FIBONACCI POLYTOPES AND THEIR APPLICATIONS

Fred J. Rispoli

Department of Mathematics, Dowling College, Oakdale, NY 11769
(Submitted November 2002-Final Revision April 2004)

Abstract

A Fibonacci d-polytope of order k is defined as the convex hull of $\{0,1\}$-vectors with d entries and no consecutive k ones, where $k \leq d$. We show that these vertices can be partitioned into k subsets such that the convex hull of the subsets give the equivalent of Fibonacci $(d-i)$ polytopes, for $i=1, \ldots, k$, which yields a "Fibonacci like" recursive formula to enumerate the vertices. Surprisingly, the polytopes are totally unimodular and require a small number of inequalities to describe them. These facts are used to enumerate compositions of a positive integer with bounded summands, and to find various compositions.

INTRODUCTION

The Fibonacci d-polytope of order k, denoted by $F P_{d}(k)$, is the convex hull of the set of $\{0,1\}$-vectors having d entries and no consecutive k ones. For example, $F P_{3}(2)$ is the convex hull of $\{000,001,100,010,101\}$ (see Figure 1.) Notice that $F P_{3}(2)$ contains a face which is "combinatorially equivalent" to $F P_{2}(2)$ (the triangle) and another face that is equivalent to $F P_{1}(2)$ (the line segment), as indicated by the bold edges. An illustration of $F P_{3}(3)$ is also given. Observe that $\{000,100,110,010\},\{001,101\}$, and $\{011\}$ is a partition of the vertices of $F P_{3}(3)$ such that the convex hull of each subset gives the equivalent of Fibonacci polytopes of order 3 of dimension 2,1 and 0 respectively.

Fibonacci 3-polytope of order 2

Fibonacci 3-polytope of order 3

Figure 1 Fibonacci 3-polytopes of order 2 and 3.
Here we investigate the Fibonacci d-polytopes of order k and discuss some interesting properties and applications. For example, the vertices of every $F P_{d}(k)$ can be partitioned into k subsets F_{1}, \ldots, F_{k} such that the convex hull of F_{i} generates a Fibonacci polytope of order k, of dimension $d-1, d-2, \ldots, d-k$, respectively. The partition is obtained by considering special faces of $F P_{d}(k)$ and implies that the number of vertices of $F P_{d}(k)$, denoted by a_{d},
follows the "Fibonacci-like" recurrence relation given by $a_{d}=2^{d}$, for $d<k, a_{d}=2^{d}-1$, for $d=k$, and $a_{d}=a_{d-1}+a_{d-2}+\cdots+a_{d-k}$, for $d>k$. When $k=2$, we see that the number of vertices of $F P_{d}(2)$ satisfies $a_{d}=a_{d-1}+a_{d-2}$, where $a_{1}=2$ and $a_{2}=3$. Hence, the number of vertices of $F P_{d}(2)$ is given by the famous Fibonacci numbers, denoted by F_{d}. From Binet's formula we know that

$$
F_{d}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{d}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{d}
$$

(for proof, see [5]). Therefore, the number of vertices of $F P_{d}(k)$ grows exponentially in d. However, the Fibonacci polytopes may be defined using roughly $3 d$ linear inequalities. In particular, $F P_{d}(k)$ is defined using variables with lower and upper bounds, together with a $(d-k+1) \times d$ matrix A, where A is totally unimodular. We conclude with applications of Fibonacci polytopes to study compositions of a positive integer.

