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ABSTRACT

A Fibonacci d-polytope of order k is defined as the convex hull of {0, 1}-vectors with d
entries and no consecutive k ones, where k ≤ d. We show that these vertices can be partitioned
into k subsets such that the convex hull of the subsets give the equivalent of Fibonacci (d− i)-
polytopes, for i = 1, . . . , k, which yields a “Fibonacci like” recursive formula to enumerate
the vertices. Surprisingly, the polytopes are totally unimodular and require a small number
of inequalities to describe them. These facts are used to enumerate compositions of a positive
integer with bounded summands, and to find various compositions.

INTRODUCTION

The Fibonacci d-polytope of order k, denoted by FPd(k), is the convex hull of the set of
{0, 1}-vectors having d entries and no consecutive k ones. For example, FP3(2) is the convex
hull of {000, 001, 100, 010, 101} (see Figure 1.) Notice that FP3(2) contains a face which is
“combinatorially equivalent” to FP2(2) (the triangle) and another face that is equivalent to
FP1(2) (the line segment), as indicated by the bold edges. An illustration of FP3(3) is also
given. Observe that {000, 100, 110, 010}, {001, 101}, and {011} is a partition of the vertices of
FP3(3) such that the convex hull of each subset gives the equivalent of Fibonacci polytopes of
order 3 of dimension 2, 1 and 0 respectively.

Fibonacci 3-polytope Fibonacci 3-polytope
of order 2 of order 3

Figure 1 Fibonacci 3-polytopes of order 2 and 3.

Here we investigate the Fibonacci d-polytopes of order k and discuss some interesting
properties and applications. For example, the vertices of every FPd(k) can be partitioned into
k subsets F1, . . . , Fk such that the convex hull of Fi generates a Fibonacci polytope of order
k, of dimension d− 1, d− 2, . . . , d− k, respectively. The partition is obtained by considering
special faces of FPd(k) and implies that the number of vertices of FPd(k), denoted by ad,
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follows the “Fibonacci-like” recurrence relation given by ad = 2d, for d < k, ad = 2d − 1, for
d = k, and ad = ad−1 + ad−2 + · · ·+ ad−k, for d > k. When k = 2, we see that the number of
vertices of FPd(2) satisfies ad = ad−1 + ad−2, where a1 = 2 and a2 = 3. Hence, the number
of vertices of FPd(2) is given by the famous Fibonacci numbers, denoted by Fd. From Binet’s
formula we know that

Fd =
1√
5

(
1 +
√

5
2

)d

− 1√
5

(
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√

5
2

)d

(for proof, see [5]). Therefore, the number of vertices of FPd(k) grows exponentially in d.
However, the Fibonacci polytopes may be defined using roughly 3d linear inequalities. In
particular, FPd(k) is defined using variables with lower and upper bounds, together with a
(d − k + 1) × d matrix A, where A is totally unimodular. We conclude with applications of
Fibonacci polytopes to study compositions of a positive integer.

CONVEX POLYTOPES

A subset of points V ⊆ Rd is called convex if for every x,y ∈ V , the line segment
{λx + (1− λ)y : 0 ≤ λ ≤ 1} is contained in V . For V = {x1, . . . ,xn} ⊆ Rd, the affine hull of
V is {λ1x1 + · · ·+ λnxn : λj ∈ R and

∑n
j=1 λj = 1}, and the convex hull of V , denoted by

conv(V ), is defined by conv(V )= {λ1x1 + · · ·+λnxn : λj ∈ R, λj ≥ 0 and
∑n

j=1 λj = 1}. The
convex hull of a finite set of points in some Rd, for d ≥ 1, is called a polytope, and a polytope of
dimension d is called a d-polytope. The intersection of finitely many closed halfspaces in some
Rd is called a polyhedron. It is known that every polytope is the intersection of a finite set
of closed halfspaces. Furthermore, P is a polytope if and only if P is a bounded polyhedron.
Thus every polytope may be defined either as a convex hull of points, or as the intersection of
halfspaces usually defined in terms of linear inequalities. For more information on polytopes
and the above facts, see [4] or [9].

