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ABSTRACT

In 1991 Ferri, Faccio and D’Amico introduced and investigated two numerical triangles,
called the DFF and DFFz triangles. Later Trzaska also considered the DFF triangle. And
in 1994 Jeannin generalized the two triangles. In this paper, we focus our attention on the
generalized Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas polynomials,
and several numerical triangles deduced by them.

1. THE GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

Let us define a sequence of polynomials {Fn(y)} by the recurrence relation

Fn+1(y) = Fn(y) + yFn−1(y), n ≥ 1, (1.1)

where F0(y) = a, F1(y) = b. Notice that (1.1) yield the Fibonacci and Lucas sequences Fn

and Ln when y = 1 with the initial values a = b = 1, a = 2, b = 1, respectively.
Define

Fn(y) =
n∑

k=0

fn,kyk, F (x, y) =
∑
n≥0

Fn(y)xn. (1.2)

By (1.1) and (1.2) it is easy to derive

F (x, y) =
a + (b− a)x
1− x− x2y

, (1.3)

and

fn,k = [xnyk]F (x, y) = [xnyk](a + (b− a)x)
∑
k≥0

x2kyk

(1− x)k+1

= a

(
n− k

n− 2k

)
+ (b− a)

(
n− k − 1
n− 2k − 1

)
= a

(
n− k − 1

k − 1

)
+ b

(
n− k − 1

k

)
,

which satisfies the recurrence fn+1,k = fn,k + fn−1,k−1, with the initial conditions f0,0 =
a, f1,0 = b.

Let an+1,k = f2n+2,n−k+1 and bn,k = f2n+1,n−k, then we have

an+1,k = a

(
n + k

2k

)
+ b

(
n + k

2k − 1

)
, bn,k = a

(
n + k

2k + 1

)
+ b

(
n + k

2k

)
,
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which generate two lower triangles
n/k 0 1 2 3 4
0 a
1 a b
2 a a + 2b b
3 a 3a + 3b a + 4b b
4 a 6a + 4b 5a + 10b a + 6b b

n/k 0 1 2 3 4
0 b
1 a + b b
2 2a + b a + 3b b
3 3a + b 4a + 6b a + 5b b
4 4a + b 10a + 10b 6a + 15b a + 7b b

Table 1.1 Table 1.2

Theorem 1.1: Let A
(i)
n×n = (an+k+i+1,k+i+1)0≤k≤n and B

(i)
n×n = (bn+k+i,k+i)0≤k≤n, then

|A(i)
n×n| = |B(i)

n×n| = 2(
n+1

2 )bn+1.

Proof: We only prove the second statement. Note that

bn+k+i,k+i = a

(
2n + 2k + 2i

n− 1

)
+ b

(
2n + 2k + 2i

n

)
is a polynomial in k of degree n with the coefficient of the highest term 2nb

n! , according to the
Tepper identity [2, 11],

n∑
k=0

(−1)n−k

(
n

k

)
(α + k)r

n!
=

{
0 if 0 ≤ r < n,

1 if r = n.

We have
n∑

k=0

(−1)n−k

(
n

k

)
bn+k+i,k+i

=
n∑

k=0

(−1)n−k

(
n

k

) (
a

(
2n + 2k + 2i

n− 1

)
+ b

(
2n + 2k + 2i

n

))

=
n∑

k=0

(−1)n−k

(
n

k

) (
2nb

n!
kn + the terms of lower orders

)
= 2nb.

Then the results hold by trivial computations on determinant.
In the special case a = b = 1,

an,k =
(

n + k

2k

)
, bn,k =

(
n + k + 1
2k + 1

)
.