CONVEX POLYTOPES

A subset of points $V \subseteq \boldsymbol{R}^{d}$ is called convex if for every $\boldsymbol{x}, \boldsymbol{y} \in V$, the line segment $\{\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}: 0 \leq \lambda \leq 1\}$ is contained in V. For $V=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subseteq \boldsymbol{R}^{d}$, the affine hull of V is $\left\{\lambda_{1} \boldsymbol{x}_{1}+\cdots+\lambda_{n} \boldsymbol{x}_{n}: \lambda_{j} \in \boldsymbol{R}\right.$ and $\left.\sum_{j=1}^{n} \lambda_{j}=1\right\}$, and the convex hull of V, denoted by $\operatorname{conv}(V)$, is defined by $\operatorname{conv}(V)=\left\{\lambda_{1} \boldsymbol{x}_{1}+\cdots+\lambda_{n} \boldsymbol{x}_{n}: \lambda_{j} \in \boldsymbol{R}, \lambda_{j} \geq 0\right.$ and $\left.\sum_{j=1}^{n} \lambda_{j}=1\right\}$. The convex hull of a finite set of points in some \boldsymbol{R}^{d}, for $d \geq 1$, is called a polytope, and a polytope of dimension d is called a d-polytope. The intersection of finitely many closed halfspaces in some \boldsymbol{R}^{d} is called a polyhedron. It is known that every polytope is the intersection of a finite set of closed halfspaces. Furthermore, P is a polytope if and only if P is a bounded polyhedron. Thus every polytope may be defined either as a convex hull of points, or as the intersection of halfspaces usually defined in terms of linear inequalities. For more information on polytopes and the above facts, see [4] or [9].

Let $P \subseteq \boldsymbol{R}^{d}$ be a polytope. A point $\boldsymbol{x} \in P$ is called a vertex of P if $\boldsymbol{y}, \boldsymbol{z} \in P$ and $\boldsymbol{x}=\lambda \boldsymbol{y}+(1-\lambda) \boldsymbol{z}$, where $0<\lambda<1$, implies that $\boldsymbol{x}=\boldsymbol{y}=\boldsymbol{z}$. Two vertices $\boldsymbol{x} \neq \boldsymbol{y}$ of P are adjacent if every point on the segment $\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}$, where $0 \leq \lambda \leq 1$, has a unique representation as a convex combination of vertices of P. The vertex-edge graph of P, denoted by $G(P)$, is the graph whose vertices represent vertices of P, and $G(P)$ contains edge $\{\boldsymbol{x}, \boldsymbol{y}\}$ if and only if \boldsymbol{x} and \boldsymbol{y} are adjacent on P. Two polytopes P_{1} and P_{2} are called combinatorially equivalent, denoted by $P_{1} \equiv P_{2}$, if $G\left(P_{1}\right)$ and $G\left(P_{2}\right)$ are isomorphic graphs.

Let Q_{d} denote the d-cube defined as the convex hull of the $2^{d}\{0,1\}$-vectors having d entries. Notice that Q_{d} may also be defined via inequalities as $Q_{d}=\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: 0 \leq x_{i} \leq 1\right.$, for all $i\}$. A truncated d-cube, denoted by \bar{Q}_{d}, is the convex hull of the set of $2^{d}-1\{0,1\}$-vectors having d entries excluding the vector with all ones. One can prove that for all $d \geq 2, \bar{Q}_{d}=$ $\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: 0 \leq x_{i} \leq 1\right.$, for all i, and $\left.x_{1}+\cdots+x_{d} \leq d-1\right\}$, details are omitted. Observe that if $d<k$, then $F P_{d}(k)$ is the d-cube Q_{d}, and if $d=k$, then $F P_{d}(k)$ is \bar{Q}_{d} (e.g. $\bar{Q}_{3}=F P_{3}(3)$, which is given in Figure 1.)