Let P ⊆ Rd be a polytope. A point x ∈ P is called a vertex of P if y,z ∈ P and
x = λy + (1 − λ)z, where 0 < λ < 1, implies that x = y = z. Two vertices x 6= y of P
are adjacent if every point on the segment λx + (1 − λ)y, where 0 ≤ λ ≤ 1, has a unique
representation as a convex combination of vertices of P . The vertex-edge graph of P , denoted
by G(P ), is the graph whose vertices represent vertices of P , and G(P ) contains edge {x,y}
if and only if x and y are adjacent on P . Two polytopes P1 and P2 are called combinatorially
equivalent, denoted by P1 ≡ P2, if G(P1) and G(P2) are isomorphic graphs.

Let Qd denote the d-cube defined as the convex hull of the 2d {0, 1}-vectors having d
entries. Notice that Qd may also be defined via inequalities as Qd = {x ∈ Rd : 0 ≤ xi ≤ 1, for
all i}. A truncated d-cube, denoted by Qd, is the convex hull of the set of 2d − 1 {0, 1}-vectors
having d entries excluding the vector with all ones. One can prove that for all d ≥ 2, Qd =
{x ∈ Rd : 0 ≤ xi ≤ 1, for all i, and x1 + · · ·+ xd ≤ d− 1}, details are omitted. Observe that
if d < k, then FPd(k) is the d-cube Qd, and if d = k, then FPd(k) is Qd (e.g. Q3 = FP3(3),
which is given in Figure 1.)

THE VERTICES OF FIBONACCI POLYTOPES

A linear inequality a ·x ≤ a0 is called valid for a polytope P if it is satisfied by all x ∈ P .
A face of P is any set of the form P ∩ {x ∈ Rd : a · x = a0}, where a · x ≤ a0 is valid for

228



FIBONACCI POLYTOPES AND THEIR APPLICATIONS

P . The dimension of a face is the dimension of its affine hull. Thus, a vertex of P is a face of
dimension 0. If P is a d-polytope, then a face of dimension d − 1 is called a facet of P . For
example, FP3(3) has 7 facets. Let Vd(k) be the set of {0, 1}-vectors having d entries with no
consecutive k ones, for d ≥ 1 and k ≥ 2. Then, by definition, FPd(k) = conv{Vd(k)}.
Theorem 1: (a) Every element in Vd(k) is a vertex of FPd(k).

(b) The dimension of FPd(k) is d.
(c) For 2 ≤ k ≤ d, the vertices of FPd(k) can be partitioned into k subsets F1, · · · , Fk,

such that conv(Fi) ≡ FPd−i(k), for i = 1, . . . , k.
(d) If ad is the number of vertices of FPd(k), then ad satisfies the recurrence relation

ad = ad−1 + ad−2 + · · ·+ ad−k, where ad = 2d, for d < k, and ad = 2d − 1, for d = k.
Proof: (a) It is left as an exercise for the reader to show that no element of Vd(k) can be
expressed as a convex combination of other elements of Vd(k).

(b) The proof of this is immediate since Vd(k) contains the d unit vectors and FPd(k) is
contained in Rd.

(c) First, observe that the elements x ∈ Vd(k) ending in 0 are the same as the elements in
Vd−1(k) when xd = 0 is removed from x. If F1 = {x ∈ Vd(k) : xd = 0}, then the face of FPd(k)
defined by conv(F1) = {x ∈ FPd(k) : xd = 0} is combinatorially equivalent to FPd−1(k).
Similarly, if F2 = {x ∈ Vd(k) : xd−1 = 0 and xd = 1}, then conv(F2) ≡ FPd−2(k). Repeating
this we will obtain Fk = {x ∈ Vd(k) : xd−k = 0 and xd = xd−1 = · · · = xd−k+1 = 1},
which satisfies conv(Fk) ≡ FPd−k(k). Since every element of Vd(k) ends in exactly one of
0, 01, 011, . . . , or 01 . . . 1, we have the desired partition. Note that when d = k, conv(Fk) is
the 0-dimensional face given by the vertex 01 . . . 1.

(d) This follows from (c) and the fact that when d < k, all vertices of Qd are elements in
Vd(k), and for d = k all vertices of Qd are elements in Vd(k).

