ON THE KTH-ORDER DERIVATIVE SEQUENCES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

Gospava B. Djordjević

University of Niš, Faculty of Technology, 16000 Leskovac, Serbia and Montenegro (Submitted January 2003-Final Revision July 2003)

ABSTRACT

In this note we consider two classes of polynomials U_n and V_n . These polynomials are special cases of $U_{n,m}$ and $V_{n,m}$ (see [2]), respectively. Also, U_n and V_n are generalized Fibonacci and Lucas polynomials. In fact, in this paper we study the polynomials $U_{n,3}$ and $V_{n,3}$, together with their k^{th} -derivative sequences $U_n^{(k)}$ and $V_n^{(k)}$. Some interesting identities are proved in the paper, for U_n , V_n , $U_n^{(k)}$ and $V_n^{(k)}$.

1. INTRODUCTION

To begin with, we define two classes of polynomials $\{U_n \equiv U_n(x)\}_{n \in N}$ and $\{V_n \equiv V_n(x)\}_{n \in N}$. These polynomials are given by recurrence relations:

$$U_n = xU_{n-1} + U_{n-m}, \quad n \ge m,$$

with $U_0 = 0, U_n = x^{n-1}, n = 1, \dots, m-1$, and

$$V_n = xV_{n-1} + V_{n-m}, \quad n \ge m,$$

with $V_0 = 2, V_n = x^n, n = 1, \dots, m - 1.$

These polynomials are special cases of the polynomials $U_{n,m}$ and $V_{n,m}$ (see [2], for y = 1). For m = 2, U_n and V_n are the well-known Fibonacci and Lucas polynomials, respectively (see [3], [4], [5], [6], [7]).

In this paper we shall consider these polynomials for m = 3. Obviously, we can say that U_n and V_n are generalized Fibonacci and generalized Lucas polynomials. Namely, they are given by recurrence relations:

$$U_n = xU_{n-1} + U_{n-3}, \quad n \ge 3, \tag{1.1}$$

with $U_0 = 0, U_1 = 1, U_2 = x$, and

$$V_n = xV_{n-1} + V_{n-3}, \quad n \ge 3, \tag{1.2}$$

with $V_0 = 2, V_1 = x, V_2 = x^2$.

Recall that U_n is a special case of the polynomials $\phi_n(p,q;x)$ (see [1], for p = 0, q = -1). Their k^{th} -order derivative sequences are defined as

$$U_n^{(k)} = \frac{d^k}{dx^k} U_n(x)$$
, and $V_n^{(k)} = \frac{d^k}{dx^k} V_n(x)$.

Let us denote the complex numbers α, β , and γ , so that they satisfy:

$$\alpha + \beta + \gamma = x, \quad \alpha\beta + \alpha\gamma + \beta\gamma = 0, \quad \alpha\beta\gamma = 1.$$
(1.3)

2. POLYNOMIALS $U_n^{(k)}$ AND $V_n^{(k)}$

Using a known method, we can prove that the polynomials U_n and V_n possess generating functions as follows:

$$U(t) = t(1 - xt - t^3)^{-1} = \sum_{n=0}^{\infty} U_n t^n,$$
(2.1)

$$V(t) = (2 - xt)(1 - xt - t^3)^{-1} = \sum_{n=0}^{\infty} V_n t^n.$$
 (2.2)

Differentiating both sides of (2.1), with respect to x, k-times, we get

$$U_k(t) = \frac{k!t^{k+1}}{(1-xt-t^3)^{k+1}} = \sum_{n=0}^{\infty} U_n^{(k)} t^n.$$
 (2.3)

Moreover, using induction on n, we can prove that the polynomials U_n and V_n satisfy the following relation

$$V_n = U_{n+1} + U_{n-2}, \quad n \ge 2.$$
(2.4)

