ON THE $K^{\mathrm{TH}}-$ ORDER DERIVATIVE SEQUENCES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

Gospava B. Djordjević

University of Niš, Faculty of Technology, 16000 Leskovac, Serbia and Montenegro
(Submitted January 2003-Final Revision July 2003)

Abstract

In this note we consider two classes of polynomials U_{n} and V_{n}. These polynomials are special cases of $U_{n, m}$ and $V_{n, m}$ (see [2]), respectively. Also, U_{n} and V_{n} are generalized Fibonacci and Lucas polynomials. In fact, in this paper we study the polynomials $U_{n, 3}$ and $V_{n, 3}$, together with their $k^{\text {th }}$-derivative sequences $U_{n}^{(k)}$ and $V_{n}^{(k)}$. Some interesting identities are proved in the paper, for $U_{n}, V_{n}, U_{n}^{(k)}$ and $V_{n}^{(k)}$.

1. INTRODUCTION

To begin with, we define two classes of polynomials $\left\{U_{n} \equiv U_{n}(x)\right\}_{n \in N}$ and $\left\{V_{n} \equiv\right.$ $\left.V_{n}(x)\right\}_{n \in N}$. These polynomials are given by recurrence relations:

$$
U_{n}=x U_{n-1}+U_{n-m}, \quad n \geq m,
$$

with $U_{0}=0, U_{n}=x^{n-1}, n=1, \ldots, m-1$, and

$$
V_{n}=x V_{n-1}+V_{n-m}, \quad n \geq m,
$$

with $V_{0}=2, V_{n}=x^{n}, n=1, \ldots, m-1$.
These polynomials are special cases of the polynomials $U_{n, m}$ and $V_{n, m}$ (see [2], for $y=1$). For $m=2, U_{n}$ and V_{n} are the well-known Fibonacci and Lucas polynomials, respectively (see [3], [4], [5], [6], [7]).

In this paper we shall consider these polynomials for $m=3$. Obviously, we can say that U_{n} and V_{n} are generalized Fibonacci and generalized Lucas polynomials. Namely, they are given by recurrence relations:

$$
\begin{equation*}
U_{n}=x U_{n-1}+U_{n-3}, \quad n \geq 3, \tag{1.1}
\end{equation*}
$$

with $U_{0}=0, U_{1}=1, U_{2}=x$, and

$$
\begin{equation*}
V_{n}=x V_{n-1}+V_{n-3}, \quad n \geq 3, \tag{1.2}
\end{equation*}
$$

with $V_{0}=2, V_{1}=x, V_{2}=x^{2}$.
Recall that U_{n} is a special case of the polynomials $\phi_{n}(p, q ; x)$ (see [1], for $p=0, q=-1$).
Their $k^{\text {th }}$-order derivative sequences are defined as

$$
U_{n}^{(k)}=\frac{d^{k}}{d x^{k}} U_{n}(x), \quad \text { and } \quad V_{n}^{(k)}=\frac{d^{k}}{d x^{k}} V_{n}(x) .
$$

ON THE $K^{\text {TH_ORDER DERIVATIVE SEQUENCES OF } . . . ~}$

Let us denote the complex numbers α, β, and γ, so that they satisfy:

$$
\begin{equation*}
\alpha+\beta+\gamma=x, \quad \alpha \beta+\alpha \gamma+\beta \gamma=0, \quad \alpha \beta \gamma=1 \tag{1.3}
\end{equation*}
$$

2. POLYNOMIALS $U_{n}^{(k)}$ AND $V_{n}^{(k)}$

Using a known method, we can prove that the polynomials U_{n} and V_{n} possess generating functions as follows:

$$
\begin{gather*}
U(t)=t\left(1-x t-t^{3}\right)^{-1}=\sum_{n=0}^{\infty} U_{n} t^{n} \tag{2.1}\\
V(t)=(2-x t)\left(1-x t-t^{3}\right)^{-1}=\sum_{n=0}^{\infty} V_{n} t^{n} \tag{2.2}
\end{gather*}
$$

