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1. INTRODUCTION

Many authors have considered the problem of extending the Fibonacci sequence to arbi-
trary real or complex subscripts (cf. [1], [6], and references therein). Since the positive integers
form a discrete subset of R the existence of multitudes of continuous functions f : R→ R such
that f(n) = Fn for positive integers n is immediate and the question then becomes one of
determining the various properties of such functions. In this paper we consider the extent to
which the Fibonacci and Lucas sequences can be extended to arbitrary p-adic subscripts in a
continuous way. In the process we determine several apparently new expressions, both p-adic
and real, for the Fibonacci sequence in terms of hypergeometric functions and combinatorial
sums.

For example, Dilcher ([3], eq. (3.3)) has proved that for positive integers n,

Fn =
n

2n−1
F

(
1− n

2
,

2− n
2

;
3
2

; 5
)
, (1.1)

where F (a, b; c; z) is the Gauss hypergeometric function (see section 2). We have observed
(Theorem 2.3 below) that for p = 5 the hypergeometric function on the right in (1.1) in fact
represents a continuous function of n from Zp to Zp, where Zp denotes the ring of p-adic
integers. This means that the function f : Z5 → Z5 defined by

f(x) = 2xF
(

1− x
2

,
2− x

2
;

3
2

; 5
)

(1.2)

is 5-adically continuous and satisfies f(n) = 2nFn for all integers n, i.e., it 5-adically interpo-
lates the sequence {2nFn}. In section 3 below we give generalizations of identity (1.1) which
yield similar p-adic expressions for any prime p.

We say that a sequence {an}∞n=0 of rational numbers is p-adically interpolatable if there
exists a continuous function f : Zp → Qp such that f(n) = an for all nonnegative integers
n. Since the set of nonnegative integers is dense in Zp, for a given sequence {an} there
can be at most one such function, which will only exist under certain strong conditions on
{an}. Specifically, an integer sequence is p-adically interpolatable if and only if it is purely
periodic modulo pM for all positive integers M , with each period a power of p (Proposition
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2.1 below). While {Fn} is purely periodic modulo p for every prime p, its period modulo p
is never a power of p, which means that the Fibonacci sequence itself can never be p-adically
interpolated. However, we show in section 3 that for odd primes p, the sequence {snFrpn}
can be p-adically interpolated, where s is a suitable integer and rp is the rank of apparition
of p in {Fn}. Our results illustrate many of the known periodicity properties of Fibonacci
numbers; as one such illustration, we show that the sequence {F 4

rpn} can always be p-adically
interpolated for any odd prime p.

While our primary interest in this topic has been the p-adic properties of these hypergeo-
metric identities, we also present several real identities which we believe to be new, generalizing
those in [3]. Our identities in section 3 show how the finite-sum rational-argument identities
of [3] may be classified into six infinite families, which may be obtained without quadratic
transformations. These six families are all related by linear hypergeometric transformations,
and four of them yield p-adically continuous representations of the Fibonacci sequence. We
also show that in fact infinitely many different rational arguments occur in hypergeometric
representations of Fibonacci numbers, answering a question posed in [3]. All these identities
are also expressed as combinatorial sums, as in [3].

2. NOTATIONS AND PRELIMINARIES

In this paper p will always denote a prime number, and Zp and Qp the ring of p-adic
integers and the field of p-adic numbers, respectively. If x is a nonzero rational number we
can write x = pkr/s where k, r, s ∈ Z and (r, p) = (s, p) = 1. The integer k is called the
p-adic ordinal of x and denoted k = ordpx, and the p-adic absolute value of x is then defined
by |x|p = p−k. We define ordp0 = +∞ and |0|p = 0. With this definition | · |p is a (non-
archimedean) metric on Q and Qp is the completion of Q with respect to this metric. The ring
Zp = {x ∈ Qp : |x|p ≤ 1} = {x ∈ Qp : ordpx ≥ 0} may be viewed as the “unit disk” in Qp, or
as the completion of the ring Z of integers with respect to the metric | · |p.

Because Zp is a compact metric space, any continuous function on Zp is uniformly contin-
uous. For integers x, y it is clear that |x− y|p ≤ p−k if and only if x ≡ y (mod pk). Therefore
we have the following proposition (cf. [5]):
Proposition 2.1: The integer sequence {an} is p-adically interpolatable if and only if for
every M > 0 there exists N ≥ 0 such that am ≡ an (mod pM ) whenever m ≡ n (mod pN ).