To illustrate the above theorem, we first examine the family of polytopes FPd(8) and
then discuss FP4(3). The terms a1, . . . , a10 given below count the vertices of FPd(8) for
d = 1, 2, . . . , 10. Notice that both a9 and a10 are the sum of the previous 8 terms. The term
a25 which counts the vertices of FP25(8) is also given.

d 1 2 3 4 5 6 7 8 9 10 . . . 25
ad 2 4 8 16 32 64 128 255 509 1, 016 . . . 32, 316, 160

Next we invite the reader to construct the graph G(FP4(3)). This graph contains 13
vertices. Moreover, the vertices V4(3) of FP4(3) can be partitioned into F1 = {x ∈ V4(3) :
x4 = 0}, F2 = {x ∈ V4(3) : x3 = 0 and x4 = 1} and F3 = {x ∈ V4(3) : x2 = 0, x3 = 1 and
x4 = 1}, where conv(F1) ≡ Q3, conv(F2) ≡ Q2, and conv(F3) ≡ Q1. Additional adjacencies
can be checked by using either the definition or the property that if x and y differ in only one
coordinate, then x and y are adjacent on FPd(k). This is a well known characterization for
adjacency on Qd, and gives a sufficient (but not necessary) condition for adjacency on FPd(k).

THE FACETS OF FIBONACCI POLYTOPES

Finding a set of linear inequalities that define a polytope with {0, 1}-valued vertices can
sometimes be a hard problem because an exponentially large number of inequalities may be
necessary. This happens, for example, with the famous traveling salesman polytope (e.g., see
[2] or [6]). On the other hand, many polytopes require a relatively small set of inequalities in

229



FIBONACCI POLYTOPES AND THEIR APPLICATIONS

their description. Hence, both the number of vertices and the number of facets of a polytope
are important parameters throughout the literature on convex polytopes.

A matrix A is called totally unimodular if each subdeterminant of A is 0 or ±1. Sur-
prisingly, this is a very important property with respect to describing a polytope with integer
valued extreme points using linear inequalities. This is because polytopes described by a
totally unimodular matrix usually require a relatively small number of inequalities in their
description. For it is known that if an m × d matrix A is totally unimodular, then for all
integral vectors a, b, with m entries, and all integral vectors l,u with d entries, the polyhedron
{x ∈ Rd : l ≤ x ≤ u and a ≤ Ax ≤ b} has only integral vertices (see [8]). Now let Ad(k)
be the (d − k + 1) × d matrix where row i has k consecutive ones in columns i to i + k − 1,
and zeros elsewhere, for i = 1, 2, . . . , d− k + 1, and let 1 be the (d− k + 1)× 1 column vector
consisting of all entries equal to 1. For example, A5(3) is given below. It is easy to check that
A5(3) is totally unimodular.

A5(3) =

 1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

 .
Lemma: For all k and d satisfying 2 ≤ k ≤ d, the matrix Ad(k) is totally unimodular.

Proof: A {0, 1}-matrix A is called an interval matrix if in each column, the 1’s appear
consecutively. It is known that interval matrices are totally unimodular (see [8].) Clearly,
Ad(k) is an interval matrix, and hence, it is totally unimodular.
Theorem 2: If 2 ≤ k ≤ d, then

FPd(k) = {x ∈ Rd : 0 ≤ xi ≤ 1, for all i, and Ad(k)x ≤ (k − 1)1}.

Proof: Let P = {x ∈ Rd : 0 ≤ xi ≤ 1, for all i; and Ad(k)x ≤ (k − 1)1}. We first
show that FPd(k) ⊆ P . Let y ∈ Fd(k). Since FPd(k) is the convex hull of Vd(k), there exists
extreme points x1, . . . ,xp and λj ≥ 0 such that y =

∑p
j=1 λjx

j and
∑p

j=1 λj = 1. Since no

xj has k or more consecutive ones, the xj must all satisfy xj
i + xj

i+1 + · · · + xj
i+k−1 ≤ k − 1,

for j = 1, . . . , p, and i = 1, . . . , d− k + 1. Therefore,

yi + yi+1 + · · ·+ yi+k−1 =
p∑

j=1

λjx
j
i +

p∑
j=1

λjx
j
i+1 + · · ·+

p∑
j=1

λjx
j
i+k−1

=
p∑

j=1

λj(xj
i + xj

i+1 + · · ·+ xj
i+k−1)

≤
p∑

j=1

λj(k − 1) = k − 1.