THE VERTICES OF FIBONACCI POLYTOPES

A linear inequality $\boldsymbol{a} \cdot \boldsymbol{x} \leq a_{0}$ is called valid for a polytope P if it is satisfied by all $\boldsymbol{x} \in P$. A face of P is any set of the form $P \cap\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: \boldsymbol{a} \cdot \boldsymbol{x}=a_{0}\right\}$, where $\boldsymbol{a} \cdot \boldsymbol{x} \leq a_{0}$ is valid for
P. The dimension of a face is the dimension of its affine hull. Thus, a vertex of P is a face of dimension 0 . If P is a d-polytope, then a face of dimension $d-1$ is called a facet of P. For example, $F P_{3}(3)$ has 7 facets. Let $V_{d}(k)$ be the set of $\{0,1\}$-vectors having d entries with no consecutive k ones, for $d \geq 1$ and $k \geq 2$. Then, by definition, $F P_{d}(k)=\operatorname{conv}\left\{V_{d}(k)\right\}$.
Theorem 1: (a) Every element in $V_{d}(k)$ is a vertex of $F P_{d}(k)$.
(b) The dimension of $F P_{d}(k)$ is d.
(c) For $2 \leq k \leq d$, the vertices of $F P_{d}(k)$ can be partitioned into k subsets F_{1}, \cdots, F_{k}, such that $\operatorname{conv}\left(F_{i}\right) \equiv F P_{d-i}(k)$, for $i=1, \ldots, k$.
(d) If a_{d} is the number of vertices of $F P_{d}(k)$, then a_{d} satisfies the recurrence relation $a_{d}=a_{d-1}+a_{d-2}+\cdots+a_{d-k}$, where $a_{d}=2^{d}$, for $d<k$, and $a_{d}=2^{d}-1$, for $d=k$.
Proof: (a) It is left as an exercise for the reader to show that no element of $V_{d}(k)$ can be expressed as a convex combination of other elements of $V_{d}(k)$.
(b) The proof of this is immediate since $V_{d}(k)$ contains the d unit vectors and $F P_{d}(k)$ is contained in \boldsymbol{R}^{d}.
(c) First, observe that the elements $\boldsymbol{x} \in V_{d}(k)$ ending in 0 are the same as the elements in $V_{d-1}(k)$ when $x_{d}=0$ is removed from \boldsymbol{x}. If $F_{1}=\left\{\boldsymbol{x} \in V_{d}(k): x_{d}=0\right\}$, then the face of $F P_{d}(k)$ defined by $\operatorname{conv}\left(F_{1}\right)=\left\{\boldsymbol{x} \in F P_{d}(k): x_{d}=0\right\}$ is combinatorially equivalent to $F P_{d-1}(k)$. Similarly, if $F_{2}=\left\{\boldsymbol{x} \in V_{d}(k): x_{d-1}=0\right.$ and $\left.x_{d}=1\right\}$, then $\operatorname{conv}\left(F_{2}\right) \equiv F P_{d-2}(k)$. Repeating this we will obtain $F_{k}=\left\{\boldsymbol{x} \in V_{d}(k): x_{d-k}=0\right.$ and $\left.x_{d}=x_{d-1}=\cdots=x_{d-k+1}=1\right\}$, which satisfies $\operatorname{conv}\left(F_{k}\right) \equiv F P_{d-k}(k)$. Since every element of $V_{d}(k)$ ends in exactly one of $0,01,011, \ldots$, or $01 \ldots 1$, we have the desired partition. Note that when $d=k, \operatorname{conv}\left(F_{k}\right)$ is the 0 -dimensional face given by the vertex $01 \ldots 1$.
(d) This follows from (c) and the fact that when $d<k$, all vertices of Q_{d} are elements in $V_{d}(k)$, and for $d=k$ all vertices of \bar{Q}_{d} are elements in $V_{d}(k)$.

To illustrate the above theorem, we first examine the family of polytopes $F P_{d}(8)$ and then discuss $F P_{4}(3)$. The terms a_{1}, \ldots, a_{10} given below count the vertices of $F P_{d}(8)$ for $d=1,2, \ldots, 10$. Notice that both a_{9} and a_{10} are the sum of the previous 8 terms. The term a_{25} which counts the vertices of $F P_{25}(8)$ is also given.

d	1	2	3	4	5	6	7	8	9	10	\ldots	25
a_{d}	2	4	8	16	32	64	128	255	509	1,016	\ldots	$32,316,160$