This condition is equivalent to the condition that {an} be purely periodic modulo pM for
every M , with period equal to a power of p. As an example, for an integer a the sequence
{an} can be p-adically interpolated only if a ≡ 1 (mod p), since this sequence is not purely
periodic modulo p if p|a, and any period modulo p is a multiple of the order of a in the
multiplicative group (Z/pZ)× otherwise; the period modulo p can be a power of p only if the
period is 1. Consequently for a ∈ Q the sequence {an} can be p-adically interpolated only
if a ≡ 1 (mod p Zp), that is, a = b/c with b ≡ c 6≡ 0 (mod p). This fact is reflected in
the example in the introduction (where we noted that {2nFn} is 5-adically interpolatable but
{Fn} is not), and should be compared to the situation in R, where the function f(x) = ax is
defined (and continuous) for all real x only when a > 0.

For a prime number p we denote by tp the minimal period of {Fn} modulo p. The rank of
apparition of p in {Fn}, denoted rp, is the least positive integer r such that p|Fr. It is known
([9], §2) that rp always exists and is equal to the minimal restricted period of {Fn} modulo p,
which is to say the least positive integer r such that Fk+r ≡ sFk (mod p) for some integer s
and all integers k. It is also easily seen that s ≡ Frp+1 (mod p), that p|Fm if and only if rp|m,
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and that tp = aprp, where ap is the order of the integer s in the multiplicative group (Z/pZ)×.
The rank of apparition of p in {Ln}, denoted r′p, is the least positive integer r′, if one exists,
such that p|Lr′ . It is known ([9], §2) that r′p exists if and only if rp is even, and in this case
rp = 2r′p. For p 6= 5 these invariants may be expressed in terms of the p-adic interpolatability
of the Fibonacci sequence, as follows.
Theorem 2.2: Suppose the sequence {snFmn+k}∞n=0 is p-adically interpolatable for some prime
p, nonzero rational number s, and integers m, k. If p 6= 5, then rp|m and sFm+1 ≡ 1
(mod pZp).

Proof: If a, b are any integers then the sequence {Fmn+b} is a rational linear combination
of {Fmn+a} and {Fm(n+1)+a}. It follows that if {snFmn+k} is p-adically interpolatable for
some integer k then it is for every k. Since limj→∞ 1 + pj = 1 in Zp, if there is a continuous
function f : Zp → Qp such that f(n) = snFmn+1 for positive integers n then we must have
limj→∞ s

1+pj

Fm(1+pj)+1 = sFm+1 in Qp. However if ordps > 0 then this limit is zero, and if

ordps < 0 then the p-adic ordinal of s1+pj

Fm(1+pj)+1 is unbounded below and thus the limit
does not exist in Qp. Therefore we conclude that ordps = 0.

Since ordps = 0, we have snFmn ≡ 0 (mod pZp) if and only if rp/(m, rp) divides n,
and thus the period of {snFmn} modulo p is a multiple of rp/(m, rp). By Proposition 2.1, if
{snFmn} is to be p-adically interpolatable rp/(m, rp) must be a power of p. However, if p 6= 5
then (p, rp) = 1 ([9], §2), which demands that rp/(m, rp) = 1, so rp|m. Modulo p the sequence
{sn} has period dividing p− 1 and, if p 6= 5, the sequence {Fmn+1} has period dividing p2− 1
([9], §2). The period modulo p of {snFmn+1} thus divides p2 − 1, and so if this period is a
power of p then it must equal 1. Therefore sFm+1 ≡ 1 (mod pZp) if p 6= 5.

The Gauss hypergeometric series F (a, b; c; z) is defined by

F (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)kk!
zk (2.1)

where the Pochhammer symbol (a)k is defined by (a)0 = 1 and (a)k =
∏k−1

i=0 (a + i) for k ≥ 1
(cf. [2], [3]). In general a, b, c, z may take any real or complex (or p-adic) value, although in all
our identities they will be rational numbers. The series is undefined if c ∈ {0,−1,−2,−3, ...},
unless either a or b is a larger element of {0,−1,−2,−3, ...}. If the series is defined and either
a or b lies in {0,−1,−2,−3, ...}, then the series represents a polynomial in z and is therefore
defined for all (real, complex, or p-adic) z. Otherwise the series converges for real or complex
z with |z| < 1 and diverges for |z| > 1. Furthermore, for |z| < 1 the function defined by (2.1)
is analytic in a, b, and c on all of R (or C) with the exception of simple poles at c = 0, c = −1,
c = −2, c = −3, etc.