Since yi ≥ 0, for all i, the given inequalities are all valid for FPd(k), and hence FPd(k) ⊆ P .
Suppose that, to obtain a contradiction, P is not contained in FPd(k). Then there exists

a point x ∈ P such that x /∈ Fd(k). Since P is a polytope, it is the convex hull of some set
of vertices, say S. Moreover, Ad(k) totally unimodular, implies that the vertices of P must be
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integer valued, and the constraints 0 ≤ xi ≤ 1, for all i, implies that these vertices must be
{0, 1}-vectors. Thus x =

∑p
j=1 λjz

j , where zj ∈ S and
∑p

j=1 λj = 1. Since x /∈ Fd(k),
there must be some , say zh, such that zh 6∈ Vd(k). However, any {0, 1}-vector that is not in
Vd(k) must have k or more consecutive ones. Thus, zh has k or more consecutive ones. But
this is a contradiction since zh ∈ P .

A system of inequalities and equations defining a polytope is called minimal if no inequality
can be made into an equation without reducing the size of the solution set, and no inequality
or equation can be omitted without enlarging the solution set. In a minimal defining system
each inequality induces a distinct facet and each facet corresponds to a distinct inequality (see
[2]). Notice that the inequalities of Theorem 2 are minimal for 3 ≤ k ≤ d. For if we omit
any inequality, we can find x 6∈ FPd(k), satisfying the remaining inequalities. To demonstrate,
consider FP5(3). If we omit x1+x2+x3 ≤ 2, then x = 11100 satisfies all remaining inequalities,
but x 6∈ FP5(3). Similarly, y = 20000 satisfies all inequalities, except x1 ≤ 1, but y 6∈ FP5(3),
and z = (−1)0000 satisfies all inequalities, except 0 ≤ x1, where z 6∈ FP5(3). Moreover, no
inequality of Theorem 2 can be made into an equation without reducing the solution set (e.g.
changing x1 + x2 + x3 ≤ 2 into an equation “cuts off ” 10000 ∈ FP5(3).) These examples
can be generalized to prove that the inequalities of Theorem 2 all induce facets and leads to
Theorem 3.
Theorem 3: For k = 2, the number of facets of FPd(k) is 2d− k + 1, and for 3 ≤ k ≤ d, the
number of facets is 3d− k + 1.

Proof: For 3 ≤ k ≤ d, we have demonstrated that the following facets are both necessary
and sufficient for FPd(k) : {x ∈ FPd(k) : xi = 0}, for i = 1, . . . , d, {x ∈ FPd(k) : xi = 1}, for
i = 1, . . . , d, and {x ∈ FPd(k) : xi + xi+1 + · · · + xi+k−1 = k − 1}, for i = 1, . . . , d − k + 1.
Hence, the total number of facets is 3d− k + 1.

When k = 2, the inequalities xi + xi+1 + · · ·+ xi+k−1 ≤ k− 1, imply xi ≤ 1. So xi ≤ 1 is
unnecessary, and the number of facets is 2d− k + 1.

RELATED COMBINATORIAL PROBLEMS

There are several possible combinatorial interpretations of the vertices of FPd(k). Here
we use the notion of a composition of a positive integer d, which is a representation of d as a
sum of positive integer summands where the order is relevant. Some distinct compositions of
5 using summands 1, 2 and 3 are:

1 + 1 + 1 + 1 + 1 1 + 1 + 2 + 1 1 + 2 + 1 + 1 2 + 1 + 1 + 1 2 + 2 + 1 3 + 1 + 1.

Each composition of 5 using summands 1, 2 and 3 may be represented as a unique vertex on
FP4(3). The connection is to use a coordinate for each of the 4 possible addition signs where
a 1 indicates that an addition has been executed. So 1+1+1+1+1 corresponds to the vertex
(0,0,0,0). We think of 1 + 1 + 2 + 1 as 1 + 1 + (1 + 1) + 1 which corresponds to (0,0,1,0). The
composition 3 + 1 + 1 corresponds to (1,1,0,0). Since FP4(3) has 13 vertices, we may deduce
that there are 13 compositions of 5 using summands 1, 2 and 3. This leads us to Theorem 4;
the formal proof is left for the reader.
Theorem 4: (a) For 2 ≤ k ≤ d, there is a one-to-one correspondence between the compositions
of d+ 1 using summands 1, 2, . . . , k and the vertices of FPd(k).
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(b) If ad is the number of compositions of d+ 1 into positive integer summands less than
k, then ad satisfies the recurrence relation ad = ad−1 + ad−2 + · · ·+ ad−k, where ad = 2d, for
d < k, and ad = 2d − 1, for d = k.