Tables 1.1 and 1.2 reduce to the triangles DFF and DFFz respectively.

n/k 0 1 2 3 4
0 1
1 1 1
2 1 3 1
3 1 6 5 1
4 1 10 15 7 1

n/k 0 1 2 3 4
0 1
1 2 1
2 3 4 1
3 4 10 6 1
4 5 20 21 8 1

n/k 0 1 2 3 4
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

Table 1.3 (DFF) Table 1.4 (DFFz) Table 1.5
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It is well-known that Fn+1 is the number of (0, 1)−sequences of length n without successive
ones. It is easy to show that an,k (bn,k) is the number of such sequences of length 2n− 1(2n)
containing exact n − k ones, which illustrates that the row sums of Table 1.3 (Table 1.4) are
equal to the Fibonacci numbers with even(old) subscripts [3, 4]. In fact Tables 1.3 and 1.4 can
be obtained directly from the classical Pascal triangle displayed in Table 1.5, where Table 1.3
is just the even columns and Table 1.4 the odd columns of the Pascal triangle. Note that the
un-bared and bared numbers in Pascal triangles are respectively the numbers of the diagonals
of Tables 1.3 and 1.4, which illustrates that the sums of the diagonals are the powers of 2 [3,
4].
Theorem 1.2: Let A = (an,k)0≤k≤n and B = (bn,k)0≤k≤n, then we have

A−1 =
(

(−1)n−k 2k + 1
2n + 1

(
2n + 1
n− k

))
0≤k≤n

(1.4)

B−1 =
(

(−1)n−k k + 1
n + 1

(
2n + 2
n− k

))
0≤k≤n

, (1.5)

where A−1 is the inverse of a matrix A.
Proof: It suffices to prove (1.4) that

n∑
k=0

(−1)m−k 2m + 1
2k + 1

(
2k + 1
k −m

)(
n + k

2k

)
= δmn, (1.6)

where δmn is the Kronecker symbol.
It is easy to see that (1.6) holds for m ≥ n. In case m < n, we have

n∑
k=0

(−1)m−k 2m + 1
2k + 1

(
2k + 1
k −m

)(
n + k

2k

)

=
n∑

k=0

(−1)m−k 2m + 1
m + k + 1

(
2k

k + m

)(
n + k

2k

)

=
n∑

k=0

(−1)m−k 2m + 1
m + k + 1

(
n + k

m + k

)(
n−m

k −m

)

=
n∑

k=0

(−1)m+k 2m + 1
n−m

(
n + k

m + k + 1

)(
n−m

k −m

)

=
n∑

k=0

2m + 1
m− n

(
m− n

m + k + 1

)(
n−m

n− k

)

=
2m + 1
m− n

(
0

m + n + 1

)
= 0.

Then (1.4) holds and (1.5) follows in the same way.
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In the special case a = 2, b = 1, we have

an,k =
(

n + k

2k

)
+

(
n + k − 1

2k

)
=

2n

n + k

(
n + k

2k

)
,

bn,k =
(

n + k + 1
2k + 1

)
+

(
n + k

2k + 1

)
=

2n + 1
2k + 1

(
n + k

2k

)
,

with a0,0 = 2. And Table 1.1 and 1.2 yield the triangles,

n/k 0 1 2 3 4
0 2
1 2 1
2 2 4 1
3 2 9 6 1
4 2 16 20 8 1

n/k 0 1 2 3 4
0 1
1 3 1
2 5 5 1
3 7 14 7 1
4 9 30 27 9 1

Table 1.6 Table 1.7

It is also well-known that Ln is the number of (0, 1)−sequences of length n without
successive ones, where the first and last components of the sequences are considered to be
adjacent. It is easy to show that an,k (bn,k) is the number of such sequences of length 2n(2n−1)
containing exact n− k ones, which illustrates the row sums of Table 1.6 (Table 1.7) are equal
to the Lucas numbers with even (odd) subscripts.
Theorem 1.3: Let A = (an+1,k+1)0≤k≤n and B = (bn+1,k+1)0≤k≤n, then we have

A−1 =
(

(−1)n−k

(
2n + 2
n− k

))
0≤k≤n

B−1 =
(

(−1)n−k

(
2n + 1
n− k

))
0≤k≤n

.

Proof: This proof is similar to the proof of Theorem (1.2) so it is omitted.