By a disk S in Qp we mean a set of the form {x ∈ Qp : |x − x0|p ≤ r} or of the form
{x ∈ Qp : |x− x0|p < r}, for some x0 ∈ Qp and some r > 0. Any disk in Qp can be expressed
in either of these forms, is both open and closed, and is compact. A function f : S → Qp

defined on a disk S in Qp is analytic if it can be represented by a power series which converges
on S. Clearly F (a, b; c; z) is analytic in z on any disk S on which it converges. The following
theorem indicates that for fixed c and z, F (a, b; c; z) is also continuous in a and b on any disk
where it converges. (Since the set {0,−1,−2,−3, ...} of c-values for which (2.1) is (in general)
undefined is dense in Zp, the series is far from continuous in c on Zp. However, in the event
that for fixed a, b, z there is a disk S in Qp disjoint from Zp for which F (a, b; c; z) is convergent
for c ∈ S, then F (a, b; c; z) would be continuous in c on S).
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Theorem 2.3: Suppose c ∈ Q with c 6∈ {0,−1,−2,−3, ...} and a, b ∈ Qp. Then the se-
ries F (a, b; c; z) converges in Qp for ordpz > g(c) + g(1) − g(a) − g(b) and, if a, b ∈
Q \ {0,−1,−2,−3, ...}, diverges for ordpz ≤ g(c) + g(1)− g(a)− g(b), where

g(x) =
{

ordpx, if x 6∈ Zp,

1/(p− 1), if x ∈ Zp.

Furthermore, if such b, c, z ∈ Qp are fixed so that F (a, b; c; z) converges for a ∈ S, where S is
a disk in Qp, then F (a, b; c; z) represents a continuous function of a on S.
Remarks: The theorem remains valid if c is any element of Qp \ Zp, or if z is any element of
the completion of an algebraic closure of Qp. Furthermore if F (a, b; c; z) converges for a ∈ S,
where S is some disk in Qp, then that disk may be assumed to contain Zp. In all the identities
in this paper the parameters a, b, c are all rational, and all lie in Zp except for p = 2. When
a, b, c ∈ Zp the series F (a, b; c; z) therefore converges when ordpz > 0 and, for fixed z with
ordpz > 0, represents a continuous function of a (and b) on Zp.

Proof: A series
∑
An in Qp converges if and only if |An|p → 0, or equivalently, if and

only if ordpAn → +∞. Therefore F (a, b; c; z) converges if and only if

lim
k→∞

ordp(a)k + ordp(b)k − ordp(c)k − ordp(k!) + k · ordpz = +∞. (2.2)

Since | · |p is non-archimedean it follows readily that ordp(x)k = k · ordp(x) when x ∈ Qp \Zp.
It is also well known that ordp(k!) = ordp(1)k = (k − S(k))/(p − 1), where S(k) denotes the
sum of the digits in the base p expansion of k. We also have ([4], eq. (21.2.1)) the uniform
estimates ordp(x)k ≥ ordp(k!) for any x ∈ Zp, and ordp(x)k ≤ ordp(k!)+logp(d)+logp(k+ |x|)
for a rational number x ∈ Zp \ {0,−1,−2,−3, ...} with denominator d, where logp is the (real)
base p logarithm and | · | is the real absolute value. Noting that S(k)/(p − 1) ≤ logp(k + 1)
for all positive integers k, we see that for x ∈ Qp we have ordp(x)k ≥ k · g(x) − logp(k + 1),
and for x ∈ Q \ {0,−1,−2,−3, ...} we have ordp(x)k ≤ k · g(x) +O(logp k). The statement on
convergence then follows from (2.2).

By considering the various cases (whether b and/or c lies in Zp or not) and using (2.2),
one observes that for fixed b, c, z the series converges precisely on a set S ∪ {0,−1,−2,−3, ...}
where S is a disk in Qp of the form {a ∈ Qp : ordpa > C} for some constant C, and that the
convergence is uniform in a on this set. Each term in the series (2.1) is a polynomial in a, and
is therefore continuous in a. As a uniformly convergent sum on S of continuous functions in a
on S, F (a, b; c; z) is therefore a continuous function of a on S.

3. FINITE SUM IDENTITIES

In this section we give some identities for Fibonacci and Lucas numbers in terms of
F (a, b; c; z) with either a or b in {0,−1,−2,−3, ...}. Since the series represents a polynomial
in this case, these are identities in Q and are thus valid independent of the metric (real
or p-adic) on Q. For each identity, however, we will indicate conditions under which the
given hypergeometric function interpolates the given sequence of values in Qp and in R. Our
treatment is similar to section 4 of [3]. We begin with the following fundamental identity.

216



p-ADIC INTERPOLATION OF THE FIBONACCI SEQUENCE ...

Theorem 3.1: For all integers m,n with n > 0, we have

Fmn = nFm

(
Lm

2

)n−1

F

(
1− n

2
,

2− n
2

;
3
2

;
5F 2

m

L2
m

)
, (3.1)

Lmn = Lm

(
Lm

2

)n−1

F

(
−n
2
,

1− n
2

;
1
2

;
5F 2

m

L2
m

)
(3.2)

as identities in Q. Therefore the functions fm, lm : Zp → Zp defined by

fm(x) =
2Fm

Lm
xF

(
1− x

2
,

2− x
2

;
3
2

;
5F 2

m

L2
m

)
, and

lm(x) = 2F
(
−x
2
,

1− x
2

;
1
2

;
5F 2

m

L2
m

)
are continuous on Zp and satisfy fm(n) = (2/Lm)nFmn and lm(n) = (2/Lm)nLmn for positive
integers n when p = 5; or when p is odd and p|Fm; or when p = 2 and 4|Fm.

