SOME IDENTITIES INVOLVING BERNOULLI NUMBERS

Guodong Liu

Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516015, P. R. China

Hui Luo

Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516015, P. R. China (Submitted September 2002-Final Revision February 2003)

1. INTRODUCTION AND RESULTS

Let x be a complex number with $|x| < 2\pi$. The Bernoulli numbers $B_n(n = 0, 1, 2, \cdots)$ are defined by the coefficients in the expansion of (see [1], [3] and [4])

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}, \quad |x| < 2\pi.$$
 (1)

By (1), we have $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, \dots$, and $B_n = 0$ for odd $n \ge 3$. For even $n \ge 2$, we have (see [2])

$$B_n = -\frac{1}{n+1} \sum_{m=0}^{n-1} \binom{n+1}{m} B_m.$$
 (2)

The main purpose of this paper is to prove some new identities involving Bernoulli numbers. That is, we shall prove the following main conclusion.

Theorem 1: Let $n \ge 1, k \ge 0$ be any integers, then

(a)

(a)
$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{(2k+1)^{2j}} B_{2j} = \frac{(2n+1)2^{2n+1}}{(2k+1)^{2n+1}} \sum_{i=0}^{k} i^{2n}.$$
 (3)

(b)
$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{(2k+2)^{2j}} B_{2j} = \frac{2n+1}{2^{2n}(k+1)^{2n+1}} \sum_{i=0}^{k} (2i+1)^{2n}.$$
(4)

Taking k = 0, 1, 2 in Theorem 1, we may immediately deduce the following Corollary 1: Corollary 1: Let $n \ge 1$ be any integers, then

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \left(2-2^{2j}\right) B_{2j} = 0,$$
(5)

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{3^{2j}} B_{2j} = \frac{(2n+1)2^{2n+1}}{3^{2n+1}},\tag{6}$$

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{5^{2j}} B_{2j} = \frac{2(2n+1)(4^{2n}+2^{2n})}{5^{2n+1}}.$$
(7)

208

SOME IDENTITIES INVOLVING BERNOULLI NUMBERS

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{2^{2j}} B_{2j} = \frac{2n+1}{2^{2n}},\tag{8}$$

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{4^{2j}} B_{2j} = \frac{(2n+1)(1+3^{2n})}{2^{4n+1}},\tag{9}$$

$$\sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{6^{2j}} B_{2j} = \frac{(2n+1)(1+3^{2n}+5^{2n})}{2^{2n}3^{2n+1}}.$$
 (10)

Theorem 2: Let $n \ge 0, k \ge 0$ be any integers, then

(b)

(a)
$$\sum_{j=0}^{n} \binom{2n}{2j} \sum_{i=0}^{k} (2i+1)^{2n-2j} (2-2^{2j})(2k+2)^{2j} B_{2j} = (k+1)(2-2^{2n}) B_{2n}, \quad (11)$$

(b)
$$\sum_{j=0}^{n} {2n \choose 2j} \sum_{i=1}^{k} (2i)^{2n-2j} (2-2^{2j})(2k+1)^{2j} B_{2j}$$
$$= (2k+1)(1-2^{2n-1})(1-(2k+1)^{2n-1})B_{2n}.$$
(12)

Taking k = 0, 1, 2 in Theorem 2(a) and k = 1, 2, 3 in Theorem 2(b), we may immediately deduce the following Corollary 2:

Corollary 2: Let $n \ge 0$ be any integer, then

(a)
$$\sum_{j=0}^{n} {\binom{2n}{2j}} \left(2 - 2^{2j}\right) 2^{2j} B_{2j} = (2 - 2^{2n}) B_{2n}, \tag{13}$$

$$\sum_{j=0}^{n} \binom{2n}{2j} (1+3^{2n-2j})(2-2^{2j})4^{2j}B_{2j} = 2(2-2^{2n})B_{2n},$$

$$\sum_{j=0}^{n} \binom{2n}{2j} (1+3^{2n-2j}+5^{2n-2j})(2-2^{2j})6^{2j}B_{2j} = 3(2-2^{2n})B_{2n}.$$
(14)
(15)

$$\sum_{j=0}^{n} \binom{2n}{2j} (1+3^{2n-2j}+5^{2n-2j})(2-2^{2j})6^{2j}B_{2j} = 3(2-2^{2n})B_{2n}.$$
 (15)

