FIBONACCI POLYTOPES AND THEIR APPLICATIONS

Fred J. Rispoli

Department of Mathematics, Dowling College, Oakdale, NY 11769 (Submitted November 2002-Final Revision April 2004)

ABSTRACT

A Fibonacci *d*-polytope of order *k* is defined as the convex hull of $\{0, 1\}$ -vectors with *d* entries and no consecutive *k* ones, where $k \leq d$. We show that these vertices can be partitioned into *k* subsets such that the convex hull of the subsets give the equivalent of Fibonacci (d-i)-polytopes, for $i = 1, \ldots, k$, which yields a "Fibonacci like" recursive formula to enumerate the vertices. Surprisingly, the polytopes are totally unimodular and require a small number of inequalities to describe them. These facts are used to enumerate compositions of a positive integer with bounded summands, and to find various compositions.

INTRODUCTION

The Fibonacci d-polytope of order k, denoted by $FP_d(k)$, is the convex hull of the set of $\{0,1\}$ -vectors having d entries and no consecutive k ones. For example, $FP_3(2)$ is the convex hull of $\{000, 001, 100, 010, 101\}$ (see Figure 1.) Notice that $FP_3(2)$ contains a face which is "combinatorially equivalent" to $FP_2(2)$ (the triangle) and another face that is equivalent to $FP_1(2)$ (the line segment), as indicated by the bold edges. An illustration of $FP_3(3)$ is also given. Observe that $\{000, 100, 110, 010\}$, $\{001, 101\}$, and $\{011\}$ is a partition of the vertices of $FP_3(3)$ such that the convex hull of each subset gives the equivalent of Fibonacci polytopes of order 3 of dimension 2, 1 and 0 respectively.

Fibonacci 3-polytope F of order 2

Fibonacci 3-polytope of order 3

Figure 1 Fibonacci 3-polytopes of order 2 and 3.

Here we investigate the Fibonacci *d*-polytopes of order k and discuss some interesting properties and applications. For example, the vertices of every $FP_d(k)$ can be partitioned into k subsets F_1, \ldots, F_k such that the convex hull of F_i generates a Fibonacci polytope of order k, of dimension d-1, $d-2, \ldots, d-k$, respectively. The partition is obtained by considering special faces of $FP_d(k)$ and implies that the number of vertices of $FP_d(k)$, denoted by a_d ,

227

follows the "Fibonacci-like" recurrence relation given by $a_d = 2^d$, for d < k, $a_d = 2^d - 1$, for d = k, and $a_d = a_{d-1} + a_{d-2} + \cdots + a_{d-k}$, for d > k. When k = 2, we see that the number of vertices of $FP_d(2)$ satisfies $a_d = a_{d-1} + a_{d-2}$, where $a_1 = 2$ and $a_2 = 3$. Hence, the number of vertices of $FP_d(2)$ is given by the famous Fibonacci numbers, denoted by F_d . From Binet's formula we know that

$$F_{d} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{d} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{d}$$

(for proof, see [5]). Therefore, the number of vertices of $FP_d(k)$ grows exponentially in d. However, the Fibonacci polytopes may be defined using roughly 3d linear inequalities. In particular, $FP_d(k)$ is defined using variables with lower and upper bounds, together with a $(d - k + 1) \times d$ matrix A, where A is totally unimodular. We conclude with applications of Fibonacci polytopes to study compositions of a positive integer.

CONVEX POLYTOPES

A subset of points $V \subseteq \mathbb{R}^d$ is called *convex* if for every $\mathbf{x}, \mathbf{y} \in V$, the line segment $\{\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} : 0 \leq \lambda \leq 1\}$ is contained in V. For $V = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \subseteq \mathbb{R}^d$, the affine hull of V is $\{\lambda_1 \mathbf{x}_1 + \cdots + \lambda_n \mathbf{x}_n : \lambda_j \in \mathbb{R} \text{ and } \sum_{j=1}^n \lambda_j = 1\}$, and the *convex hull* of V, denoted by $\operatorname{conv}(V)$, is defined by $\operatorname{conv}(V) = \{\lambda_1 \mathbf{x}_1 + \cdots + \lambda_n \mathbf{x}_n : \lambda_j \in \mathbb{R}, \lambda_j \geq 0 \text{ and } \sum_{j=1}^n \lambda_j = 1\}$. The convex hull of a finite set of points in some \mathbb{R}^d , for $d \geq 1$, is called a *polytope*, and a polytope of dimension d is called a *d-polytope*. The intersection of finitely many closed halfspaces in some \mathbb{R}^d is called a *polyhedron*. It is known that every polytope is the intersection of a finite set of closed halfspaces. Furthermore, P is a polytope if and only if P is a bounded polyhedron. Thus every polytope may be defined either as a convex hull of points, or as the intersection of halfspaces usually defined in terms of linear inequalities. For more information on polytopes and the above facts, see [4] or [9].