Theorem 2.1: Let k be a positive integer. Then it follows that

$$U_{k}(t) = \frac{k!}{(\alpha A)^{k+1}} \sum_{i=0}^{k} \frac{a_{k,i}}{(1-\alpha t)^{k+1-i}} + \frac{k!}{(\beta M)^{k+1}} \sum_{i=0}^{k} \frac{b_{k,i}}{(1-\beta t)^{k+1-i}} + \frac{k!}{(\gamma R)^{k+1}} \sum_{i=0}^{k} \frac{c_{k,i}}{(1-\gamma t)^{k+1-i}},$$
(2.5)

where

$$a_{k,i} = (-1)^{i} A^{i} {\binom{k+1}{i}} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} {\binom{k+1}{j-l}} {\binom{j-l}{l}} A^{i} B^{j-2l} C^{l} a_{k,i-j},$$

$$b_{k,i} = (-1)^{i} M^{i} {\binom{k+1}{i}} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} {\binom{k+1}{j-l}} {\binom{j-l}{l}} M^{i} N^{j-2l} P^{l} b_{k,i-j},$$

$$c_{k,i} = (-1)^{i} R^{i} {\binom{k+1}{i}} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} {\binom{k+1}{j-l}} {\binom{j-l}{l}} R^{l} S^{j-2l} T^{l} c_{k,i-j},$$

for $i = 1, \ldots, k$ and

$$A = A(\alpha) = \frac{\alpha^2 (2\alpha - x) + 1}{\alpha^3}, \ B = B(\alpha) = \frac{\alpha^2 (x - \alpha) - 2}{\alpha^3}, \ C = C(\alpha) = \frac{1}{\alpha^3},$$
$$M = A(\beta), \ N = N(\beta), \ P = C(\beta), \ R = A(\gamma), \ S = B(\gamma), \ T = C(\gamma).$$

Proof: From (1.3) and (2.3), we get

$$\frac{t^{k+1}}{(1-xt-t^3)^{k+1}} = \sum_{i=0}^k \frac{A_{k,i}}{(1-\alpha t)^{k+1-i}} + \sum_{i=0}^k \frac{B_{k,i}}{(1-\beta t)^{k+1-i}} + \sum_{i=0}^k \frac{C_{k,i}}{(1-\gamma t)^{k+1-i}},$$
(2.6)

where $A_{k,i}, B_{k,i}$, and $C_{k,i}$ are independent of t. Multiplying (2.6) by $\alpha^{k+1}(1-\beta t)^{k+1}(1-\gamma t)^{k+1}$, we get

$$\frac{(\alpha t)^{k+1}}{(1-\alpha t)^{k+1}} = \alpha^{k+1} [A + B(1-\alpha t) + C(1-\alpha t)^2] \sum_{i=0}^{k+1} \frac{A_{k,i}}{(1-\alpha t)^{k+1-i}} + \phi(t),$$
(2.7)

where $\phi(t)$ is an analytic function at the point $t = \alpha^{-1}$ (t is a complex variable and x is a real constant).

Since

$$\frac{(\alpha t)^{k+1}}{(1-\alpha t)^{k+1}} = ((1-\alpha t)^{-1} - 1)^{k+1},$$

from (2.7), it follows that

$$\sum_{i=0}^{k+1} \binom{k+1}{i} (-1)^i (1-\alpha t)^{-(k+1-i)} = \alpha^{k+1} \sum_{j=0}^{k+1} \binom{k+1}{j} A^{k+1-j} \sum_{l=0}^j \binom{j}{l} B^{j-l} C^l (1-\alpha t)^{j+l} \sum_{i=0}^k \frac{A_{k,i}}{(1-\alpha t)^{k+1-i}} + \phi(t).$$

