$
70	71	$\pm 11,16, \pm 25,26,35$, and 36	
28	13	± 9	
98	1471	$\pm 5, \pm 29, \pm 33,34, \pm 41, \pm 42$, and ± 43	$\begin{gathered} 0, \pm 1,6,700,1750 \\ \pm 1899,2450, \text { or } 2806 \\ (\bmod 4900) \end{gathered}$
196	293	$\begin{gathered} 14, \pm 23, \pm 28, \pm 51, \pm 70, \pm 79, \pm 83,84, \pm 85 \\ \pm 89,90, \text { and } 174 \end{gathered}$	
2450	85751	$706, \pm 1399$, and 2106	
3500	7001	$\begin{gathered} 350, \pm 499, \pm 699, \pm 701,706, \pm 1199,1400 \\ \pm 1401, \pm 1601,2106, \text { and } 2806 \end{gathered}$	$\begin{gathered} 0, \pm 1,6,1750,4906,5600 \\ 6650, \pm 6799,10500 \\ 12250,17150,17506 \\ 19600, \text { or } 22406 \\ (\bmod 24500) \end{gathered}$
500	129749	$\pm 99, \pm 101,300$, and 450	
	286001	50 and 200	

Table A.

We now eliminate: $n \equiv 1750$, 4906, 5600, 6650, 6799, 10500, 12250, 17150, 17506, 17701, 19600 , and $22406(\bmod 24500)$.
Equivalently: $n \equiv 1750,4906,5600,6650,6799,10500,12250,17150,17506,17701,19600$, 22406, 26250, 29406, 30100, 31150, 31299, 35000, 36750, 41650, 42006, 42201, 44100 and $46906(\bmod 49000)$.

HEPTAGONAL NUMBERS IN THE PELL SEQUENCE ...

Period p	Modulus m	Required values of n where $\left(\frac{40 P_{n}+9}{m}\right)=-1$	Left out values of $n(\bmod t)$ where t is a positive integer
7000	3499	$\begin{gathered} \pm 1750,3150, \pm 3299,3506,5600 \\ \text { and } 6650 \end{gathered}$	$\begin{gathered} 10500,35000, \text { or } 42006(\bmod 49000) \\ \Leftrightarrow 10500,35000,42006,59500, \\ 84000, \text { or } 91006(\bmod 98000) \end{gathered}$
	217001	1406 and 2100	
1000	499	± 201 and 906	
3920	7841	846, 2660, 2806, and 3640	$84000(\bmod 98000) \Leftrightarrow 84000$, 182000 or $280000(\bmod 294000)$
80	5521	60	
1176	13523	112 and 504	Completely eliminated in modulo294000
2100	15749	1400	

Table B.

3. MAIN THEOREM

Theorem 1: (a) $\quad P_{n}$ is a generalized heptagonal number only for $n=0, \pm 1$ or 6 ; and (b) $\quad P_{n}$ is a heptagonal number only for $n= \pm 1$.

Proof: Part (a) of the theorem follows from Corollary 1 and Lemma 4. For part (b), since, an integer N is heptagonal if and only if $40 N+9=(10 \cdot m-3)^{2}$ where m is a positive integer, we have the following table.

\boldsymbol{n}	0	± 1	6
$\boldsymbol{P}_{\boldsymbol{n}}$	0	1	70
$\mathbf{4 0} \boldsymbol{P}_{\boldsymbol{n}}+\mathbf{9}$	3^{2}	7^{2}	53^{2}
\boldsymbol{m}	0	1	-5
$\boldsymbol{Q}_{\boldsymbol{n}}$	1	± 1	99

Table C.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

If D is a positive integer which is not a perfect square it is well known that $x^{2}-D y^{2}= \pm 1$ is called the Pell's equation and that if $x_{1}+y_{1} \sqrt{D}$ is the fundamental solution of it (that is, x_{1} and y_{1} are least positive integers), then $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$ is also a solution of the same equation; and conversely every solution of it is of this form.

Now by (5), we have $Q_{n}^{2}=2 P_{n}^{2}+(-1)^{n}$ for every n. Therefore, it follow that

$$
\begin{equation*}
Q_{2 n}+\sqrt{2} P_{2 n} \text { is a solution of } x^{2}-2 y^{2}=1 \tag{25}
\end{equation*}
$$

while

$$
\begin{equation*}
Q_{2 n+1}+\sqrt{2} P_{2 n+1} \text { is a solution of } x^{2}-2 y^{2}=-1 \tag{26}
\end{equation*}
$$

We have, by (25), (26), Theorem 1, and Table C, the following two corollaries.
Corollary 2: The solution set of the Diophantine equation $2 x^{2}=y^{2}(5 y-3)^{2}-2$ is $\{(\pm 1,1)\}$.

HEPTAGONAL NUMBERS IN THE PELL SEQUENCE ...
Corollary 3: The solution set of the Diophantine equation $2 x^{2}=y^{2}(5 y-3)^{2}+2$ is $\{(\pm 1,0),(\pm 99,-5)\}$.

REFERENCES

[1] W. L. McDaniel. "Triangular Numbers in the Pell Sequence." The Fibonacci Quarterly 34.2 (1996): 105-107.
[2] V. Siva Rama Prasad and B. Srinivasa Rao. "Pentagonal Numbers in the Pell Sequence and Diophantine Equations $2 x^{2}=y^{2}(3 y-1)^{2} \pm 2$." The Fibonacci Quarterly 40.3 (2002): 233-241.
[3] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
http: //www.research.att.com/ ~njas/sequences, A000566.
[4] B. Srinivasa Rao. "Heptagonal Numbers in the Fibonacci Sequence and Diophantine Equations $4 x^{2}=5 y^{2}(5 y-3)^{2} \pm 16 . "$ The Fibonacci Quarterly 41.5 (2003): 414-420.
[5] B. Srinivasa Rao. "Heptagonal Numbers in the Lucas Sequence and Diophantine Equations $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$." The Fibonacci Quarterly 40.4 (2002): 319-322.

AMS Classification Numbers: 11B39, 11D25, 11B37

※ ※