Differentiating both sides of (2.1), with respect to x, k-times, we get

$$
\begin{equation*}
U_{k}(t)=\frac{k!t^{k+1}}{\left(1-x t-t^{3}\right)^{k+1}}=\sum_{n=0}^{\infty} U_{n}^{(k)} t^{n} \tag{2.3}
\end{equation*}
$$

Moreover, using induction on n, we can prove that the polynomials U_{n} and V_{n} satisfy the following relation

$$
\begin{equation*}
V_{n}=U_{n+1}+U_{n-2}, \quad n \geq 2 \tag{2.4}
\end{equation*}
$$

Theorem 2.1: Let k be a positive integer. Then it follows that

$$
\begin{align*}
U_{k}(t)= & \frac{k!}{(\alpha A)^{k+1}} \sum_{i=0}^{k} \frac{a_{k, i}}{(1-\alpha t)^{k+1-i}}+\frac{k!}{(\beta M)^{k+1}} \sum_{i=0}^{k} \frac{b_{k, i}}{(1-\beta t)^{k+1-i}} \\
& +\frac{k!}{(\gamma R)^{k+1}} \sum_{i=0}^{k} \frac{c_{k, i}}{(1-\gamma t)^{k+1-i}} \tag{2.5}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{k, i}=(-1)^{i} A^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} A^{i} B^{j-2 l} C^{l} a_{k, i-j}, \\
& b_{k, i}=(-1)^{i} M^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} M^{i} N^{j-2 l} P^{l} b_{k, i-j}, \\
& c_{k, i}=(-1)^{i} R^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} R^{l} S^{j-2 l} T^{l} c_{k, i-j},
\end{aligned}
$$

```
ON THE K}\mp@subsup{K}{}{\textrm{TH}
```

for $i=1, \ldots, k$ and

$$
\begin{aligned}
& A=A(\alpha)=\frac{\alpha^{2}(2 \alpha-x)+1}{\alpha^{3}}, B=B(\alpha)=\frac{\alpha^{2}(x-\alpha)-2}{\alpha^{3}}, C=C(\alpha)=\frac{1}{\alpha^{3}} \\
& M=A(\beta), N=N(\beta), P=C(\beta), \quad R=A(\gamma), S=B(\gamma), T=C(\gamma)
\end{aligned}
$$

Proof: From (1.3) and (2.3), we get

$$
\begin{align*}
\frac{t^{k+1}}{\left(1-x t-t^{3}\right)^{k+1}}= & \sum_{i=0}^{k} \frac{A_{k, i}}{(1-\alpha t)^{k+1-i}}+\sum_{i=0}^{k} \frac{B_{k, i}}{(1-\beta t)^{k+1-i}}+ \\
& \sum_{i=0}^{k} \frac{C_{k, i}}{(1-\gamma t)^{k+1-i}} \tag{2.6}
\end{align*}
$$

where $A_{k, i}, B_{k, i}$, and $C_{k, i}$ are independent of t.
Multiplying (2.6) by $\alpha^{k+1}(1-\beta t)^{k+1}(1-\gamma t)^{k+1}$, we get

$$
\begin{equation*}
\frac{(\alpha t)^{k+1}}{(1-\alpha t)^{k+1}}=\alpha^{k+1}\left[A+B(1-\alpha t)+C(1-\alpha t)^{2}\right] \sum_{i=0}^{k+1} \frac{A_{k, i}}{(1-\alpha t)^{k+1-i}}+\phi(t) \tag{2.7}
\end{equation*}
$$

where $\phi(t)$ is an analytic function at the point $t=\alpha^{-1}(t$ is a complex variable and x is a real constant).