2. THE GENERALIZED PELL AND PELL-LUCAS POLYNOMIALS

Let us define a sequence of polynomials {Pn(y)} by the recurrence relation

Pn+1(y) = (1 + y)Pn(y) + y2Pn−1(y), n ≥ 1, (2.1)

where P0(y) = 1, P1(y) = 1 + y, which generates the Pell sequence {Pn} when y = 1.
Define

Pn(y) =
n∑

k=0

Pn,n−kyk, P (x, y) =
∑
n≥0

Pn(y)xn. (2.2)

362



NUMERICAL TRIANGLES AND SEVERAL CLASSICAL SEQUENCES

By (2.1) and (2.2) it is easy to derive

P (x, y) =
1

1− x− xy − x2y2
, (2.3)

and

Pn,k = [xnyn−k]P (x, y) = [xnyn−k]
∑
r≥0

xr

(1− xy − x2y2)r+1

= [xnyn−k]
∑

r,m≥0

∑
i0+i1+···+ir=m

r∏
j=0

Fij x
m+rym

=
∑

i0+i1+···+ik=n−k

k∏
j=0

Fij , (2.4)

which satisfies the recurrence Pn+1,k = Pn,k + Pn,k−1 + Pn−1,k, with the initial conditions
P0,0 = P1,0 = P1,1 = 1.

¿From (2.3), we can deduce another formula for Pn,k,

Pn,k = [xnyn−k]P (x, y) = [xnyn−k]
∑
r≥0

(xy)r(1 + xy)r

(1− x)r+1

= [xnyn−k]
∑

r,m≥0

r∑
i=0

(
r

i

)(
r + m

m

)
xm+r+iyr+i

=
∑

r+i=n−k

(
r

i

)(
r + k

k

)

=
[(n−k)/2]∑

i=0

(
n− i

i

)(
n− 2i

k

)
. (2.5)

By (2.4) and (2.5), we have the following interesting identity.

∑
i0+i1+···+ik=n−k

k∏
j=0

Fij =
[(n−k)/2]∑

i=0

(
n− i

i

)(
n− 2i

k

)
.

Now we give a combinatorial interpretation for Pn,k, that is the following:
Theorem 2.1: For any integer n, k ≥ 0, Pn−k+1,k is the number of (0, 1, 2)−sequences of
length n with k 2’s but without subsequences 11, 12, 21, 22.

Proof: Let Sn,k be the desired number. Consider the last component xn of such sequences
in three cases, i.e., xn = 0, 1 or 2, we have

Sn+1,k = Sn,k + Sn−1,k + Sn−1,k−1, (n ≥ 1),

with the initial conditions S0,0 = 1, S1,0 = 2, S1,1 = 1. It is easy to verify that Pn−k+1,k also
satisfies this recurrence with the same initial values, so it must equal Sn,k.
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Notice that Pn,0 = Fn, and Pn,k leads to the triangle

n/k 0 1 2 3 4 5
0 1
1 1 1
2 2 2 1
3 3 5 3 1
4 5 10 9 4 1
5 8 20 22 14 5 1

Table 2.1

Theorem 2.2: Let P
(i)
n×n = (Pn+k+i,k+i)0≤k≤n, then

|P (i)
n×n| = 1. (2.6)

Proof: It suffices to show that
n∑

k=0

(−1)n−k

(
n

k

)
Pn+k+i,k+i = 1. (2.7)

Note that

Pn+k+i,k+i = [xn+k+iyn]P (x, y) = [xn+k+i]
xk+i

(1− x− x2)k+i+1
= [xn]

1
(1− x− x2)k+i+1

.

Then by the Cauchy Residue Theorem (for details see [2]), we get

n∑
k=0

(−1)n−k

(
n

k

)
Pn+k+i,k+i =

n∑
k=0

res
u

(u− 1)n

uk+1
res

x

(1− x− x2)−k−i−1

xn+1

= res
x

(1− x− x2)−i−1

xn+1
(

1
1− x− x2

− 1)n

= res
x

(1 + x)n

x(1− x− x2)n+i+1

= 1.
Thus the result holds.