(b)
$$\sum_{j=0}^{n} {\binom{2n}{2j}} 2^{2n-2j} \left(2-2^{2j}\right) 3^{2j} B_{2j} = 3(1-2^{2n-1})(1-3^{2n-1}) B_{2n},$$
 (16)

$$\sum_{j=0}^{n} \binom{2n}{2j} (2^{2n-2j} + 4^{2n-2j})(2-2^{2j}) 5^{2j} B_{2j} = 5(1-2^{2n-1})(1-5^{2n-1}) B_{2n}, \tag{17}$$

$$\sum_{j=0}^{n} \binom{2n}{2j} (2^{2n-2j} + 4^{2n-2j} + 6^{2n-2j})(2-2^{2j})7^{2j}B_{2j} = 7(1-2^{2n-1})(1-7^{2n-1})B_{2n}.$$
(18)

2. SOME LEMMAS

Lemma 1: (see [3, p. 260])

$$\frac{1}{\sin x} = \frac{1}{x} + \sum_{n=1}^{\infty} (-1)^n (2 - 2^{2n}) \frac{B_{2n}}{(2n)!} x^{2n-1}, \ 0 < |x| < \pi.$$
(19)

Proof:

$$\frac{x}{\sin x} = \frac{2ix}{e^{ix} - e^{-ix}} = \frac{2ix}{e^{ix} - 1} - \frac{2ix}{e^{2ix} - 1}$$
$$= 2\sum_{n=0}^{\infty} \frac{B_n(ix)^n}{n!} - \sum_{n=0}^{\infty} \frac{B_n(2ix)^n}{n!}, \ |x| < \pi.$$

Take the real part of this expansion. \Box Lemma 2:

(a)
$$\sum_{n=0}^{\infty} (\sin nx)t^n = \frac{t \sin x}{1 - 2t \cos x + t^2}, \ |t| < 1$$
(20)

(b)
$$\sum_{n=0}^{\infty} (\cos nx)t^n = \frac{1-t\cos x}{1-2t\cos x+t^2}, \ |t| < 1.$$
(21)

Proof:

$$\sum_{n=0}^{\infty} (\cos nx + i\sin nx)t^n = \sum_{n=0}^{\infty} (e^{ix}t)^n = \frac{1}{1 - e^{ix}t} = \frac{1}{1 - t\cos x - it\sin x}$$
$$= \frac{1 - t\cos x}{1 - 2t\cos x + t^2} + \frac{it\sin x}{1 - 2t\cos x + t^2}, \ |t| < 1.$$

Take the real and imaginary parts. $\hfill \square$ Lemma 3:

$$\sum_{n=0}^{\infty} \sin(n+1)xt^n = \frac{\sin x}{1 - 2t\cos x + t^2}, \ |t| < 1.$$
(22)

Proof:

$$\sum_{n=0}^{\infty} \sin(n+1)xt^n = \operatorname{Im}\left(\sum_{n=0}^{\infty} e^{i(n+1)x}t^n\right) = \operatorname{Im}\left(e^{ix}\sum_{n=0}^{\infty} (e^{ix}t)^n\right)$$
$$= \frac{t\sin x\cos x + \sin x(1-t\cos x)}{1-2t\cos x + t^2} = \frac{\sin x}{1-2t\cos x + t^2}. \quad \Box$$

Lemma 4:

$$\sum_{j=0}^{m} \cos(m-2j)x = \frac{\sin(m+1)x}{\sin x}.$$
(23)

Proof:

$$\begin{split} \sum_{j=0}^{m} e^{i(m-2j)x} &= e^{imx} \sum_{j=0}^{m} (e^{-2ix})^j = e^{imx} \frac{1 - e^{(-2ix)(m+1)}}{1 - e^{-2ix}} \\ &= e^{i(m+1)x} \frac{1 - e^{(-2ix)(m+1)}}{e^{ix} - e^{-ix}} = \frac{(e^{i(m+1)x} - e^{-i(m+1)x})/2i}{(e^{ix} - e^{-ix})/2i} \\ &= \frac{\sin(m+1)x}{\sin x}. \end{split}$$

Take the real part of this equation. \Box

3. PROOF OF THE THEOREMS

Proof of Theorem 1: By Lemmas 1 and 4, since $\cos(m-2i)x = \sum_{n=0}^{\infty} (-1)^n (m-2i)^{2n} \frac{x^{2n}}{(2n)!}$ and $\sin(m+1)x = \sum_{n=0}^{\infty} (-1)^n (m+1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!}$, we have

$$\sum_{i=0}^{m} \sum_{n=0}^{\infty} (-1)^{n} (m-2i)^{2n} \frac{x^{2n}}{(2n)!}$$

$$= \left(\frac{1}{x} + \sum_{n=1}^{\infty} (-1)^{n} (2-2^{2n}) \frac{B_{2n}}{(2n)!} x^{2n-1}\right) \left(\sum_{n=0}^{\infty} (-1)^{n} (m+1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!}\right)$$

$$= \left(\sum_{n=0}^{\infty} (-1)^{n} (2-2^{2n}) \frac{B_{2n}}{(2n)!} x^{2n}\right) \left(\sum_{n=0}^{\infty} (-1)^{n} (m+1)^{2n+1} \frac{x^{2n}}{(2n+1)!}\right)$$

$$= \sum_{n=0}^{\infty} (-1)^{n} (m+1)^{2n+1} \sum_{j=0}^{n} \binom{2n+1}{2j} \frac{2-2^{2j}}{(m+1)^{2j}} B_{2j} \frac{x^{2n}}{(2n+1)!}.$$
(26)