Since

$$
\frac{(\alpha t)^{k+1}}{(1-\alpha t)^{k+1}}=\left((1-\alpha t)^{-1}-1\right)^{k+1}
$$

from (2.7), it follows that

$$
\begin{aligned}
& \sum_{i=0}^{k+1}\binom{k+1}{i}(-1)^{i}(1-\alpha t)^{-(k+1-i)}= \\
& \quad \alpha^{k+1} \sum_{j=0}^{k+1}\binom{k+1}{j} A^{k+1-j} \sum_{l=0}^{j}\binom{j}{l} B^{j-l} C^{l}(1-\alpha t)^{j+l} \sum_{i=0}^{k} \frac{A_{k, i}}{(1-\alpha t)^{k+1-i}}+\phi(t)
\end{aligned}
$$

Using the fact that the Laurent series [6] is unique at the point $t=\alpha^{-1}$ for the function $(\alpha t)^{k+1}(1-\alpha t)^{-(k+1)}$, we can compare the coefficients of $(1-\alpha t)^{-(k+1-i)}(i=0,1, \ldots, k)$ on both sides of the last equality. So, we get

$$
\begin{equation*}
\alpha^{k+1} \sum_{j=0}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} A^{k+1-j+l} B^{j-2 l} C^{l} A_{k, i-j}=(-1)^{i}\binom{k+1}{i} \tag{2.8}
\end{equation*}
$$

where $i=0,1, \ldots, k$, and

$$
A=A(\alpha)=\frac{\alpha^{2}(2 \alpha-x)+1}{\alpha^{3}}, B=B(\alpha)=\frac{\alpha^{2}(x-\alpha)-2}{\alpha^{3}}, C=C(\alpha)=\frac{1}{\alpha^{3}}
$$

Let us denote

$$
a_{k, i-j}=\alpha^{k+1} A^{k+1+i-j} A_{k, i-j}
$$

Hence, from (2.8), we get

$$
\sum_{j=0}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} A^{l} B^{j-2 l} C^{l} a_{k, i-j}=(-1)^{i} A^{i}\binom{k+1}{i}
$$

where $a_{k, 0}=1$.
¿From the last equality, for $j=0$, it follows that

$$
\begin{equation*}
a_{k, i}=(-1)^{i} A^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} A^{l} B^{j-2 l} C^{l} a_{k, i-j} \tag{2.9}
\end{equation*}
$$

In a similar way, we find that the coefficients $b_{k, i}$ and $c_{k, i}$ are given by

$$
\begin{align*}
b_{k, i} & =(-1)^{i} M^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} M^{l} N^{j-2 l} P^{l} b_{k, i-j} \tag{2.10}\\
c_{k, i} & =(-1)^{i} R^{i}\binom{k+1}{i}-\sum_{j=1}^{i} \sum_{l=0}^{[j / 2]}\binom{k+1}{j-l}\binom{j-l}{l} R^{l} S^{j-2 l} T^{l} c_{k, i-j} \tag{2.11}
\end{align*}
$$

where

$$
b_{k, 0}=c_{k, 0}=1, M=A(\beta), N=B(\beta), P=C(\beta), R=A(\gamma), S=B(\gamma), T=C(\gamma)
$$

If we substitute $(2.9),(2.10)$, and (2.11) in (2.3), we get

$$
\begin{aligned}
U_{k}(t) & =\frac{k!}{(\alpha A)^{k+1}} \sum_{i=0}^{k} \frac{a_{k, i}}{A^{i}(1-\alpha t)^{k+1-i}}+\frac{k!}{(\beta M)^{k+1}} \sum_{i=0}^{k} \frac{b_{k, i}}{M^{i}(1-\beta t)^{k+1-i}}+ \\
& \frac{k!}{(\gamma R)^{k+1}} \sum_{i=0}^{k} \frac{c_{k, i}}{R^{i}(1-\gamma t)^{k+1-i}} . \quad \square
\end{aligned}
$$