Using the fact that the Laurent series [6] is unique at the point $t = \alpha^{-1}$ for the function $(\alpha t)^{k+1}(1-\alpha t)^{-(k+1)}$, we can compare the coefficients of $(1-\alpha t)^{-(k+1-i)}(i=0,1,\ldots,k)$ on both sides of the last equality. So, we get

$$\alpha^{k+1} \sum_{j=0}^{i} \sum_{l=0}^{[j/2]} \binom{k+1}{j-l} \binom{j-l}{l} A^{k+1-j+l} B^{j-2l} C^l A_{k,i-j} = (-1)^i \binom{k+1}{i}, \qquad (2.8)$$

where $i = 0, 1, \ldots, k$, and

$$A = A(\alpha) = \frac{\alpha^2(2\alpha - x) + 1}{\alpha^3}, \ B = B(\alpha) = \frac{\alpha^2(x - \alpha) - 2}{\alpha^3}, \ C = C(\alpha) = \frac{1}{\alpha^3}.$$

Let us denote

$$a_{k,i-j} = \alpha^{k+1} A^{k+1+i-j} A_{k,i-j}.$$

Hence, from (2.8), we get

$$\sum_{j=0}^{i} \sum_{l=0}^{[j/2]} \binom{k+1}{j-l} \binom{j-l}{l} A^{l} B^{j-2l} C^{l} a_{k,i-j} = (-1)^{i} A^{i} \binom{k+1}{i},$$

where $a_{k,0} = 1$.

; From the last equality, for j = 0, it follows that

$$a_{k,i} = (-1)^{i} A^{i} \binom{k+1}{i} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} \binom{k+1}{j-l} \binom{j-l}{l} A^{l} B^{j-2l} C^{l} a_{k,i-j}.$$
 (2.9)

In a similar way, we find that the coefficients $b_{k,i}$ and $c_{k,i}$ are given by

$$b_{k,i} = (-1)^{i} M^{i} \binom{k+1}{i} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} \binom{k+1}{j-l} \binom{j-l}{l} M^{l} N^{j-2l} P^{l} b_{k,i-j};$$
(2.10)

$$c_{k,i} = (-1)^{i} R^{i} \binom{k+1}{i} - \sum_{j=1}^{i} \sum_{l=0}^{[j/2]} \binom{k+1}{j-l} \binom{j-l}{l} R^{l} S^{j-2l} T^{l} c_{k,i-j}, \qquad (2.11)$$

where

$$b_{k,0} = c_{k,0} = 1, \ M = A(\beta), \ N = B(\beta), \ P = C(\beta), \ R = A(\gamma), \ S = B(\gamma), \ T = C(\gamma).$$

If we substitute (2.9), (2.10), and (2.11) in (2.3), we get

$$U_k(t) = \frac{k!}{(\alpha A)^{k+1}} \sum_{i=0}^k \frac{a_{k,i}}{A^i (1-\alpha t)^{k+1-i}} + \frac{k!}{(\beta M)^{k+1}} \sum_{i=0}^k \frac{b_{k,i}}{M^i (1-\beta t)^{k+1-i}} + \frac{k!}{(\gamma R)^{k+1}} \sum_{i=0}^k \frac{c_{k,i}}{R^i (1-\gamma t)^{k+1-i}}.$$

3. FURTHER INTERESTING IDENTITIES

Lemma 3.1: Let n be a positive integer and r and m be nonnegative integers. Then

$$\sum_{i=0}^{n} U_i = (U_{n+1} + U_n + U_{n-1} - 1)/x, \quad x \neq 0.$$
(3.1)

$$\sum_{i=0}^{n} V_i = (V_{n+1} + V_n + V_{n-1} - 1)/x, \quad x \neq 0.$$
(3.2)

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} h_{r+2i} = h_{r+3n} \quad (h_n = U_n \text{ or } h_n = V_n).$$
(3.3)

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} h_{r+3i} = (-1)^{n} x^{n} h_{r+2n} \quad (h_n = U_n \text{ or } h_n = V_n).$$
(3.4)

$$U_{m+n} = U_{m+1}U_n + U_m U_{n-2} + U_{m-1}U_{n-1}, \quad n \ge 2.$$
(3.5)

$$V_{m+n} = V_{m+1}U_n + V_m U_{n-2} + V_{m-1}U_{n-1}, \quad n \ge 2.$$
(3.6)

Proof: In the proof we use induction on n.