Now let us define another sequence of polynomials {Qn(y)} by the recurrence relation

Qn+1(y) = (1 + y)Qn(y) + y2Qn−1(y), n ≥ 1, (2.8)

where Q0(y) = 1, Q1(y) = 1+2y, which generates the Pell-Lucas sequence {2Qn} when y = 1.
Define

Qn(y) =
n∑

k=0

Qn,n−kyk, Q(x, y) =
∑
n≥0

Qn(y)xn. (2.9)

By (2.8) and (2.9) it is easy to derive

Q(x, y) =
1 + xy

1− x− xy − x2y2
, (2.10)

364



NUMERICAL TRIANGLES AND SEVERAL CLASSICAL SEQUENCES

and

Qn,k = [xnyn−k]Q(x, y) = [xnyn−k]
∑
r≥0

(1 + xy)xr

(1− xy − x2y2)r+1

= [xnyn−k]
∑

r,m≥0

∑
i0+i1+···+ir=m

Fi0+1

r∏
j=1

Fij
xm+rym

=
∑

i0+i1+···+ik=n−k

Fi0+1

k∏
j=1

Fij
, (2.11)

which satisfies the recurrence Qn+1,k = Qn,k + Qn,k−1 + Qn−1,k, with the initial conditions
Q0,0 = 1, Q1,0 = 2, Q1,1 = 1.

¿From (2.10), we can deduce another formula for Qn,k,

Qn,k = [xnyn−k]Q(x, y) = [xnyn−k]
∑
r≥0

(xy)r(1 + xy)r+1

(1− x)r+1

= [xnyn−k]
∑

r,m≥0

r+1∑
i=0

(
r + 1

i

)(
r + m

m

)
xm+r+iyr+i

=
∑

r+i=n−k

(
r + 1

i

)(
r + k

k

)

=
[(n−k)/2]∑

i=0

(
n− k − i + 1

i

)(
n− i

k

)
. (2.12)

By (2.11) and (2.12), we obtain the following identity.

∑
i0+i1+···+ik=n−k

Fi0+1

k∏
j=1

Fij
=

[(n−k)/2]∑
i=0

(
n− k − i + 1

i

)(
n− i

k

)
.

Notice that Qn,0 = Fn+1, and (2.11) implies Qn,k = Pn,k + Pn−1,k . We can display
{Qn,k} in a triangle

n/k 0 1 2 3 4 5
0 1
1 2 1
2 3 3 1
3 5 7 4 1
4 8 15 12 5 1
5 13 30 31 18 6 1

Table 2.2
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Theorem 2.3: Let Q
(i)
n×n = (Qn+k+i,k+i)0≤k≤n, then

|Q(i)
n×n| = 1. (2.13)

Proof: This proof is similar to the proof of Theorem (2.2) so it is omitted.
Considering the sums and alternating sums of the diagonals of Table 2.2, we obtain the

following.
Theorem 2.4: For any integers n ≥ 2k ≥ 0, we get∑

k≥0

Qn−k,k = 2n, (2.14)

∑
k≥0

(−1)kQn−k,k = 2− δ0n. (2.15)

Proof: It suffices to show (2.14). By (2.12) and the Cauchy Residue Theorem, we have

∑
k≥0

Qn−k,k =
∑
k≥0

∑
r≥0

(
r + 1

n− 2k − r

)(
r + k

k

)

=
∑
k≥0

∑
r≥0

res
x

(1 + x)r+1

xn−2k−r+1
res

y

(1− y)−r−1

yk+1

=
∑
r≥0

res
x

(1 + x)r+1

xn−r+1
(1− x2)−r−1

=
∑
r≥0

res
x

xr(1− x)−r−1

xn+1

= res
x

(1− 2x)−1

xn+1
= 2n.

Then (2.14) holds and (2.15) follows in the same way.

3. THE GENERALIZED JACOBSTHAL AND
JACO-LUCAS POLYNOMIALS

Let us define a sequence of polynomials {Jn(y)} by the recurrence relation

Jn+1(y) = Jn(y) + (1 + y)Jn−1(y), n ≥ 1, (3.1)

where J0(y) = J1(y) = 1, which generates the Jacobsthal sequence {2Jn} when y = 1. Other
references related to Jacobsthal and Jaco-Lucas Polynomials, see [1, 5, 6, 9, 10].
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Define

Jn(y) =
n∑

k=0

Jn,kyk, J(x, y) =
∑
n≥0

Jn(y)xn. (3.2)

By (3.1) and (3.2) it is easy to derive

J(x, y) =
1

1− x− x2 − x2y
, (3.3)

and

Jn,k = [xnyk]J(x, y) = [xnyk]
∑
r≥0

x2ryr

(1− x− x2)r+1

= [xnyk]
∑

r,m≥0

∑
i0+i1+···+ir=m

r∏
j=0

Fij x
m+2ryr

=
∑

i0+i1+···+ik=n−2k

k∏
j=0

Fij , (3.4)

which satisfies the recurrence Jn+1,k = Jn,k + Jn−1,k + Jn−1,k−1, with the initial conditions
J0,0 = J1,0 = 1, J1,1 = 0.