3. FURTHER INTERESTING IDENTITIES

Lemma 3.1: Let n be a positive integer and r and m be nonnegative integers. Then

$$
\begin{align*}
& \sum_{i=0}^{n} U_{i}=\left(U_{n+1}+U_{n}+U_{n-1}-1\right) / x, \quad x \neq 0 . \tag{3.1}\\
& \sum_{i=0}^{n} V_{i}=\left(V_{n+1}+V_{n}+V_{n-1}-1\right) / x, \quad x \neq 0 . \tag{3.2}\\
& \sum_{i=0}^{n}\binom{n}{i} x^{i} h_{r+2 i}=h_{r+3 n} \quad\left(h_{n}=U_{n} \quad \text { or } \quad h_{n}=V_{n}\right) . \tag{3.3}\\
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{r+3 i}=(-1)^{n} x^{n} h_{r+2 n} \quad\left(h_{n}=U_{n} \quad \text { or } \quad h_{n}=V_{n}\right) . \tag{3.4}\\
& U_{m+n}=U_{m+1} U_{n}+U_{m} U_{n-2}+U_{m-1} U_{n-1}, \quad n \geq 2 . \tag{3.5}\\
& V_{m+n}=V_{m+1} U_{n}+V_{m} U_{n-2}+V_{m-1} U_{n-1}, \quad n \geq 2 . \tag{3.6}
\end{align*}
$$

Proof: In the proof we use induction on n.
For $n=1$ in (3.1), we get

$$
U_{0}+U_{1}=\frac{1}{x}\left(U_{2}+U_{1}+U_{0}-1\right)=\frac{1}{x}(x+1+0-1)=1 .
$$

It follows that (3.1) holds for $n=1$. Suppose that (3.1) holds for $n \geq 1$. Then, for $n+1$, it follows that

$$
\begin{aligned}
\sum_{i=0}^{n+1} U_{i} & =\sum_{i=0}^{n} U_{i}+U_{n+1} \\
& =\frac{1}{x}\left(U_{n+1}+U_{n}+U_{n-1}+x U_{n+1}-1\right)=\frac{1}{x}\left(U_{n+2}+U_{n+1}+U_{n}-1\right)
\end{aligned}
$$

Thus, we conclude that (3.1) holds for all $n \in N$.
Similarly, we can prove the equalities (3.2) and (3.3).
To prove (3.4), we also use induction on n. For $n=1$ it follows that

$$
\sum_{i=0}^{1}(-1)^{i} \frac{1}{i} h_{r+3 i}=h_{r}+h_{r+3}=-x h_{r+2} \quad(b y \text { (1.1) and }(1.2))
$$

ON THE $K^{\mathrm{TH}}{ }_{-O R D E R}$ DERIVATIVE SEQUENCES OF ...

Hence, (3.4) is true for $n=1$. Suppose that (3.4) is true for $n \geq 1$. Then, for $n=n+1$, we get

$$
\begin{aligned}
(-1)^{n+1} x^{n+1} h_{r+2 n+2} & =-x(-1)^{n} x^{n} h_{r+2+2 n}=-x \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{r+2+3 i} \\
& =\sum_{i=0}^{n}(-1)^{i+1}\binom{n}{i} x h_{r+2+3 i}=\sum_{i=0}^{n}(-1)^{i+1}\binom{n}{i}\left(h_{r+3+3 i}-h_{r+3 i}\right) \\
& =\sum_{i=0}^{n}(-1)^{i+1}\binom{n}{i} h_{r+3(i+1)}+\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{r+3 i} \\
& =\sum_{i=1}^{n+1}(-1)^{i}\binom{n}{i-1} h_{r+3 i}+\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{r+3 i} \\
& =\sum_{i=1}^{n}(-1)^{i}\left(\binom{n}{n-1}+\binom{n}{i}\right) h_{r+3 i}+(-1)^{n+1} h_{r+3(n+1)}+h_{r} \\
& =\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} h_{r+3 i} .
\end{aligned}
$$

So, we conclude that (3.4) is true for all $n \in N$.
Equalities (3.5) and (3.6) can be proved using recurrence relations (1.1) and (1.2), and applying induction on n.
Theorem 3.1: Let n be a positive integer and k be a nonnegative integer.