Let $P \subseteq \mathbf{R}^d$ be a polytope. A point $\mathbf{x} \in P$ is called a *vertex* of P if $\mathbf{y}, \mathbf{z} \in P$ and $\mathbf{x} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{z}$, where $0 < \lambda < 1$, implies that $\mathbf{x} = \mathbf{y} = \mathbf{z}$. Two vertices $\mathbf{x} \neq \mathbf{y}$ of P are *adjacent* if every point on the segment $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$, where $0 \leq \lambda \leq 1$, has a unique representation as a convex combination of vertices of P. The *vertex-edge graph of* P, denoted by G(P), is the graph whose vertices represent vertices of P, and G(P) contains edge $\{\mathbf{x}, \mathbf{y}\}$ if and only if \mathbf{x} and \mathbf{y} are adjacent on P. Two polytopes P_1 and P_2 are called *combinatorially equivalent*, denoted by $P_1 \equiv P_2$, if $G(P_1)$ and $G(P_2)$ are isomorphic graphs.

Let Q_d denote the *d*-cube defined as the convex hull of the 2^d {0,1}-vectors having *d* entries. Notice that Q_d may also be defined via inequalities as $Q_d = \{ \boldsymbol{x} \in \boldsymbol{R}^d : 0 \leq x_i \leq 1, \text{ for all } i \}$. A truncated *d*-cube, denoted by \overline{Q}_d , is the convex hull of the set of $2^d - 1$ {0,1}-vectors having *d* entries excluding the vector with all ones. One can prove that for all $d \geq 2, \overline{Q}_d = \{ \boldsymbol{x} \in \boldsymbol{R}^d : 0 \leq x_i \leq 1, \text{ for all } i, \text{ and } x_1 + \cdots + x_d \leq d-1 \}$, details are omitted. Observe that if d < k, then $FP_d(k)$ is the *d*-cube Q_d , and if d = k, then $FP_d(k)$ is \overline{Q}_d (e.g. $\overline{Q}_3 = FP_3(3)$, which is given in Figure 1.)

THE VERTICES OF FIBONACCI POLYTOPES

A linear inequality $\mathbf{a} \cdot \mathbf{x} \leq a_0$ is called *valid* for a polytope P if it is satisfied by all $\mathbf{x} \in P$. A *face* of P is any set of the form $P \cap \{\mathbf{x} \in \mathbf{R}^d : \mathbf{a} \cdot \mathbf{x} = a_0\}$, where $\mathbf{a} \cdot \mathbf{x} \leq a_0$ is valid for

P. The dimension of a face is the dimension of its affine hull. Thus, a vertex of P is a face of dimension 0. If P is a d-polytope, then a face of dimension d-1 is called a *facet* of P. For example, $FP_3(3)$ has 7 facets. Let $V_d(k)$ be the set of $\{0,1\}$ -vectors having d entries with no consecutive k ones, for $d \ge 1$ and $k \ge 2$. Then, by definition, $FP_d(k) = \operatorname{conv}\{V_d(k)\}$.

Theorem 1: (a) Every element in $V_d(k)$ is a vertex of $FP_d(k)$.

(b) The dimension of $FP_d(k)$ is d.

(c) For $2 \le k \le d$, the vertices of $FP_d(k)$ can be partitioned into k subsets F_1, \dots, F_k , such that $conv(F_i) \equiv FP_{d-i}(k)$, for $i = 1, \dots, k$.

(d) If a_d is the number of vertices of $FP_d(k)$, then a_d satisfies the recurrence relation $a_d = a_{d-1} + a_{d-2} + \cdots + a_{d-k}$, where $a_d = 2^d$, for d < k, and $a_d = 2^d - 1$, for d = k.

Proof: (a) It is left as an exercise for the reader to show that no element of $V_d(k)$ can be expressed as a convex combination of other elements of $V_d(k)$.