For n = 1 in (3.1), we get

$$U_0 + U_1 = \frac{1}{x}(U_2 + U_1 + U_0 - 1) = \frac{1}{x}(x + 1 + 0 - 1) = 1.$$

It follows that (3.1) holds for n = 1. Suppose that (3.1) holds for $n \ge 1$. Then, for n + 1, it follows that

$$\sum_{i=0}^{n+1} U_i = \sum_{i=0}^n U_i + U_{n+1}$$
$$= \frac{1}{x} (U_{n+1} + U_n + U_{n-1} + xU_{n+1} - 1) = \frac{1}{x} (U_{n+2} + U_{n+1} + U_n - 1).$$

Thus, we conclude that (3.1) holds for all $n \in N$. Similarly, we can prove the equalities (3.2) and (3.3). To prove (3.4), we also use induction on n. For n = 1 it follows that

$$\sum_{i=0}^{1} (-1)^{i} \frac{1}{i} h_{r+3i} = h_{r} + h_{r+3} = -xh_{r+2} \quad (by \ (1.1) \ and \ (1.2)).$$

Hence, (3.4) is true for n = 1. Suppose that (3.4) is true for $n \ge 1$. Then, for n = n + 1, we get

$$(-1)^{n+1}x^{n+1}h_{r+2n+2} = -x(-1)^n x^n h_{r+2+2n} = -x \sum_{i=0}^n (-1)^i \binom{n}{i} h_{r+2+3i}$$

$$= \sum_{i=0}^n (-1)^{i+1} \binom{n}{i} x h_{r+2+3i} = \sum_{i=0}^n (-1)^{i+1} \binom{n}{i} (h_{r+3+3i} - h_{r+3i})$$

$$= \sum_{i=0}^n (-1)^{i+1} \binom{n}{i} h_{r+3(i+1)} + \sum_{i=0}^n (-1)^i \binom{n}{i} h_{r+3i}$$

$$= \sum_{i=1}^{n+1} (-1)^i \binom{n}{i-1} h_{r+3i} + \sum_{i=0}^n (-1)^i \binom{n}{i} h_{r+3i}$$

$$= \sum_{i=1}^n (-1)^i \binom{n}{n-1} + \binom{n}{i} h_{r+3i} + (-1)^{n+1} h_{r+3(n+1)} + h_r$$

$$= \sum_{i=0}^{n+1} (-1)^i \binom{n+1}{i} h_{r+3i}.$$

So, we conclude that (3.4) is true for all $n \in N$.

Equalities (3.5) and (3.6) can be proved using recurrence relations (1.1) and (1.2), and applying induction on n.

Theorem 3.1: Let n be a positive integer and k be a nonnegative integer.

$$x\sum_{i=0}^{n} U_{i}^{(k)} = U_{n+1}^{(k)} + U_{n}^{(k)} + U_{n-1}^{(k)} - k\sum_{i=0}^{n} U_{i}^{(k-1)}, \quad x \neq 0;$$
(3.7)

$$x\sum_{i=0}^{n}V_{i}^{(k)} = V_{n+1}^{(k)} + V_{n}^{(k)} + V_{n-1}^{(k)} - k\sum_{i=0}^{n}V_{i}^{(k-1)}, \quad x \neq 0;$$
(3.8)

$$\sum_{i=0}^{n} \sum_{j=0}^{k} \binom{n}{i} \binom{k}{j} (x^{i})^{(j)} h_{r+2i}^{(k-j)} = h_{r+3n}^{(k)};$$
(3.9)

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} h_{r+3i}^{(k)} = (-1)^{n} \sum_{j=0}^{k} \binom{k}{j} (n-j+1)_{j} x^{n-j} h_{r+2n}^{(k-j)},$$
(3.10)

where $h_n = U_n$ or $h_n = V_n$.