Proof: We substitute z =
√

5Fm/Lm into the identity

F

(
a,

1
2

+ a;
3
2

; z2

)
=

1
2z(1− 2a)

[
(1 + z)1−2a − (1− z)1−2a

]
(3.3)

([3], eq. (3.2)) with a = (1− n)/2, and into

F

(
a,

1
2

+ a;
1
2

; z2

)
=

1
2

[
(1 + z)−2a + (1− z)−2a

]
(3.4)

([3], eq. (10.15)) with a = −n/2, and compare these results with the Binet forms Fmn =
(αmn − βmn)/

√
5 and Lmn = αmn + βmn, where {αm, βm} = {(Lm ± Fm

√
5)/2}. These

identities are valid because the series terminate, and give the identities of the Theorem. When
p > 2 the parameters a, b, c all lie in Zp and therefore by Theorem 2.3 the series represent
continuous functions of n on Zp when ordp(5F 2

m/L
2
m) > 0, which is precisely when p = 5 or

when p|Fm. If p = 2 then in both identities ord2c = −1, one of a, b lies in Z2 and the other
has 2-adic ordinal equal to −1; thus by Theorem 2.3 the series represent continuous functions
of n on Z2 when ord2(5F 2

m/L
2
m) > 0, which is precisely when 4|Fm.

Remarks: Dilcher’s identities (1.1) and ([3], eq. (10.16)) may be obtained by taking m = 1 in
this theorem, and ([3], eq. (4.23)) is obtained by taking m = 2. In R we have |5F 2

m/L
2
m| < 1

precisely when m is even, so the functions fm(x) and lm(x) also define analytic functions on
all of R (or C) for even m. Taking m = 1 in the theorem shows that {2nFn} and {2nLn} are 5-
adically interpolatable. Therefore the fourth powers {16nF 4

n} and {16nL4
n} are also 5-adically

interpolatable, and since 16 ≡ 1 (mod 5), the sequence {16−n} is 5-adically interpolatable. It
follows that both {F 4

n} and {L4
n} are 5-adically interpolatable.

Since Lm = Fm−1 + Fm+1, if an integer q divides Fm then Lm ≡ 2Fm+1 (mod q).
So if m = tp for an odd prime p then Lm/2 ≡ 1 (mod pZp) and {(Lm/2)n} is p-adically
interpolatable, which implies that {Ftpn} and {Ltpn} are p-adically interpolatable. Similarly
with q = 4 and m = 6 we find that {F6n} and {L6n} are 2-adically interpolatable. If m = rp for
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an odd prime p then since Lm ≡ 2Fm+1 (mod p), Lm/2 reduces modulo p to s = Fm+1, which
is an element of (Z/pZ)× of multiplicative order ap = tp/rp. It follows that the sequences
{snFrpn} and {snLrpn} can be p-adically interpolated for any integer s such that sFrp+1 ≡ 1
(mod p), and that {F ap

rpn} and {Lap
rpn} can be p-adically interpolated. We remark that Somer

has shown ([9], Theorem 13) that ap ∈ {1, 2, 4} for every prime p. This means that {Frpn}
and {Lrpn} are (at worst) fourth roots of continuous functions of n on Zp for odd primes p.

The identities of this theorem may be put in combinatorial form, giving

Fmn = Fm

(
Lm

2

)n−1

·
[(n−1)/2]∑

k=0

(
n

2k + 1

)(
5F 2

m

L2
m

)k

, (3.5)

Lmn = Lm

(
Lm

2

)n−1

·
[n/2]∑
k=0

(
n

2k

)(
5F 2

m

L2
m

)k

. (3.6)

These may be found in ([7], eq. (15)), and may be used to show that our functions fm and lm
are in fact analytic functions on Zp, as follows.
Corollary 3.2: The functions fm(x), lm(x) of Theorem 3.1 are analytic functions of x on Zp

when they are continuous.
Proof: A theorem of Mahler ([8], Theorem 51.1) states that any continuous function

f : Zp → Qp can be expressed uniquely in the form

f(x) =
∞∑

k=0

ak

(
x

k

)
(3.7)

for some ak ∈ Qp (called the Mahler coefficients of f) such that ak → 0 in Qp, and f is analytic
if and only if ak/k!→ 0 in Qp ([8], Theorem 54.4). The combinatorial forms (3.5), (3.6) show
that

fm(x) =
∞∑

k=0

2Fm

Lm

(
5F 2

m

L2
m

)k (
x

2k + 1

)
, (3.8)

lm(x) =
∞∑

k=0

2
(

5F 2
m

L2
m

)k (
x

2k

)
, (3.9)

from which we observe that their Mahler coefficients ak satisfy ordp(ak/k!) → +∞ when
ordp(5F 2

m/L
2
m) > 0.