Next we invite the reader to construct the graph $G\left(F P_{4}(3)\right)$. This graph contains 13 vertices. Moreover, the vertices $V_{4}(3)$ of $F P_{4}(3)$ can be partitioned into $F_{1}=\left\{\boldsymbol{x} \in V_{4}(3)\right.$: $\left.x_{4}=0\right\}, F_{2}=\left\{\boldsymbol{x} \in V_{4}(3): x_{3}=0\right.$ and $\left.x_{4}=1\right\}$ and $F_{3}=\left\{\boldsymbol{x} \in V_{4}(3): x_{2}=0, x_{3}=1\right.$ and $\left.x_{4}=1\right\}$, where $\operatorname{conv}\left(F_{1}\right) \equiv \bar{Q}_{3}, \operatorname{conv}\left(F_{2}\right) \equiv Q_{2}$, and $\operatorname{conv}\left(F_{3}\right) \equiv Q_{1}$. Additional adjacencies can be checked by using either the definition or the property that if \boldsymbol{x} and \boldsymbol{y} differ in only one coordinate, then \boldsymbol{x} and \boldsymbol{y} are adjacent on $F P_{d}(k)$. This is a well known characterization for adjacency on Q_{d}, and gives a sufficient (but not necessary) condition for adjacency on $F P_{d}(k)$.

THE FACETS OF FIBONACCI POLYTOPES

Finding a set of linear inequalities that define a polytope with $\{0,1\}$-valued vertices can sometimes be a hard problem because an exponentially large number of inequalities may be necessary. This happens, for example, with the famous traveling salesman polytope (e.g., see [2] or [6]). On the other hand, many polytopes require a relatively small set of inequalities in
their description. Hence, both the number of vertices and the number of facets of a polytope are important parameters throughout the literature on convex polytopes.

A matrix A is called totally unimodular if each subdeterminant of A is 0 or ± 1. Surprisingly, this is a very important property with respect to describing a polytope with integer valued extreme points using linear inequalities. This is because polytopes described by a totally unimodular matrix usually require a relatively small number of inequalities in their description. For it is known that if an $m \times d$ matrix A is totally unimodular, then for all integral vectors $\boldsymbol{a}, \boldsymbol{b}$, with m entries, and all integral vectors $\boldsymbol{l}, \boldsymbol{u}$ with d entries, the polyhedron $\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: l \leq \boldsymbol{x} \leq \boldsymbol{u}\right.$ and $\left.\boldsymbol{a} \leq A \boldsymbol{x} \leq \boldsymbol{b}\right\}$ has only integral vertices (see [8]). Now let $A_{d}(k)$ be the $(d-k+1) \times d$ matrix where row i has k consecutive ones in columns i to $i+k-1$, and zeros elsewhere, for $i=1,2, \ldots, d-k+1$, and let 1 be the $(d-k+1) \times 1$ column vector consisting of all entries equal to 1 . For example, $A_{5}(3)$ is given below. It is easy to check that $A_{5}(3)$ is totally unimodular.

$$
A_{5}(3)=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Lemma: For all k and d satisfying $2 \leq k \leq d$, the matrix $A_{d}(k)$ is totally unimodular.
Proof: A $\{0,1\}$-matrix A is called an interval matrix if in each column, the 1 's appear consecutively. It is known that interval matrices are totally unimodular (see [8].) Clearly, $A_{d}(k)$ is an interval matrix, and hence, it is totally unimodular.
Theorem 2: If $2 \leq k \leq d$, then

$$
F P_{d}(k)=\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: 0 \leq x_{i} \leq 1, \text { for all } i, \text { and } A_{d}(k) \boldsymbol{x} \leq(k-1) \mathbf{1}\right\} .
$$

Proof: Let $P=\left\{\boldsymbol{x} \in \boldsymbol{R}^{d}: 0 \leq x_{i} \leq 1\right.$, for all i; and $\left.A_{d}(k) \boldsymbol{x} \leq(k-1) \mathbf{1}\right\}$. We first show that $F P_{d}(k) \subseteq P$. Let $\boldsymbol{y} \in F_{d}(k)$. Since $F P_{d}(k)$ is the convex hull of $V_{d}(k)$, there exists extreme points $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{p}$ and $\lambda_{j} \geq 0$ such that $\boldsymbol{y}=\sum_{j=1}^{p} \lambda_{j} \boldsymbol{x}^{j}$ and $\sum_{j=1}^{p} \lambda_{j}=1$. Since no \boldsymbol{x}^{j} has k or more consecutive ones, the \boldsymbol{x}^{j} must all satisfy $x_{i}^{j}+x_{i+1}^{j}+\cdots+x_{i+k-1}^{j} \leq k-1$, for $j=1, \ldots, p$, and $i=1, \ldots, d-k+1$. Therefore,