Proof: Equalities (3.7), (3.8), and (3.10), can be proved in a straightforward manner by differentiating the corresponding equalities (3.1), (3.2), and (3.4). Here, we prove (3.9).

If k = 0, then (3.9) becomes

$$h_{r+3n} = \sum_{i=0}^{n} \binom{n}{i} x^i h_{r+2i}$$

It follows that (3.4) is true. Suppose that (3.9) is true for $k \ge 0$. Then, for k + 1, we get

$$\begin{split} h_{r+3n}^{(k+1)} &= \frac{d}{dx} \left(h_{r+3n}^{(k)} \right) = \sum_{i=0}^{n} \sum_{j=0}^{k} \binom{n}{i} \binom{k}{j} \frac{d}{dx} \left((x^{i})^{(j)} h_{r+2i}^{(k-j)} \right) \\ &= \sum_{i=0}^{n} \sum_{j=0}^{k} \binom{n}{i} \binom{k}{j} \left((x^{i})^{(j+1)} h_{r+2i}^{(k-j)} + (x^{i})^{(j)} h_{r+2i}^{(k+1-j)} \right) \quad (j+1:=j) \\ &= \sum_{i=0}^{n} \sum_{j=1}^{k+1} \binom{n}{i} \binom{k}{j-1} (x^{i})^{(j)} h_{r+2i}^{(k+1-j)} + \sum_{i=0}^{n} \sum_{j=0}^{k} \binom{n}{i} \binom{k}{j} (x^{i})^{(j)} h_{r+2i}^{(k+1-j)} \\ &= \sum_{i=0}^{n} \sum_{j=1}^{k} \binom{n}{i} \left(\binom{k}{j-1} + \binom{k}{j} \right) (x^{i})^{(j)} h_{r+2i}^{(k+1-j)} + \sum_{i=0}^{n} \binom{n}{i} \binom{k}{k} (x^{i})^{(k+1)} h_{r+2i} \\ &+ \sum_{i=0}^{n} \binom{n}{i} \binom{k+1}{0} x^{i} h_{r+2i}^{(k+1)} = \sum_{i=0}^{n} \sum_{j=0}^{k+1} \binom{n}{i} \binom{k+1}{j} (x^{i})^{(j)} h_{r+2i}^{(k+1-j)}. \quad \Box \end{split}$$

Theorem 3.2: Let n be a positive integer and k be a nonnegative integer. Then

$$h_n^{(k)} = xh_{n-1}^{(k)} + h_{n-3}^{(k)} + kh_{n-1}^{(k-1)}, \ k \ge 0, \ (h_n = U_n \ or \ h_n = V_n).$$
(3.11)

$$V_n^{(k)} = U_{n+1}^{(k)} + U_{n-2}^{(k)}, \quad n \ge 2.$$
(3.12)

$$U_{n+m}^{(k)} = \sum_{i=0}^{k} \binom{k}{i} \left(U_{m+1}^{(k-i)} U_{n}^{(i)} + U_{m}^{(k-i)} U_{n-2}^{(i)} + U_{m-1}^{(k-i)} U_{n-1}^{(i)} \right).$$
(3.13)

$$V_{m+n}^{(k)} = \sum_{i=0}^{k} \binom{k}{i} \left(V_{m+1}^{(k-i)} U_{n}^{(i)} + V_{m}^{(k-i)} U_{n-2}^{(i)} + V_{m-1}^{(k-i)} U_{n-1}^{(i)} \right).$$
(3.14)

Proof: Equalities (3.11), (3.12), (3.13), and (3.14) can be proved by differentiating the corresponding equalities (1.1), (1.2), (2.4), (3.5), and (3.6).