We obtain our next set of identities by transforming (3.1) by the linear transformation

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c; z

z − 1

)
(3.10)

([3], eq. (4.1)) with n odd, which gives

F(2n+1)m = (2n+ 1)Fm(−1)mnF

(
−n, n+ 1;

3
2

;
5F 2

m

4(−1)m+1

)
, (3.11)
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and transforming (3.2) with n even by the same formula, giving

L2mn = 2(−1)mnF

(
−n, n;

1
2

;
5F 2

m

4(−1)m+1

)
. (3.12)

Similarly, applying

F (a, b; c; z) = (1− z)−bF

(
b, c− a; c;

z

z − 1

)
(3.13)

([3], eq. (4.2)) to (3.1) with n even gives

F2mn = nF2m(−1)m(n−1)F

(
1− n, n+ 1;

3
2

;
5F 2

m

4(−1)m+1

)
, (3.14)

and substituting (3.13) into (3.2) with n odd gives

L(2n+1)m = Lm(−1)mnF

(
−n, n+ 1;

1
2

;
5F 2

m

4(−1)m+1

)
. (3.15)

These are valid identites in Q for any integers m,n with n > 0. When m = 1 (3.11) and
(3.14) become identities (4.4) and (4.5) of [3], although the factor of (−1)n in ([3], eq. (4.5))
should be (−1)n−1; when m = 2 they become (4.39) and (4.40) of [3]. Since the argument
always has absolute value larger than 1 these hypergeometric functions are not analytic func-
tions of n on R or C. However, by Theorem 2.3 these hypergeometric functions are con-
tinuous in n on Zp when p|Fm or when p = 5. It follows that {(−1)nF2n}, {(−1)nL2n},
{(−1)nF2n+1}, and {(−1)nL2n+1} are 5-adically interpolatable, and that {(−1)nF2rpn},
{(−1)nL2rpn}, {(−1)nF(2n+1)rp

}, and {(−1)nL(2n+1)rp
} are p-adically interpolatable for any

prime p. The corresponding combinatorial forms are

F(2n+1)m = (2n+ 1)Fm (−1)mn
n∑

k=0

(
n+ k

2k

)
((−1)m5F 2

m)k

2k + 1
, (3.16)

F2mn = F2m(−1)m(n−1)
n−1∑
k=0

(
n+ k

2k + 1

)(
(−1)m5F 2

m

)k
, (3.17)

L2mn = (−1)mn

(
2 +

n∑
k=1

n

k

(
n+ k − 1

2k − 1

)(
(−1)m5F 2

m

)k)
, (3.18)

L(2n+1)m = (−1)mnLm

n∑
k=0

(
n+ k

2k

)(
(−1)m5F 2

m

)k
. (3.19)
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By applying the linear transformation

F (a, b; c; z) =
Γ(c)Γ(b− a)(−z)−a

Γ(b)Γ(c− a)
F

(
a, 1− c+ a; 1− b+ a;

1
z

)

+
Γ(c)Γ(a− b)(−z)−b

Γ(a)Γ(c− b)
F

(
b, 1− c+ b; 1− a+ b;

1
z

) (3.20)

([3], eq. (4.9)) to (3.1) and evaluating the gamma factors as in [3], we get the pair of formulas

F(2n+1)m = Fm

(
5F 2

m

4

)n

F

(
−n,−n− 1

2
;

1
2

;
L2

m

5F 2
m

)
, (3.21)

F2mn = nF2m

(
5F 2

m

4

)n−1

F

(
1− n, 1

2
− n;

3
2

;
L2

m

5F 2
m

)
. (3.22)

By applying this same transformation to (3.2) we get the pair

L(2n+1)m = (2n+ 1)Lm

(
5F 2

m

4

)n

F

(
−n, 1

2
− n;

3
2

;
L2

m

5F 2
m

)
, (3.23)

L2mn = 2
(

5F 2
m

4

)n

F

(
−n, 1

2
− n;

1
2

;
L2

m

5F 2
m

)
. (3.24)

These are valid identites in Q for any integers m,n with n > 0. When m = 1 one
obtains identities (4.10) and (4.11) of [3] from (3.21), (3.22); when m = 2 we get (4.35) and
(4.36) of [3]. The hypergeometric functions are analytic in n on R or C when m is odd, and
continuous in n on Zp when p is odd and p|Lm, or when p = 2 and 4|Lm. From the identity
L2

m− 5F 2
m = 4(−1)m we see that if p is odd and p|Lm then 5F 2

m/4 ≡ (−1)m+1 (mod pZp),
which shows that {(−1)(r

′
p+1)nF(2n+1)r′

p
} and {(−1)(r

′
p+1)nL(2n+1)r′

p
} are p-adically

interpolatable for those odd primes p for which r′p exists. Similarly we see that {F6n+3} and
{L6n+3} are 2-adically interpolatable. The combinatorial forms are