(b) The proof of this is immediate since $V_d(k)$ contains the *d* unit vectors and $FP_d(k)$ is contained in \mathbb{R}^d .

(c) First, observe that the elements $\mathbf{x} \in V_d(k)$ ending in 0 are the same as the elements in $V_{d-1}(k)$ when $x_d = 0$ is removed from \mathbf{x} . If $F_1 = \{\mathbf{x} \in V_d(k) : x_d = 0\}$, then the face of $FP_d(k)$ defined by $\operatorname{conv}(F_1) = \{\mathbf{x} \in FP_d(k) : x_d = 0\}$ is combinatorially equivalent to $FP_{d-1}(k)$. Similarly, if $F_2 = \{\mathbf{x} \in V_d(k) : x_{d-1} = 0 \text{ and } x_d = 1\}$, then $\operatorname{conv}(F_2) \equiv FP_{d-2}(k)$. Repeating this we will obtain $F_k = \{\mathbf{x} \in V_d(k) : x_{d-k} = 0 \text{ and } x_d = x_{d-1} = \cdots = x_{d-k+1} = 1\}$, which satisfies $\operatorname{conv}(F_k) \equiv FP_{d-k}(k)$. Since every element of $V_d(k)$ ends in exactly one of $0, 01, 011, \ldots$, or $01 \ldots 1$, we have the desired partition. Note that when d = k, $\operatorname{conv}(F_k)$ is the 0-dimensional face given by the vertex $01 \ldots 1$.

(d) This follows from (c) and the fact that when d < k, all vertices of Q_d are elements in $V_d(k)$, and for d = k all vertices of \overline{Q}_d are elements in $V_d(k)$.

To illustrate the above theorem, we first examine the family of polytopes $FP_d(8)$ and then discuss $FP_4(3)$. The terms a_1, \ldots, a_{10} given below count the vertices of $FP_d(8)$ for $d = 1, 2, \ldots, 10$. Notice that both a_9 and a_{10} are the sum of the previous 8 terms. The term a_{25} which counts the vertices of $FP_{25}(8)$ is also given.

Next we invite the reader to construct the graph $G(FP_4(3))$. This graph contains 13 vertices. Moreover, the vertices $V_4(3)$ of $FP_4(3)$ can be partitioned into $F_1 = \{ \boldsymbol{x} \in V_4(3) : x_4 = 0 \}$, $F_2 = \{ \boldsymbol{x} \in V_4(3) : x_3 = 0 \text{ and } x_4 = 1 \}$ and $F_3 = \{ \boldsymbol{x} \in V_4(3) : x_2 = 0, x_3 = 1 \text{ and } x_4 = 1 \}$, where $\operatorname{conv}(F_1) \equiv \overline{Q}_3$, $\operatorname{conv}(F_2) \equiv Q_2$, and $\operatorname{conv}(F_3) \equiv Q_1$. Additional adjacencies can be checked by using either the definition or the property that if \boldsymbol{x} and \boldsymbol{y} differ in only one coordinate, then \boldsymbol{x} and \boldsymbol{y} are adjacent on $FP_d(k)$. This is a well known characterization for adjacency on Q_d , and gives a sufficient (but not necessary) condition for adjacency on $FP_d(k)$.

THE FACETS OF FIBONACCI POLYTOPES

Finding a set of linear inequalities that define a polytope with $\{0, 1\}$ -valued vertices can sometimes be a hard problem because an exponentially large number of inequalities may be necessary. This happens, for example, with the famous traveling salesman polytope (e.g., see [2] or [6]). On the other hand, many polytopes require a relatively small set of inequalities in

229

their description. Hence, both the number of vertices and the number of facets of a polytope are important parameters throughout the literature on convex polytopes.

A matrix A is called *totally unimodular* if each subdeterminant of A is 0 or ± 1 . Surprisingly, this is a very important property with respect to describing a polytope with integer valued extreme points using linear inequalities. This is because polytopes described by a totally unimodular matrix usually require a relatively small number of inequalities in their description. For it is known that if an $m \times d$ matrix A is totally unimodular, then for all integral vectors \mathbf{a}, \mathbf{b} , with m entries, and all integral vectors \mathbf{l}, \mathbf{u} with d entries, the polyhedron $\{\mathbf{x} \in \mathbf{R}^d : l \leq \mathbf{x} \leq \mathbf{u} \text{ and } \mathbf{a} \leq A\mathbf{x} \leq \mathbf{b}\}$ has only integral vertices (see [8]). Now let $A_d(k)$ be the $(d - k + 1) \times d$ matrix where row i has k consecutive ones in columns i to i + k - 1, and zeros elsewhere, for $i = 1, 2, \ldots, d - k + 1$, and let **1** be the $(d - k + 1) \times 1$ column vector consisting of all entries equal to 1. For example, $A_5(3)$ is given below. It is easy to check that $A_5(3)$ is totally unimodular.

$$A_5(3) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

Lemma: For all k and d satisfying $2 \le k \le d$, the matrix $A_d(k)$ is totally unimodular.