Theorem 4 allows us to study compositions using FPd(k) in two ways. Part (b) provides a
recurrence relation which can be used to count compositions with bounded summands. Others
who have derived methods for counting certain constrained compositions include [1] and [3].

We can also use FPd(k) to help find certain compositions arising in practical applica-
tions. For suppose that we must form clusters among say 26 computer records in a file,
possibly accessible to a relational database. The records are stored as rows in a table and
are identified as r1, r2, . . . , r26 (e.g, see Chapter 2 of [7]). Each cluster can have between 1
and 8 records, and the clusters must contain records with consecutive labels. For example,
{r1, r2, . . . , r8}, {r9, r10, . . . , r16}, {r17, r18, . . . , r24}, {r25, r26} is one such cluster. Clustering
records allows an operating system to transfer a “block” of data instead of just a single record.
Due to advantages arising from efficient memory retrieval, there is a benefit denoted by ci,
derived from placing ri and ri+1 in the same cluster, for i = 1, 2, . . . , 25. We assume that there
are no other significant benefits. Now, if c = (ci) is the vector given below, how should the
clusters be formed so that the total benefit is maximum?

c = (598 294 211 173 247 371 259 738 794 211 813 516 590
350 315 51 856 25 249 859 792 579 593 798 113)

The clustering problem asks for a composition of 26 whose summands are at most 8, and
also maximizes the total benefit. By Theorem 4 and a calculation given above, we know that
there are 32,316,160 possible compositions. However, the best composition is found by solving
maximize {c · x : x ∈ FP25(8)}. This requires using 25 variables xi satisfying 0 ≤ xi ≤ 1,
and 18 inequalities given by xi + xi+1 + · · · + xi+7 ≤ 7, for i = 1, . . . , 18. So a total of 68
inequalities are needed to describe FP25(8).

Using FP25(8) the problem can be solved with an algorithm such as the simplex method.
In terms of the polytope FP25(8), the simplex method would start at the vertex x = 00 . . . 0,
and move to an adjacent vertex that increases the total benefit as large as possible. The
algorithm repeats this process, moving along an edge of FP25(8) each iteration, until a vertex
corresponding to an optimal solution has been found. Hence the algorithm creates a walk along
vertices of FP25(8). Linear programming software such as Solver, a subroutine of Microsoft
Excel, can be used to implement the simplex method. Using Solver with an IBM 300GL PC,
the problem is solved in less than 1 second. The optimal solution x∗ is given below.

x∗ = (1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1).

Notice that x∗ corresponds to the composition 4+6+8+8. So we place the first 4 records
in cluster 1, the next 6 in cluster 2, the next 8 in cluster 3, and the last 8 in cluster 4. The
total benefit obtained is c · x∗ = 10, 986.

The inequalities defining FPd(k) may also be supplemented to model additional con-
straints. The composition 4+6+8+8 is a clustering into 4 parts, but suppose that we desired
the best clustering with 5 parts. In general, to find a composition of d+1, with summands
at most k, into exactly p parts, we use the inequalities for FPd(k), together with the
equation

∑d
i=1 xi = d+1−p. The coefficients of this equation are all ones. Using properties of

determinants, we could show that adding a row of ones to the matrix Ad(k) used in Theorem
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2 will yield another totally unimodular matrix. So this important property is preserved in
a description of the new polytope. Adding the additional constraint to our example and
resolving, we obtain the composition 4+6+6+2+8, which gives total benefit c ·x∗ = 10, 935.
We conclude by inviting the reader to find other constraints related to compositions that can
be used in conjunction with FPd(k) which will result in a totally unimodular matrix.
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[4] B. Grünbaum. Convex Polytopes, Second Addition. Springer-Verlag, New York 2003.
[5] R.J. Hendel. “Approaches to the formula for the nth Fibonacci number.” College Math-

ematic Journal 25 (1994): 139-142.
[6] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, New York

1988.
[7] P. Rob and C. Coronel. Database Systems: Design, Implementation and Management.

Boyd & Fraser, Danvers 1995.
[8] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York 1986.
[9] G. Ziegler. Lectures on Polytopes. Springer-Verlag, New York 1995.

AMS Classification Numbers: 52B05, 90C57

z z z

233