$$
\begin{aligned}
y_{i}+y_{i+1}+\cdots+y_{i+k-1} & =\sum_{j=1}^{p} \lambda_{j} x_{i}^{j}+\sum_{j=1}^{p} \lambda_{j} x_{i+1}^{j}+\cdots+\sum_{j=1}^{p} \lambda_{j} x_{i+k-1}^{j} \\
& =\sum_{j=1}^{p} \lambda_{j}\left(x_{i}^{j}+x_{i+1}^{j}+\cdots+x_{i+k-1}^{j}\right) \\
& \leq \sum_{j=1}^{p} \lambda_{j}(k-1)=k-1
\end{aligned}
$$

Since $y_{i} \geq 0$, for all i, the given inequalities are all valid for $F P_{d}(k)$, and hence $F P_{d}(k) \subseteq P$.
Suppose that, to obtain a contradiction, P is not contained in $F P_{d}(k)$. Then there exists a point $\boldsymbol{x} \in P$ such that $\boldsymbol{x} \notin F_{d}(k)$. Since P is a polytope, it is the convex hull of some set of vertices, say S. Moreover, $A_{d}(k)$ totally unimodular, implies that the vertices of P must be
integer valued, and the constraints $0 \leq x_{i} \leq 1$, for all i, implies that these vertices must be $\{0,1\}$-vectors. Thus $\boldsymbol{x}=\sum_{j=1}^{p} \lambda_{j} \boldsymbol{z}^{j}$, where $\boldsymbol{z}^{j} \in S$ and $\sum_{j=1}^{p} \lambda_{j}=1$. Since $\boldsymbol{x} \notin F_{d}(k)$, there must be some, say \boldsymbol{z}^{h}, such that $\boldsymbol{z}^{h} \notin V_{d}(k)$. However, any $\{0,1\}$-vector that is not in $V_{d}(k)$ must have k or more consecutive ones. Thus, \boldsymbol{z}^{h} has k or more consecutive ones. But this is a contradiction since $\boldsymbol{z}^{h} \in P$.

A system of inequalities and equations defining a polytope is called minimal if no inequality can be made into an equation without reducing the size of the solution set, and no inequality or equation can be omitted without enlarging the solution set. In a minimal defining system each inequality induces a distinct facet and each facet corresponds to a distinct inequality (see [2]). Notice that the inequalities of Theorem 2 are minimal for $3 \leq k \leq d$. For if we omit any inequality, we can find $\boldsymbol{x} \notin F P_{d}(k)$, satisfying the remaining inequalities. To demonstrate, consider $F P_{5}(3)$. If we omit $x_{1}+x_{2}+x_{3} \leq 2$, then $\boldsymbol{x}=11100$ satisfies all remaining inequalities, but $\boldsymbol{x} \notin F P_{5}(3)$. Similarly, $\boldsymbol{y}=20000$ satisfies all inequalities, except $x_{1} \leq 1$, but $\boldsymbol{y} \notin F P_{5}(3)$, and $\boldsymbol{z}=(-1) 0000$ satisfies all inequalities, except $0 \leq x_{1}$, where $\boldsymbol{z} \notin F P_{5}(3)$. Moreover, no inequality of Theorem 2 can be made into an equation without reducing the solution set (e.g. changing $x_{1}+x_{2}+x_{3} \leq 2$ into an equation "cuts off" $10000 \in F P_{5}(3)$.) These examples can be generalized to prove that the inequalities of Theorem 2 all induce facets and leads to Theorem 3.
Theorem 3: For $k=2$, the number of facets of $F P_{d}(k)$ is $2 d-k+1$, and for $3 \leq k \leq d$, the number of facets is $3 d-k+1$.