F(2n+1)m = Fm

(
5F 2

m

4

)n

·
n∑

k=0

(
2n+ 1

2k

)(
L2

m

5F 2
m

)k

, (3.25)

F2mn =
F2m

2

(
5F 2

m

4

)n−1

·
n−1∑
k=0

(
2n

2k + 1

)(
L2

m

5F 2
m

)k

, (3.26)

L(2n+1)m = Lm

(
5F 2

m

4

)n

·
n∑

k=0

(
2n+ 1
2k + 1

)(
L2

m

5F 2
m

)k

, (3.27)
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L2mn = 2
(

5F 2
m

4

)n

·
n∑

k=0

(
2n
2k

)(
L2

m

5F 2
m

)k

. (3.28)

Our next set of identities is obtained by applying the transformation formula

F (a, b; c; z) = (1− z)−a Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

F

(
a, c− b; a− b+ 1;

1
1− z

)

+ (1− z)−b Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

F

(
b, c− a; b− a+ 1;

1
1− z

) (3.29)

([3], eq. (4.16)) to (3.1), which gives

F(2n+1)m = Fm(−1)(m+1)nF

(
−n, n+ 1;

1
2

;
L2

m

4(−1)m

)
, (3.30)

F2mn = nF2m(−1)(m+1)(n+1)F

(
1− n, n+ 1;

3
2

;
L2

m

4(−1)m

)
. (3.31)

By applying this same transformation to (3.2), we get

L(2n+1)m = Lm(−1)(m+1)n(2n+ 1)F
(
−n, n+ 1;

3
2

;
L2

m

4(−1)m

)
, (3.32)

L2mn = 2(−1)(m+1)nF

(
−n, n;

1
2

;
L2

m

4(−1)m

)
. (3.33)

These are valid identites in Q for any integers m,n with n > 0. When m = 1 one obtains iden-
tities (4.17) and (4.18) of [3]; when m = 2 we get (4.33) and (4.34) of [3]. The hypergeometric
functions are analytic in n on R or C only when m = 1, and continuous in n on Zp whenever
p|Lm. The combinatorial forms are

F(2n+1)m = Fm(−1)(m+1)n
n∑

k=0

(
n+ k

2k

)(
(−1)m−1L2

m

)k
, (3.34)

F2mn = FmLm(−1)(m+1)(n+1)
n−1∑
k=0

(
n+ k

2k + 1

)(
(−1)m−1L2

m

)k
, (3.35)

L(2n+1)m = (−1)(m+1)n(2n+ 1)Lm

n∑
k=0

(
n+ k

2k

)
((−1)m−1L2

m)k

2k + 1
, (3.36)
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L2mn = (−1)(m+1)n

(
2 +

n∑
k=1

n

k

(
n+ k − 1

2k − 1

)(
(−1)m−1L2

m

)k)
. (3.37)

For sake of completeness we give the identities

Fmn = Fm(Lm)n−1F

(
1− n

2
,

2− n
2

; 1− n;
4(−1)m

L2
m

)
(n > 1), (3.38)

Lmn = Ln
mF

(
−n
2
,

1− n
2

; 1− n;
4(−1)m

L2
m

)
(n > 2), (3.39)

which are obtained by applying the transformation

F (a, b; a+ b+m; z) =
Γ(m)Γ(a+ b+m)
Γ(a+m)Γ(b+m)

F (a, b; 1−m; 1− z) (3.40)

([3], eq. (4.6)) to (3.1) and (3.2) respectively. By applying this same transformation to (3.21)-
(3.24) we get

Fm(2n+1) = Fm(5F 2
m)nF

(
−n,−1

2
− n;−2n;

4(−1)m+1

5F 2
m

)
, (3.41)

Lm(2n+1) = Lm(5F 2
m)nF

(
−n, 1

2
− n;−2n;

4(−1)m+1

5F 2
m

)
, (3.42)

F2mn =
Lm(5F 2

m)n

5Fm
F

(
1− n, 1

2
− n; 1− 2n;

4(−1)m+1

5F 2
m

)
, (3.43)

L2mn = (5F 2
m)nF

(
−n, 1

2
− n; 1− 2n;

4(−1)m+1

5F 2
m

)
(n > 1). (3.44)

These are valid in Q for any integers m,n with n > 0, except as noted above. When m = 1
(3.38), (3.41), and (3.43) become (4.8), (4.14), and (4.15) of [3]; when m = 2 (3.38) becomes
(4.27) of [3]. The hypergeometric functions here are in general not continuous in n on Zp,
as the denominator parameters c are not constant and the arguments z = 4(−1)m/L2

m and
z = 4(−1)m+1/5F 2

m never satisfy the conditions of Theorem 2.2 even if c were constant.