¿From (3.3), we can deduce another formula for Jn,k,

Jn,k = [xnyk]J(x, y) = [xnyk]
∑
r≥0

x2r(1 + y)r

(1− x)r+1

= [xnyk]
∑

r,m≥0

r∑
i=0

(
r

i

)(
r + m

m

)
xm+2ryi

=
∑

m+2r=n

(
r

k

)(
r + m

m

)

=
[n/2]∑
i=0

(
n− i

i

)(
i

k

)
. (3.5)

By (3.4) and (3.5), we have the following interesting identity.

∑
i0+i1+···+ik=n−2k

k∏
j=0

Fij =
[n/2]∑
i=0

(
n− i

i

)(
i

k

)
.
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Note that by (2.4) and (3.4), Jn,k = Pn−k,k, so Jn+1,k also counts the number of (0, 1, 2)-
sequences of length n with k 2’s, but without subsequences 11, 12, 21, 22. Also J2n,k and
J2n+1,k produce the triangles

n/k 0 1 2 3 4
0 1
1 2 1
2 5 5 1
3 13 20 9 1
4 34 71 51 14 1

n/k 0 1 2 3 4
0 1
1 3 2
2 8 10 3
3 21 38 22 4
4 55 130 111 40 5

Table 3.1 Table 3.2

Theorem 3.1: For any integer n, k ≥ 0, we have

n∑
i=0

(−1)n−i

(
n

i

)
Jn+2k+2i,k+i = 1.

Proof: This proof is similar to the proof of Theorem (2.2), so it is omitted.
Now let us define another sequence of polynomials {JLn(y)} by the recurrence relation

JLn+1(y) = JLn(y) + (1 + y)JLn−1(y), n ≥ 1, (3.6)

where JL0(y) = 2, JL1(y) = 1, which generates the Jaco-Lucas sequence {JLn} when y = 1.
Define

JLn(y) =
n∑

k=0

JLn,kyk, JL(x, y) =
∑
n≥0

JLn(y)xn. (3.7)

By (3.6) and (3.7) it is easy to deduce

JL(x, y) =
2− x

1− x− x2 − x2y
, (3.8)

and

JLn,k = [xnyk]JL(x, y) = [xnyk]
∑
r≥0

(2− x)x2ryr

(1− x− x2)r+1

= [xnyk]
∑

r,m≥0

∑
i0+i1+···+ir=m

Li0

r∏
j=1

Fij
xm+2ryr

=
∑

i0+i1+···+ik=n−2k

Li0

k∏
j=1

Fij
, (3.9)
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which satisfies the recurrence JLn+1,k = JLn,k+JLn,k−1+JLn−1,k, with the initial conditions
JL0,0 = 2, JL1,0 = 1, JL1,1 = 0.

¿From (3.8), we can deduce another formula for JLn,k for n ≥ 1,

JLn,k = [xnyk]JL(x, y) = [xnyk]
∑
r≥0

(2− x)x2r(1 + y)r

(1− x)r+1

= [xnyk]
∑

r,m≥0

r∑
i=0

(
r

i

)(
r + m

m

)
xm+2ryi(2− x)

=
∑

m+2r=n

(
2r

k

)(
r + m

m

)
−

∑
m+2r+1=n

(
r

k

)(
r + m

m

)

=
[n/2]∑
i=0

((
n− i

i

)
+

(
n− i− 1

i− 1

)) (
i

k

)

=
[n/2]∑
i=0

n

n− i

(
n− i

i

)(
i

k

)
. (3.10)

By (3.9) and (3.10), we obtain the following identity for n ≥ 1, k ≥ 0,

∑
i0+i1+···+ik=n−2k

Li0

k∏
j=1

Fij
=

[n/2]∑
i=0

n

n− i

(
n− i

i

)(
i

k

)
.