Proof: A $\{0,1\}$ -matrix A is called an *interval matrix* if in each column, the 1's appear consecutively. It is known that interval matrices are totally unimodular (see [8].) Clearly, $A_d(k)$ is an interval matrix, and hence, it is totally unimodular. **Theorem 2:** If $2 \le k \le d$, then

$$FP_d(k) = \{ \boldsymbol{x} \in \boldsymbol{R}^d : 0 \le x_i \le 1, \text{for all } i, \text{ and } A_d(k) \boldsymbol{x} \le (k-1) \mathbf{1} \}.$$

Proof: Let $P = \{ \boldsymbol{x} \in \boldsymbol{R}^d : 0 \leq x_i \leq 1, \text{ for all } i; \text{ and } A_d(k)\boldsymbol{x} \leq (k-1)\mathbf{1} \}$. We first show that $FP_d(k) \subseteq P$. Let $\boldsymbol{y} \in F_d(k)$. Since $FP_d(k)$ is the convex hull of $V_d(k)$, there exists extreme points $\boldsymbol{x}^1, \ldots, \boldsymbol{x}^p$ and $\lambda_j \geq 0$ such that $\boldsymbol{y} = \sum_{j=1}^p \lambda_j \boldsymbol{x}^j$ and $\sum_{j=1}^p \lambda_j = 1$. Since no \boldsymbol{x}^j has k or more consecutive ones, the \boldsymbol{x}^j must all satisfy $x_i^j + x_{i+1}^j + \cdots + x_{i+k-1}^j \leq k-1$, for $j = 1, \ldots, p$, and $i = 1, \ldots, d-k+1$. Therefore,

$$y_{i} + y_{i+1} + \dots + y_{i+k-1} = \sum_{j=1}^{p} \lambda_{j} x_{i}^{j} + \sum_{j=1}^{p} \lambda_{j} x_{i+1}^{j} + \dots + \sum_{j=1}^{p} \lambda_{j} x_{i+k-1}^{j}$$
$$= \sum_{j=1}^{p} \lambda_{j} (x_{i}^{j} + x_{i+1}^{j} + \dots + x_{i+k-1}^{j})$$
$$\leq \sum_{j=1}^{p} \lambda_{j} (k-1) = k-1.$$

Since $y_i \ge 0$, for all *i*, the given inequalities are all valid for $FP_d(k)$, and hence $FP_d(k) \subseteq P$.

Suppose that, to obtain a contradiction, P is not contained in $FP_d(k)$. Then there exists a point $x \in P$ such that $x \notin F_d(k)$. Since P is a polytope, it is the convex hull of some set of vertices, say S. Moreover, $A_d(k)$ totally unimodular, implies that the vertices of P must be

integer valued, and the constraints $0 \leq x_i \leq 1$, for all *i*, implies that these vertices must be $\{0,1\}$ -vectors. Thus $\boldsymbol{x} = \sum_{j=1}^p \lambda_j \boldsymbol{z}^j$, where $\boldsymbol{z}^j \in S$ and $\sum_{j=1}^p \lambda_j = 1$. Since $\boldsymbol{x} \notin F_d(k)$, there must be some, say \boldsymbol{z}^h , such that $\boldsymbol{z}^h \notin V_d(k)$. However, any $\{0,1\}$ -vector that is not in $V_d(k)$ must have *k* or more consecutive ones. Thus, \boldsymbol{z}^h has *k* or more consecutive ones. But this is a contradiction since $\boldsymbol{z}^h \in P$. \Box