$$
\begin{align*}
& x \sum_{i=0}^{n} U_{i}^{(k)}=U_{n+1}^{(k)}+U_{n}^{(k)}+U_{n-1}^{(k)}-k \sum_{i=0}^{n} U_{i}^{(k-1)}, \quad x \neq 0 \tag{3.7}\\
& x \sum_{i=0}^{n} V_{i}^{(k)}=V_{n+1}^{(k)}+V_{n}^{(k)}+V_{n-1}^{(k)}-k \sum_{i=0}^{n} V_{i}^{(k-1)}, \quad x \neq 0 \tag{3.8}\\
& \sum_{i=0}^{n} \sum_{j=0}^{k}\binom{n}{i}\binom{k}{j}\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k-j)}=h_{r+3 n}^{(k)} \tag{3.9}\\
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{r+3 i}^{(k)}=(-1)^{n} \sum_{j=0}^{k}\binom{k}{j}(n-j+1)_{j} x^{n-j} h_{r+2 n}^{(k-j)} \tag{3.10}
\end{align*}
$$

where $h_{n}=U_{n}$ or $h_{n}=V_{n}$.
Proof: Equalities (3.7), (3.8), and (3.10), can be proved in a straightforward manner by differentiating the corresponding equalities (3.1), (3.2), and (3.4). Here, we prove (3.9).

If $k=0$, then (3.9) becomes

$$
h_{r+3 n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} h_{r+2 i} .
$$

It follows that (3.4) is true. Suppose that (3.9) is true for $k \geq 0$. Then, for $k+1$, we get

$$
\begin{aligned}
h_{r+3 n}^{(k+1)} & =\frac{d}{d x}\left(h_{r+3 n}^{(k)}\right)=\sum_{i=0}^{n} \sum_{j=0}^{k}\binom{n}{i}\binom{k}{j} \frac{d}{d x}\left(\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k-j)}\right) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{k}\binom{n}{i}\binom{k}{j}\left(\left(x^{i}\right)^{(j+1)} h_{r+2 i}^{(k-j)}+\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k+1-j)}\right) \quad(j+1:=j) \\
& =\sum_{i=0}^{n} \sum_{j=1}^{k+1}\binom{n}{i}\binom{k}{j-1}\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k+1-j)}+\sum_{i=0}^{n} \sum_{j=0}^{k}\binom{n}{i}\binom{k}{j}\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k+1-j)} \\
& =\sum_{i=0}^{n} \sum_{j=1}^{k}\binom{n}{i}\left(\binom{k}{j-1}+\binom{k}{j}\right)\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k+1-j)}+\sum_{i=0}^{n}\binom{n}{i}\binom{k}{k}\left(x^{i}\right)^{(k+1)} h_{r+2 i} \\
& +\sum_{i=0}^{n}\binom{n}{i}\binom{k+1}{0} x^{i} h_{r+2 i}^{(k+1)}=\sum_{i=0}^{n} \sum_{j=0}^{k+1}\binom{n}{i}\binom{k+1}{j}\left(x^{i}\right)^{(j)} h_{r+2 i}^{(k+1-j)} .
\end{aligned}
$$

Theorem 3.2: Let n be a positive integer and k be a nonnegative integer. Then

$$
\begin{align*}
& h_{n}^{(k)}=x h_{n-1}^{(k)}+h_{n-3}^{(k)}+k h_{n-1}^{(k-1)}, k \geq 0,\left(h_{n}=U_{n} \text { or } h_{n}=V_{n}\right) . \tag{3.11}\\
& V_{n}^{(k)}=U_{n+1}^{(k)}+U_{n-2}^{(k)}, \quad n \geq 2 . \tag{3.12}\\
& U_{n+m}^{(k)}=\sum_{i=0}^{k}\binom{k}{i}\left(U_{m+1}^{(k-i)} U_{n}^{(i)}+U_{m}^{(k-i)} U_{n-2}^{(i)}+U_{m-1}^{(k-i)} U_{n-1}^{(i)}\right) . \tag{3.13}\\
& V_{m+n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i}\left(V_{m+1}^{(k-i)} U_{n}^{(i)}+V_{m}^{(k-i)} U_{n-2}^{(i)}+V_{m-1}^{(k-i)} U_{n-1}^{(i)}\right) . \tag{3.14}
\end{align*}
$$

Proof: Equalities (3.11), (3.12), (3.13), and (3.14) can be proved by differentiating the corresponding equalities (1.1), (1.2), (2.4), (3.5), and (3.6).