Notice that JLn,0 = Ln, and JL2n,k, JL2n+1,k lead to the triangles.

n/k 0 1 2 3 4
0 2
1 3 2
2 7 8 2
3 18 30 15 2
4 47 104 80 24 2

n/k 0 1 2 3 4
0 1
1 4 3
2 11 15 5
3 29 56 35 7
4 76 189 171 66 9

Table 3.3 Table 3.4

Theorem 3.2: For any integer n, k ≥ 0, we have

n∑
i=0

(−1)n−i

(
n

i

)
JLn+2k+2i,k+i = 2.

Proof: This proof is similar to the proof of Theorem (2.2) so it is omitted.
Similar to Theorem (2.1), we can also give a combinatorial interpretation for JLn,k, that

is the following:
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Theorem 3.3: For any integer n, k ≥ 0, JLn,k is the number of (0, 1, 2)−sequences of length
n with k 2’s, but without subsequences 11, 12, 21, 22, where the first and last components of
the sequences are considered to be adjacent.

Proof: Let Tn,k be the desired number. Consider the last component xn of such sequences
in three cases, i.e., xn = 0, 1 or 2, we have

Tn+1,k = Jn+1,k + Jn−1,k + Jn−1,k−1, (n ≥ 1),

with the initial values T0,0 = 2, T1,0 = 1, T1,1 = 0.
By (3.3) and (3.8), we have JLn+1,k = 2Jn+1,k − Jn,k = Jn+1,k + Jn−1,k + Jn−1,k−1, and

JL0,0 = 2, JL1,0 = 1, JL1,1 = 0, so JLn,k must coincide with Tn,k.

ACKNOWLEDGMENTS

This work was done under the auspices of the National 973 Project on Mathematical
Mechanization and the National Science Foundation of China. The author would like to thank
my advisor Leetsch C. Hsu for helpful comments. Thanks also to the referees for their careful
reading of the manuscript and valuable suggestions.

REFERENCES

[1] G. B. Djordjevic. “Generalized Jacobsthal Polynomials.” The Fibonacci Quarterly 38.3
(2000): 239-243.

[2] G. P. Egorychev. “Integral Representation and the Computation of Combinatorial Sums.”
Translations of Mathematical Monographs, Vol. 59, American Mathematical Society,
(1984).

[3] G. Ferri, M. Faccio and A. D’Amico. “A New Numerical Triangle Showing Links with
Fibonacci Numbers.” The Fibonacci Quarterly 29.4 (1991): 316-320.

[4] G. Ferri, M. Faccio and A. D’Amico. “Fibonacci Numbers and Ladder Network
Impedance.” The Fibonacci Quarterly 30.1 (1992): 62-67.

[5] A. F. Horadam. “Rodriques’ Formulas for Jacobstahl-Type Polynomials.” The Fibonacci
Quarterly 35.4 (1997): 361-370.

[6] A. F. Horadam and P. Filipponi. “Derivative Sequences of Jacobsthal and Jacobsthal-
Lucas Polynomials.” The Fibonacci Quarterly 35.4 (1997): 352-357.

[7] R. A. Jeannin. “A Generalization of Morgan-Voyce Polynomials.” The Fibonacci Quar-
terly 32.3 (1994): 228-231.

[8] F. J. Papp. “Another Proof of Tepper’s Inequality.” Math. Magazine 45 (1972): 119-121.
[9] M. N. S. Swamy. “Some Further Properties of Andre-Jeannin and Their Companion

Polynomials.” The Fibonacci Quarterly 38.2 (2000): 114-122.
[10] M. N. S. Swamy. “A Generalization of Jacobsthal Polynomials.” The Fibonacci Quarterly

37.2 (1999): 141-144.
[11] Z. W. Trzaska. “Modified Numerical Triangle and the Fibonacci Sequence.” The Fi-

bonacci Quarterly 29.4 (1991): 316-320.

AMS Classification Numbers: 11B39, 11B83

z z z

370