4. INFINITE SERIES IDENTITIES

In this section we illustrate a few infinite series identities which may be obtained from
hypergeometric transformations of identities from the previous section. The primary tool will
be Euler’s identity

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) (4.1)
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([3], eq. (4.3)), which is a formal power series identity whenever c is not a nonpositive integer.
Under this condition (4.1) is valid (in R or Qp) whenever both sides are convergent. When
this identity is applied to (3.1) and (3.2), we obtain

Fmn = nFm(−1)mn

(
2
Lm

)n+1

F

(
n+ 2

2
,
n+ 1

2
;

3
2

;
5F 2

m

L2
m

)
, (4.2)

Lmn = Lm(−1)mn

(
2
Lm

)n+1

F

(
n+ 1

2
,
n

2
;

1
2

;
5F 2

m

L2
m

)
, (4.3)

which are precisely (3.1), (3.2) with n replaced by −n, since F−n = (−1)n−1Fn and L−n =
(−1)nLn. For n > 0 these are valid in R when m is even; when m = 2 one obtains ([3], eq.
(4.25)). Furthermore they are valid in Zp when p = 5, when p is odd and p|Fm, or when p = 2
and 4|Fm. The corresponding combinatorial forms are

Fmn = (−1)mnFm

(
2
Lm

)n+1 ∞∑
k=0

(
n+ 2k
2k + 1

)(
5F 2

m

L2
m

)k

, (4.4)

Lmn = (−1)mnLm

(
2
Lm

)n+1 ∞∑
k=0

(
n+ 2k − 1

2k

)(
5F 2

m

L2
m

)k

. (4.5)

We remark that when m is even these two series of rational numbers

∞∑
k=0

(
n+ 2k
2k + 1

)(
5F 2

m

L2
m

)k

,

∞∑
k=0

(
n+ 2k − 1

2k

)(
5F 2

m

L2
m

)k

(4.6)

have the interesting property that they converge both in R, and in Zp for all primes
p dividing 5Fm, to the same rational numbers, namely (−1)mn(2/Lm)n+1Fmn/Fm and
(−1)mn(2/Lm)n+1Lmn/Lm.

Applying (4.1) to the finite-sum identities (3.21)-(3.24) likewise results in those same
identities with n replaced by −n; the resulting infinite series are valid in R when m is odd,
and valid in Zp when p is odd and p|Lm, or when p = 2 and 4|Lm. When m = 1 the series
resulting from transforming (3.21), (3.22) by (4.1) are precisely identities (4.12), (4.13) of [3].
The combinatorial forms can in fact be obtained by replacing n by −n in (3.25)-(3.28), and
read

F(2n+1)m = (−1)m+1Fm

(
4

5F 2
m

)n+1

·
∞∑

k=0

(
2n+ 2k

2k

)(
L2

m

5F 2
m

)k

, (4.7)

F2mn =
1
2
F2m

(
4

5F 2
m

)n+1

·
∞∑

k=0

(
2n+ 2k
2k + 1

)(
L2

m

5F 2
m

)k

, (4.8)
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L(2n+1)m = (−1)m+1Lm

(
4

5F 2
m

)n+1

·
∞∑

k=0

(
2n+ 2k + 1

2k + 1

)(
L2

m

5F 2
m

)k

, (4.9)

L2mn = 2
(

4
5F 2

m

)n

·
∞∑

k=0

(
2n+ 2k − 1

2k

)(
L2

m

5F 2
m

)k

. (4.10)

Again these series have the property that when m is odd they converge in R, and in Zp for all
primes p dividing Lm, to the same rational numbers.

When (4.1) is applied to (3.11), (3.12), (3.14), and (3.15), however, the results are not just
the same identities with n replaced by −n. For example, (4.1) transforms (3.11) and (3.14)
into

F(2n+1)m = (2n+ 1)
F2m

2
(−1)mn

√
(−1)mF

(
n+

3
2
, n− 1

2
;

3
2

;
5F 2

m

4(−1)m+1

)
, (4.11)

F2mn = 2nFm(−1)mn
√

(−1)mF

(
n+

1
2
,

1
2
− n;

3
2

;
5F 2

m

4(−1)m+1

)
. (4.12)

While these series do not converge in R or C, they are valid in Zp for an appropriate choice
of
√

(−1)m when p|Fm or when p = 5. We remark that if k is an integer then
√
k ∈ Zp if and

only if ordpk is even and k = p2ek′ with the Legendre symbol (k′|p) = 1. However it is easy to
see from the identity L2

m − 5F 2
m = 4(−1)m that ((−1)m|p) = 1 when p|Fm or p = 5, and thus√

(−1)m ∈ Zp.
Similarly, applying (4.1) to (3.30), (3.31) gives

F(2n+1)m = (−1)(m+1)n 2√
(−1)m+15

F

(
n+

1
2
,−1

2
− n;

1
2

;
L2

m

4(−1)m

)
, (4.13)

F2mn = (−1)(m+1)n 2nLm√
(−1)m+15

F

(
n+

1
2
,

1
2
− n;

3
2

;
L2

m

4(−1)m

)
, (4.14)

which are valid in R only when m = 1, and are found in ([3], eq. (4.19), (4.20)). These are also
valid in Zp when p is odd and p|Lm, which is precisely the condition for

√
(−1)m+15 ∈ Zp.

