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1. INTRODUCTION AND MAIN RESULT

The floor function of a real number x, denoted bxc, is defined as the largest integer n ≤ x.
For a positive real number α one can associate a sequence of positive integers, called the
spectrum of α, denoted Spec(α), which is constructed using the floor function as follows

Spec(α) = {bαc, b2αc, b3αc, . . . } .

The spectra of real numbers have a variety of interesting properties, for example if α,β ∈ R+

with α irrational and α−1 + β−1 = 1, then the sets Spec(α) and Spec(β) form a disjoint
covering of the natural numbers that, is Spec(α) ∩ Spec(β) = ∅ with Spec(α) ∪ Spec(β) = N.
When dealing with spectra, it is sometimes useful to know if a given finite sequence of integers
represents the initial segment of the spectrum of a real number. Graham et al. [2] showed that
a finite sequence {a1, a2, . . . , an} was the first n terms of the spectrum of a real number if and
only if the sequence was nearly linear, that is if for all 1 < k ≤ n the following inequality
holds

max{ai + ak−i : 1 ≤ i < k} ≤ ak ≤ 1 + min{ai + ak−i : 1 ≤ i < k} . (1)

Spectra of the form {bnαc : n ∈ N} are usually referred to as the homogeneous spectrum
of α. One can naturally extend this notion to the idea of a nonhomogeneous spectrum or
β-nonhomogeneous spectra of α which are sequences of the form {bnα+βc : n ∈ N}. Fraenkel
et al. [1] showed that for a finite sequence {a1, a2, . . . , an} there exists α, β ∈ R+ such that
ai = biα + βc if and only if

max
1≤i<r≤n

ar − ar−i − 1
i

< min
1≤i<r≤n

ar − ar−i + 1
i

. (2)

In this note, we return to the case of homogeneous spectra and show that a sequence of positive
integers {an} represents the spectrum of a real number if and only if the following inequality
holds for each n

max
1≤r≤n

{ar

r

}
< min

1≤r≤n

{
ar + 1

r

}
. (3)

As will be seen, the above characterisation in the form of an inequality reminiscent of (2), shall
follow from an application of the bounded monotone convergence theorem for real sequences.
We now state and prove the main result.
Theorem 1.1: For a monotonic sequence of positive integers {an}, there exists an α ∈ R+

such that Spec (α) = {an}∞n=1 if and only if for all n ∈ N (3) holds.
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Proof: We first note that the two intervals [c1, d1) and [c2, d2), where ci, di ∈ R+, will have a
non-empty intersection if and only if

max{c1, c2} < min{d1, d2} , (4)

and, moreover, [c1, d1) ∩ [c2, d2) = [c, d), where c = max{c1, c2} and d = min{d1, d2}. Now if
there exists an α ∈ R+ such that bnαc = an then an ≤ nα < an +1 and so α ∈ In = [an

n , an+1
n )

for all n ∈ N. Hence In ∩ Im 6= ∅ for all m,n ∈ N. Consequently from (4) one deduces the
desired condition in (3). Suppose now the sequence {an} satisfies (3). To produce the α ∈ R+

having Spec (α) = {an}∞n=1 it will be necessary to examine the family of sets {An} given by

An =
n⋂

r=1

Ir .

We first show via induction that An 6= ∅ for all n ∈ N and that An = [cn, dn) where

cn = max
1≤r≤n

{ar

r

}
and dn = min

1≤r≤n

{
ar + 1

r

}
.

Clearly, from (4) the result holds for n = 2; assume the claim also holds for some n = k ≥ 2
and consider the set Ak+1 = [ck, dk) ∩ Ik+1. If one supposes that [ck, dk) ∩ Ik+1 = ∅ then
two possible cases present themselves; namely, either dk ≤ ak+1

k+1 or ak+1+1
k+1 ≤ ck. Consider the

former case and suppose dk = as+1
s for some s ∈ {1, 2, . . . , k}; then we have the inequality

as

s
<

as + 1
s

≤ ak+1

k + 1
<

ak+1 + 1
k + 1

,

from which it is immediately deduced that max{as

s , ak+1
k+1 } ≥ min{as+1

s , ak+1+1
k+1 }. This is

acontradiction to the assumed condition in (3). Similarly, in the latter case, if ck = ap

p for some
p ∈ {1, 2, . . . , k}, then we have

ak+1

k + 1
<

ak+1 + 1
k + 1

≤ ap

p
<

ap + 1
p

,

from which again we deduce the contradictory inequality max{ak+1
k+1 ,

ap

p } ≥ min{ak+1+1
k+1 ,

ap+1
p }.

Hence, one must have [ck, dk) ∩ Ik+1 6= ∅. Furthermore, by writing Ak+1 = [ck+1, dk+1), we
obtain from the inductive assumption that

ck+1 = max
{

ck,
ak+1

k + 1

}
= max

1≤r≤k+1

{ar

r

}
and

dk+1 = min
{

dk,
ak+1 + 1

k + 1

}
= min

1≤r≤k+1

{
ar + 1

r

}
.
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Now, by construction, the sequences {cn} and {dn} are, respectively, monotone increasing and
decreasing. Moreover, cn is bounded above by a1 + 1, whereas bn is bounded below by a1, as
An ⊆ I1. Hence from the bounded monotone convergence theorem the two sequences must
converge to a finite limit, denoted here by c and d, respectively. In addition, as An ⊆ In, one
also has |dn − cn| < 1

n , from which it is deduced upon taking limits as n →∞ that c = d = α,
say. Since cn ≤ α ≤ dn, we have α ∈ An for all n ∈ N, and so

∞⋂
n=1

An =
∞⋂

n=1

n⋂
r=1

Ir =
∞⋂

n=1

In 6= ∅ .

Furthermore, ∩∞n=1An = {α}, since if x < α or y > α then by the monotonicity of the above
sequences there must exist an M ∈ N such that x < cn ≤ α < dn < y for n > M , and so
x, y 6∈ An for n > M . Consequently, α must have the property that an ≤ nα < an + 1, and so
bnαc = an for all n ∈ N as required.

To close it is easy to demonstrate that (3) implies that the sequence {an} is nearly linear.
Indeed, if {an} satisfies (3) then by Theorem 1.1 there exists a unique α ∈ R+ such that
ak = bkαc. Now if 1 ≤ i < k ≤ n, then by definition of b·c we have biαc ≤ iα < biαc+ 1 and
b(k − i)αc ≤ (k − i)α < b(k − i)αc+ 1. Adding the previous inequalities together gives

biαc+ b(k − i)αc ≤ kα < biαc+ b(k − i)αc+ 2 ,

from which it is deduced, as bkαc ∈ N, that

biαc+ b(k − i)αc ≤ bkαc ≤ biαc+ b(k − i)αc+ 1 .

Hence (1) must hold and so {an} is a nearly linear sequence.
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