A system of inequalities and equations defining a polytope is called *minimal* if no inequality can be made into an equation without reducing the size of the solution set, and no inequality or equation can be omitted without enlarging the solution set. In a minimal defining system each inequality induces a distinct facet and each facet corresponds to a distinct inequality (see [2]). Notice that the inequalities of Theorem 2 are minimal for $3 \le k \le d$. For if we omit any inequality, we can find $\mathbf{x} \notin FP_d(k)$, satisfying the remaining inequalities. To demonstrate, consider $FP_5(3)$. If we omit $x_1+x_2+x_3 \le 2$, then $\mathbf{x} = 11100$ satisfies all remaining inequalities, but $\mathbf{x} \notin FP_5(3)$. Similarly, $\mathbf{y} = 20000$ satisfies all inequalities, except $x_1 \le 1$, but $\mathbf{y} \notin FP_5(3)$, and $\mathbf{z} = (-1)0000$ satisfies all inequalities, except $0 \le x_1$, where $\mathbf{z} \notin FP_5(3)$. Moreover, no inequality of Theorem 2 can be made into an equation without reducing the solution set (e.g. changing $x_1 + x_2 + x_3 \le 2$ into an equation "cuts off " $10000 \in FP_5(3)$.) These examples can be generalized to prove that the inequalities of Theorem 2 all induce facets and leads to Theorem 3.

Theorem 3: For k = 2, the number of facets of $FP_d(k)$ is 2d - k + 1, and for $3 \le k \le d$, the number of facets is 3d - k + 1.

Proof: For $3 \le k \le d$, we have demonstrated that the following facets are both necessary and sufficient for $FP_d(k)$: $\{x \in FP_d(k) : x_i = 0\}$, for i = 1, ..., d, $\{x \in FP_d(k) : x_i = 1\}$, for i = 1, ..., d, and $\{x \in FP_d(k) : x_i + x_{i+1} + \cdots + x_{i+k-1} = k-1\}$, for i = 1, ..., d - k + 1. Hence, the total number of facets is 3d - k + 1.

When k = 2, the inequalities $x_i + x_{i+1} + \cdots + x_{i+k-1} \le k-1$, imply $x_i \le 1$. So $x_i \le 1$ is unnecessary, and the number of facets is 2d - k + 1. \Box

RELATED COMBINATORIAL PROBLEMS

There are several possible combinatorial interpretations of the vertices of $FP_d(k)$. Here we use the notion of a *composition* of a positive integer d, which is a representation of d as a sum of positive integer summands where the order is relevant. Some distinct compositions of 5 using summands 1, 2 and 3 are:

$$1+1+1+1+1$$
 $1+1+2+1$ $1+2+1+1$ $2+1+1+1$ $2+2+1$ $3+1+1$.

Each composition of 5 using summands 1, 2 and 3 may be represented as a unique vertex on $FP_4(3)$. The connection is to use a coordinate for each of the 4 possible addition signs where a 1 indicates that an addition has been executed. So 1+1+1+1+1 corresponds to the vertex (0,0,0,0). We think of 1+1+2+1 as 1+1+(1+1)+1 which corresponds to (0,0,1,0). The composition 3+1+1 corresponds to (1,1,0,0). Since $FP_4(3)$ has 13 vertices, we may deduce that there are 13 compositions of 5 using summands 1, 2 and 3. This leads us to Theorem 4; the formal proof is left for the reader.

Theorem 4: (a) For $2 \le k \le d$, there is a one-to-one correspondence between the compositions of d + 1 using summands 1, 2, ..., k and the vertices of $FP_d(k)$.

231

(b) If a_d is the number of compositions of d+1 into positive integer summands less than k, then a_d satisfies the recurrence relation $a_d = a_{d-1} + a_{d-2} + \cdots + a_{d-k}$, where $a_d = 2^d$, for d < k, and $a_d = 2^d - 1$, for d = k.

Theorem 4 allows us to study compositions using $FP_d(k)$ in two ways. Part (b) provides a recurrence relation which can be used to count compositions with bounded summands. Others who have derived methods for counting certain constrained compositions include [1] and [3].

We can also use $FP_d(k)$ to help find certain compositions arising in practical applications. For suppose that we must form clusters among say 26 computer records in a file, possibly accessible to a relational database. The records are stored as rows in a table and are identified as r_1, r_2, \ldots, r_{26} (e.g, see Chapter 2 of [7]). Each cluster can have between 1 and 8 records, and the clusters must contain records with consecutive labels. For example, $\{r_1, r_2, \ldots, r_8\}$, $\{r_9, r_{10}, \ldots, r_{16}\}$, $\{r_{17}, r_{18}, \ldots, r_{24}\}$, $\{r_{25}, r_{26}\}$ is one such cluster. Clustering records allows an operating system to transfer a "block" of data instead of just a single record. Due to advantages arising from efficient memory retrieval, there is a benefit denoted by c_i , derived from placing r_i and r_{i+1} in the same cluster, for $i = 1, 2, \ldots, 25$. We assume that there are no other significant benefits. Now, if $\mathbf{c} = (c_i)$ is the vector given below, how should the clusters be formed so that the total benefit is maximum?