We conclude this section with an example involving the quadratic transformation

F (a, b; a− b+ 1; z) = (1 + z)−aF

(
a

2
,
a+ 1

2
; a− b+ 1;

4z
(1 + z)2

)
(4.15)

([3], eq. (4.21)). Applied to (3.21), this gives

F(2n+1)m =

√
2L2m

5

(
L2m

2

)n

F

(
−2n− 1

4
,

1− 2n
4

;
1
2

;
5F 2

2m

L2
2m

)
. (4.16)
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This identity is valid in R for all positive integers m, n, and valid in Zp when p is odd and
p|Lm or when p = 2 and 4|Lm. Again the square root factor lies in Zp under these conditions.
For m = 1 it appears as equation (4.22) of [3]. However, if one applies (4.15) to (3.22) one
merely obtains the even m case of (3.1). If (4.16) is transformed by (4.1), we obtain

F(2n+1)m =
√

8
5L2m

(
2

L2m

)n

F

(
2n+ 3

4
,

2n+ 1
4

;
1
2

;
5F 2

2m

L2
2m

)
, (4.17)

valid in R for any positive integers m, n, and valid in Zp when p is odd and p|Lm or when
p = 2 and 4|Lm. When m = 1 this is identity (4.24) of [3]. We caution that while the
hypergeometric series in (4.16) and (4.17) converge in Z5, the identities (4.16), (4.17) are not
valid in Z5, because they arise from a transformation of (3.21), which is not convergent in Z5.
To see that these identities are not valid in Z5, observe that the square root factors do not
lie in Z5, while all other factors lie in Z5. The hypergeometric series in (4.16), (4.17) thus
have the curious property of converging in R, and in Zp whenever p is odd and p|Lm or when
p = 2 and 4|Lm, to the same irrational sums. We have not determined the sums of these
hypergeometric series in Z5.

5. CONCLUDING REMARKS

These identities may all be generalized to general Lucas sequences {Un}, {Vn} of the first
and second kinds defined by Un = PUn−1 − QUn−2, Vn = PVn−1 − QVn−2, U0 = 0, U1 = 1,
V0 = 2, V1 = P . Just substitute z =

√
DUm/Vm into (3.3) and (3.4), where D = P 2 − 4Q is

the discriminant of the characteristic polynomial 1−PT +QT 2 of the recurrence. Most of the
properties remain unchanged; however, the sequences are not purely periodic modulo p if p|Q
and it is no longer true that ap ∈ {1, 2, 4} in general.

We have shown that if z = 5F 2
m/L

2
m then there is a representation of a subsequence of

the Fibonacci and Lucas sequences in terms of Gauss hypergeometric functions with argument
z, 1− z, 1

z , 1−
1
z ,

1
1−z , and z

z−1 . Is this a complete list of possible rational arguments? Each of
the twelve rational arguments listed in Table 1 of [3] occurs as the m = 1 or m = 2 case of one
of these. Although quadratic transformations such as (4.15) may lead to new identities such as
(4.16), we do not know whether a quadratic transformation can lead to a representation with a
different rational argument than listed here; in particular none of the quadratic transformations
employed in [3] yields a new rational argument.

¿From our collection of identities we learn that their p-adic continuity properties exert
strong influence over which arguments can occur. For example, if one had an identity of the
form

Fmn+k = Cm · Pm(n)sn
mF (a(n), b(n); c; zm) (5.1)

where Pm(n), a(n), b(n) are polynomials in Z[n] and Cm, sm, c, zm are rational numbers, then
every prime dividing the numerator of zm must also divide 5Fm. (By Theorem 2.3 if ordpzm > 0
then F (a(n), b(n); c; zm) would be p-adically continuous as a function of n and therefore the
sequence s−n

m Fmn+k would be p-adically interpolatable. By Theorem 2.2 if p 6= 5 then rp|m and
thus p|Fm). All the identities of section 3 are of this form with the exception that a(n), b(n)
are in general polynomials in Z[12 ][n]. The above argument remains valid except for p = 2, that
is, every odd prime dividing the numerator of zm in such an identity must also divide 5Fm. So
the set of possible rational arguments is clearly quite limited by these p-adic considerations.
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