Next, if we differentiate (2.2), with respect to x, k-times, we get

$$
V_{k}(t)=\frac{k!t^{k}\left(1+t^{3}\right)}{\left(1-x t-t^{3}\right)^{k+1}}=\sum_{n=0}^{\infty} V_{n}^{(k)} t^{n}
$$

```
ON THE K
```

So, using $U_{k}(t)$ and $V_{r}(t)$, we can easily prove the following identities:

$$
\begin{aligned}
U_{k}(t) U_{r}(t) & =\frac{k!r!}{(k+r+1)!} U_{k+r+1}(t) \\
U_{k}(t) V(t) & =\frac{1}{k+1}\left(2 t^{-1}-x\right) U_{k+1}(t) \\
V_{k}(t) V_{r}(t) & =\frac{k!r!}{(k+r+1)!}\left(t^{2}+t^{-1}\right) V_{k+r+1}(t)(k, r \geq 1) ; \\
U_{k}(t) V_{r}(t) & =\frac{k!r!}{(k+r+1)!} V_{k+r+1}(t)(r, k \geq 1) ; \\
V_{k}(t) V(t) & =\frac{1}{k+1}\left(2 t^{-1}-x\right) V_{k+1}(t) ; \\
V(t) V(t) & =\left(2 t^{-1}-x\right)^{2} U_{1}(t) .
\end{aligned}
$$

Thus, comparing the coefficients of t^{n} both sides in the last equalities, we can prove the following theorem.
Theorem 3.3: Let n be a positive integer and k be a nonnegative integer. Then

$$
\begin{aligned}
& \sum_{i=0}^{n} U_{i}^{(k)} U_{n-i}^{(r)}=\frac{k!r!}{(1+k+r)!} U_{n}^{(k+r+1)} \\
& \sum_{i=0}^{n} U_{i}^{(k)} V_{n-i}=\frac{1}{k+1}\left(2 U_{n+1}^{(k+1)}-x U_{n}^{(k+1)}\right) \quad(k, r \geq 1) ; \\
& \sum_{i=0}^{n} V_{i}^{(k)} V_{n-i}^{(r)}=\frac{k!r!}{(k+r+1)!}\left(V_{n-2}^{(k+r+1)}+V_{n+1}^{(k+r+1)}\right) ; \\
& \sum_{i=0}^{n} U_{i}^{(k)} V_{n-i}^{(r)}=\frac{k!r!}{(k+r+1)!} V_{n}^{(k+r+1)} \quad(r \geq 1) ; \\
& \sum_{i=0}^{n} V_{i}^{(k)} V_{n-i}=\frac{1}{k+1}\left(2 V_{n+1}^{(k+1)}-x V_{n}^{(k+1)}\right) ; \\
& \sum_{i=0}^{n} V_{i} V_{n-i}=4 U_{n+2}^{(1)}-4 x U_{n+1}^{(1)}+x^{2} U_{n}^{(1)} .
\end{aligned}
$$

REFERENCES

[1] G.B. Djordjević. "On a Generalization of a Class of Polynomials." The Fibonacci Quarterly 36.2 (1998): 110-117.
[2] G.B. Djordjević. "Some Properties of Partial Derivatives of Generalized Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 39.2 (2001): 138-141.
[3] P. Filipponi and A.F. Horadam. "Derivatives of Fibonacci and Lucas Polynomials" Applications of Fibonacci Numbers. Volume 4. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Dordrecht: Kluwer, 1991: 99-108.
[4] P. Filipponi and A.F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 31.3 (1993): 194-204.
[5] P. Filipponi and A.F. Horadam. "Addendum to Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 32.2 (1994): 110.
[6] Jun Wang. "On the $k^{t h}$ Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 33.2 (1995): 174-178.
[7] Ch. Zhou. "On the $k^{t h}$ Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 34.5 (1996): 394-408.

AMS Classification Numbers: 11B39, 26A24, 11B83

国