Proof: For $3 \leq k \leq d$, we have demonstrated that the following facets are both necessary and sufficient for $F P_{d}(k):\left\{\boldsymbol{x} \in F P_{d}(k): x_{i}=0\right\}$, for $i=1, \ldots, d,\left\{\boldsymbol{x} \in F P_{d}(k): x_{i}=1\right\}$, for $i=1, \ldots, d$, and $\left\{\boldsymbol{x} \in F P_{d}(k): x_{i}+x_{i+1}+\cdots+x_{i+k-1}=k-1\right\}$, for $i=1, \ldots, d-k+1$. Hence, the total number of facets is $3 d-k+1$.

When $k=2$, the inequalities $x_{i}+x_{i+1}+\cdots+x_{i+k-1} \leq k-1$, imply $x_{i} \leq 1$. So $x_{i} \leq 1$ is unnecessary, and the number of facets is $2 d-k+1$.

RELATED COMBINATORIAL PROBLEMS

There are several possible combinatorial interpretations of the vertices of $F P_{d}(k)$. Here we use the notion of a composition of a positive integer d, which is a representation of d as a sum of positive integer summands where the order is relevant. Some distinct compositions of 5 using summands 1,2 and 3 are:

$$
1+1+1+1+1 \quad 1+1+2+1 \quad 1+2+1+1 \quad 2+1+1+1 \quad 2+2+1 \quad 3+1+1
$$

Each composition of 5 using summands 1, 2 and 3 may be represented as a unique vertex on $F P_{4}(3)$. The connection is to use a coordinate for each of the 4 possible addition signs where a 1 indicates that an addition has been executed. So $1+1+1+1+1$ corresponds to the vertex $(0,0,0,0)$. We think of $1+1+2+1$ as $1+1+(1+1)+1$ which corresponds to $(0,0,1,0)$. The composition $3+1+1$ corresponds to $(1,1,0,0)$. Since $F P_{4}(3)$ has 13 vertices, we may deduce that there are 13 compositions of 5 using summands 1,2 and 3 . This leads us to Theorem 4; the formal proof is left for the reader.
Theorem 4: (a) For $2 \leq k \leq d$, there is a one-to-one correspondence between the compositions of $d+1$ using summands $1,2, \ldots, k$ and the vertices of $F P_{d}(k)$.
(b) If a_{d} is the number of compositions of $d+1$ into positive integer summands less than k, then a_{d} satisfies the recurrence relation $a_{d}=a_{d-1}+a_{d-2}+\cdots+a_{d-k}$, where $a_{d}=2^{d}$, for $d<k$, and $a_{d}=2^{d}-1$, for $d=k$.

Theorem 4 allows us to study compositions using $F P_{d}(k)$ in two ways. Part (b) provides a recurrence relation which can be used to count compositions with bounded summands. Others who have derived methods for counting certain constrained compositions include [1] and [3].

We can also use $F P_{d}(k)$ to help find certain compositions arising in practical applications. For suppose that we must form clusters among say 26 computer records in a file, possibly accessible to a relational database. The records are stored as rows in a table and are identified as $r_{1}, r_{2}, \ldots, r_{26}$ (e.g, see Chapter 2 of [7]). Each cluster can have between 1 and 8 records, and the clusters must contain records with consecutive labels. For example, $\left\{r_{1}, r_{2}, \ldots, r_{8}\right\},\left\{r_{9}, r_{10}, \ldots, r_{16}\right\},\left\{r_{17}, r_{18}, \ldots, r_{24}\right\},\left\{r_{25}, r_{26}\right\}$ is one such cluster. Clustering records allows an operating system to transfer a "block" of data instead of just a single record. Due to advantages arising from efficient memory retrieval, there is a benefit denoted by c_{i}, derived from placing r_{i} and r_{i+1} in the same cluster, for $i=1,2, \ldots, 25$. We assume that there are no other significant benefits. Now, if $\boldsymbol{c}=\left(c_{i}\right)$ is the vector given below, how should the clusters be formed so that the total benefit is maximum?