Comparing the coefficient of x^{2n} on both sides of (26), we get

$$\frac{(-1)^n}{(2n)!} \sum_{i=0}^m (m-2i)^{2n} = \frac{(-1)^n (m+1)^{2n+1}}{(2n+1)!} \sum_{j=0}^n \binom{2n+1}{2j} \frac{2-2^{2j}}{(m+1)^{2j}} B_{2j}, \quad \text{i.e.}$$

$$\sum_{j=0}^n \binom{2n+1}{2j} \frac{2-2^{2j}}{(m+1)^{2j}} B_{2j} = \frac{2n+1}{(m+1)^{2n+1}} \sum_{i=0}^m (m-2i)^{2n}. \tag{27}$$

Set m = 2k in (27) we immediately obtain (3). Set m = 2k + 1 in (27), we immediately obtain (4).

Proof of Theorem 2: By Lemma 4, we have

$$\frac{1}{\sin x} = \frac{1}{\sin(m+1)x} \sum_{i=0}^{m} \cos(m-2i)x.$$
(28)

By

$$\cos(m-2i)x = \sum_{n=0}^{\infty} (-1)^n (m-2i)^{2n} \frac{x^{2n}}{(2n)!}, \ \sin(m+1)x = \sum_{n=0}^{\infty} (-1)^n (m+1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!},$$

(28) and Lemma 1, we have

$$\frac{1}{x} + \sum_{n=1}^{\infty} (-1)^n (2 - 2^{2n}) \frac{B_{2n}}{(2n)!} x^{2n-1} = \left(\frac{1}{(m+1)x} + \sum_{n=1}^{\infty} (-1)^n (2 - 2^{2n})(m+1)^{2n-1} \frac{B_{2n}}{(2n)!} x^{2n-1} \right) \\
\sum_{i=0}^m \sum_{n=0}^\infty (-1)^n (m-2i)^{2n} \frac{x^{2n}}{(2n)!}, \text{ i.e.} \\
\sum_{n=0}^\infty (-1)^n (2 - 2^{2n}) B_{2n} \frac{x^{2n}}{(2n)!} \\
= \left(\sum_{n=0}^\infty (-1)^n (2 - 2^{2n})(m+1)^{2n-1} \frac{B_{2n}}{(2n)!} x^{2n} \right) \sum_{i=0}^m \sum_{n=0}^\infty (-1)^n (m-2i)^{2n} \frac{x^{2n}}{(2n)!} \\
= \sum_{n=0}^\infty (-1)^n \sum_{j=0}^n \binom{2n}{2j} \sum_{i=0}^m (m-2i)^{2n-2j} (2 - 2^{2j})(m+1)^{2j-1} B_{2j} \frac{x^{2n}}{(2n)!}, \tag{29}$$

and comparing the coefficient of x^{2n} on both sides of (29), we get

$$\sum_{j=0}^{n} \binom{2n}{2j} \sum_{i=0}^{m} (m-2i)^{2n-2j} (2-2^{2j}) (m+1)^{2j-1} B_{2j} = (2-2^{2n}) B_{2n}.$$
 (30)

Set m = 2k + 1 in (30) we immediately obtain (11). Set m = 2k in (30) and bring the term with i = k to the other side of the equation, to immediately obtain (12). \Box

ACKNOWLEDGMENT

The authors would like to thank the anonymous referee for valuable comments, including the proofs of Lemmas 1, 2, 3 and 4, which improved the presentation of original paper.

REFERENCES

- K. Dilcher. "Sums of Products of Bernoulli Numbers." J. Number Theory 60.1 (1996): 23-41.
- [2] Glenn J. Fox. "Congruences Relating Rational Values of Bernoulli and Euler Polynomials." *The Fibonacci Quarterly* **39.1** (2001): 50-57.
- [3] C. Jordan. Calculus of Finite Differences. New York: Chelsea, 1965.
- [4] N. E. Nörlund. Differenzenrechnung. Spring-Verlag, Berlin, New York, 1924.

AMS Classification Numbers: 11B68

\mathbf{X}

$$212$$