Next, if we differentiate (2.2), with respect to x, k-times, we get

$$V_k(t) = \frac{k!t^k(1+t^3)}{(1-xt-t^3)^{k+1}} = \sum_{n=0}^{\infty} V_n^{(k)} t^n.$$

So, using $U_k(t)$ and $V_r(t)$, we can easily prove the following identities:

$$U_{k}(t)U_{r}(t) = \frac{k!r!}{(k+r+1)!}U_{k+r+1}(t);$$

$$U_{k}(t)V(t) = \frac{1}{k+1}(2t^{-1}-x)U_{k+1}(t);$$

$$V_{k}(t)V_{r}(t) = \frac{k!r!}{(k+r+1)!}(t^{2}+t^{-1})V_{k+r+1}(t) \ (k,r \ge 1);$$

$$U_{k}(t)V_{r}(t) = \frac{k!r!}{(k+r+1)!}V_{k+r+1}(t) \ (r,k \ge 1);$$

$$V_{k}(t)V(t) = \frac{1}{k+1}(2t^{-1}-x)V_{k+1}(t);$$

$$V(t)V(t) = (2t^{-1}-x)^{2}U_{1}(t).$$

Thus, comparing the coefficients of t^n both sides in the last equalities, we can prove the following theorem.

Theorem 3.3: Let n be a positive integer and k be a nonnegative integer. Then

$$\begin{split} \sum_{i=0}^{n} U_{i}^{(k)} U_{n-i}^{(r)} &= \frac{k!r!}{(1+k+r)!} U_{n}^{(k+r+1)}; \\ \sum_{i=0}^{n} U_{i}^{(k)} V_{n-i} &= \frac{1}{k+1} \left(2U_{n+1}^{(k+1)} - xU_{n}^{(k+1)} \right) \quad (k,r \ge 1); \\ \sum_{i=0}^{n} V_{i}^{(k)} V_{n-i}^{(r)} &= \frac{k!r!}{(k+r+1)!} \left(V_{n-2}^{(k+r+1)} + V_{n+1}^{(k+r+1)} \right); \\ \sum_{i=0}^{n} U_{i}^{(k)} V_{n-i}^{(r)} &= \frac{k!r!}{(k+r+1)!} V_{n}^{(k+r+1)} \quad (r \ge 1); \\ \sum_{i=0}^{n} V_{i}^{(k)} V_{n-i} &= \frac{1}{k+1} \left(2V_{n+1}^{(k+1)} - xV_{n}^{(k+1)} \right); \\ \sum_{i=0}^{n} V_{i} V_{n-i} &= 4U_{n+2}^{(1)} - 4xU_{n+1}^{(1)} + x^{2}U_{n}^{(1)}. \end{split}$$

REFERENCES

- G.B. Djordjević. "On a Generalization of a Class of Polynomials." The Fibonacci Quarterly 36.2 (1998): 110-117.
- [2] G.B. Djordjević. "Some Properties of Partial Derivatives of Generalized Fibonacci and Lucas Polynomials." *The Fibonacci Quarterly* **39.2** (2001): 138-141.
- [3] P. Filipponi and A.F. Horadam. "Derivatives of Fibonacci and Lucas Polynomials" <u>Applications of Fibonacci Numbers</u>. Volume 4. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Dordrecht: Kluwer, 1991: 99-108.
- [4] P. Filipponi and A.F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 31.3 (1993): 194-204.
- [5] P. Filipponi and A.F. Horadam. "Addendum to Second Derivative Sequences of Fibonacci and Lucas Polynomials." *The Fibonacci Quarterly* **32.2** (1994): 110.
- [6] Jun Wang. "On the kth Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 33.2 (1995): 174-178.
- [7] Ch. Zhou. "On the kth Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 34.5 (1996): 394-408.

AMS Classification Numbers: 11B39, 26A24, 11B83

\mathbf{X} \mathbf{X} \mathbf{X}