$$
c=(598294211173247371259738794211813516590
$$

3503155185625249859792579593798 113)
The clustering problem asks for a composition of 26 whose summands are at most 8 , and also maximizes the total benefit. By Theorem 4 and a calculation given above, we know that there are $32,316,160$ possible compositions. However, the best composition is found by solving maximize $\left\{\boldsymbol{c} \cdot \boldsymbol{x}: \boldsymbol{x} \in F P_{25}(8)\right\}$. This requires using 25 variables x_{i} satisfying $0 \leq x_{i} \leq 1$, and 18 inequalities given by $x_{i}+x_{i+1}+\cdots+x_{i+7} \leq 7$, for $i=1, \ldots, 18$. So a total of 68 inequalities are needed to describe $F P_{25}(8)$.

Using $F P_{25}(8)$ the problem can be solved with an algorithm such as the simplex method. In terms of the polytope $F P_{25}(8)$, the simplex method would start at the vertex $\boldsymbol{x}=00 \ldots 0$, and move to an adjacent vertex that increases the total benefit as large as possible. The algorithm repeats this process, moving along an edge of $F P_{25}(8)$ each iteration, until a vertex corresponding to an optimal solution has been found. Hence the algorithm creates a walk along vertices of $F P_{25}(8)$. Linear programming software such as Solver, a subroutine of Microsoft Excel, can be used to implement the simplex method. Using Solver with an IBM 300GL PC, the problem is solved in less than 1 second. The optimal solution \boldsymbol{x}^{*} is given below.

$$
x^{*}=\left(\begin{array}{lllllllllllllllllllllllll}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Notice that \boldsymbol{x}^{*} corresponds to the composition $4+6+8+8$. So we place the first 4 records in cluster 1 , the next 6 in cluster 2 , the next 8 in cluster 3 , and the last 8 in cluster 4 . The total benefit obtained is $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=10,986$.

The inequalities defining $F P_{d}(k)$ may also be supplemented to model additional constraints. The composition $4+6+8+8$ is a clustering into 4 parts, but suppose that we desired the best clustering with 5 parts. In general, to find a composition of $d+1$, with summands at most k, into exactly p parts, we use the inequalities for $F P_{d}(k)$, together with the equation $\sum_{i=1}^{d} x_{i}=d+1-p$. The coefficients of this equation are all ones. Using properties of determinants, we could show that adding a row of ones to the matrix $A_{d}(k)$ used in Theorem

2 will yield another totally unimodular matrix. So this important property is preserved in a description of the new polytope. Adding the additional constraint to our example and resolving, we obtain the composition $4+6+6+2+8$, which gives total benefit $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=10,935$. We conclude by inviting the reader to find other constraints related to compositions that can be used in conjunction with $F P_{d}(k)$ which will result in a totally unimodular matrix.

ACKNOWLEDGMENT

The author would like to thank Steven Cosares and Julius Dichter for their valuable input and an anonymous referee for many useful suggestions.

REFERENCES

[1] P. Chinn and S. Heubach. "Integer Sequences Related to Compositions without 2's." Journal of Integer Sequences 6 (2003).
[2] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial Optimization. Wiley, New York 1998.
[3] R.P. Grimaldi. "Compositions without the summand 1." Congr. Numer. 152 (2001): 33-43.
[4] B. Grünbaum. Convex Polytopes, Second Addition. Springer-Verlag, New York 2003.
[5] R.J. Hendel. "Approaches to the formula for the $n^{t h}$ Fibonacci number." College Mathematic Journal 25 (1994): 139-142.
[6] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, New York 1988.
[7] P. Rob and C. Coronel. Database Systems: Design, Implementation and Management. Boyd \& Fraser, Danvers 1995.
[8] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York 1986.
[9] G. Ziegler. Lectures on Polytopes. Springer-Verlag, New York 1995.
AMS Classification Numbers: 52B05, 90C57