$c = (598\ 294\ 211\ 173\ 247\ 371\ 259\ 738\ 794\ 211\ 813\ 516\ 590$ $350\ 315\ 51\ 856\ 25\ 249\ 859\ 792\ 579\ 593\ 798\ 113)$

The clustering problem asks for a composition of 26 whose summands are at most 8, and also maximizes the total benefit. By Theorem 4 and a calculation given above, we know that there are 32,316,160 possible compositions. However, the best composition is found by solving maximize $\{c \cdot x : x \in FP_{25}(8)\}$. This requires using 25 variables x_i satisfying $0 \le x_i \le 1$, and 18 inequalities given by $x_i + x_{i+1} + \cdots + x_{i+7} \le 7$, for $i = 1, \ldots, 18$. So a total of 68 inequalities are needed to describe $FP_{25}(8)$.

Using $FP_{25}(8)$ the problem can be solved with an algorithm such as the simplex method. In terms of the polytope $FP_{25}(8)$, the simplex method would start at the vertex $\mathbf{x} = 00...0$, and move to an adjacent vertex that increases the total benefit as large as possible. The algorithm repeats this process, moving along an edge of $FP_{25}(8)$ each iteration, until a vertex corresponding to an optimal solution has been found. Hence the algorithm creates a walk along vertices of $FP_{25}(8)$. Linear programming software such as Solver, a subroutine of Microsoft Excel, can be used to implement the simplex method. Using Solver with an IBM 300GL PC, the problem is solved in less than 1 second. The optimal solution \mathbf{x}^* is given below.

Notice that x^* corresponds to the composition 4+6+8+8. So we place the first 4 records in cluster 1, the next 6 in cluster 2, the next 8 in cluster 3, and the last 8 in cluster 4. The total benefit obtained is $c \cdot x^* = 10,986$.

The inequalities defining $FP_d(k)$ may also be supplemented to model additional constraints. The composition 4+6+8+8 is a clustering into 4 parts, but suppose that we desired the best clustering with 5 parts. In general, to find a composition of d+1, with summands at most k, into exactly p parts, we use the inequalities for $FP_d(k)$, together with the equation $\sum_{i=1}^{d} x_i = d+1-p$. The coefficients of this equation are all ones. Using properties of determinants, we could show that adding a row of ones to the matrix $A_d(k)$ used in Theorem

2 will yield another totally unimodular matrix. So this important property is preserved in a description of the new polytope. Adding the additional constraint to our example and resolving, we obtain the composition 4+6+6+2+8, which gives total benefit $\boldsymbol{c} \cdot \boldsymbol{x}^* = 10,935$. We conclude by inviting the reader to find other constraints related to compositions that can be used in conjunction with $FP_d(k)$ which will result in a totally unimodular matrix.

ACKNOWLEDGMENT

The author would like to thank Steven Cosares and Julius Dichter for their valuable input and an anonymous referee for many useful suggestions.

REFERENCES

- [1] P. Chinn and S. Heubach. "Integer Sequences Related to Compositions without 2's." Journal of Integer Sequences 6 (2003).
- [2] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial Optimization. Wiley, New York 1998.
- [3] R.P. Grimaldi. "Compositions without the summand 1." Congr. Numer. **152** (2001): 33-43.
- [4] B. Grünbaum. Convex Polytopes, Second Addition. Springer-Verlag, New York 2003.
- [5] R.J. Hendel. "Approaches to the formula for the n^{th} Fibonacci number." College Mathematic Journal 25 (1994): 139-142.
- [6] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, New York 1988.
- [7] P. Rob and C. Coronel. Database Systems: Design, Implementation and Management. Boyd & Fraser, Danvers 1995.
- [8] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York 1986.
- [9] G. Ziegler. Lectures on Polytopes. Springer-Verlag, New York 1995.

AMS Classification Numbers: 52B05, 90C57

$\mathbf{A} \mathbf{A} \mathbf{A}$