HEPTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS $x^{2}(5 x-3)^{2}=8 y^{2} \pm 4$

B. Srinivasa Rao
1-5-478/1, New Maruthinagar, Dilsukhnagar, Hyderabad-500 060, A.P., India
(Submitted January 2003)

1. INTRODUCTION

We denote the $m^{\text {th }} g$-gonal number by

$$
\mathcal{G}_{m, g}=m\{(g-2) m-(g-4)\} / 2 \quad(\text { see }[1]) .
$$

If m is positive and $g=3,4,5,6,7,8, \ldots$, etc., then the number $\mathcal{G}_{m, g}$ is triangular, square, pentagonal, hexagonal, heptagonal and octagonal etc., respectively. Finding the numbers common to any two infinite sequences is one of the problems in Number Theory. Several papers (See [2] to [15]) have appeared identifying the numbers $\mathcal{G}_{m, g}$ (for $g=3,4,5$ and 7) in the sequences $\left\{F_{n}\right\},\left\{L_{n}\right\},\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ (the Fibonacci, Lucas, Pell and Associated Pell sequences respectively). We will summarize these results in Table A, including the present result that 1,7 and 99 are the only generalized heptagonal numbers in the associated Pell sequence $\left\{Q_{n}\right\}$ defined by

$$
Q_{0}=Q_{1}=1 \text { and } Q_{n+2}=2 Q_{n+1}+Q_{n} \text { for any integer } n .
$$

This result also solves the two Diophantine equations in the title.

Sequences [12]		$\begin{aligned} & \text { Triangular } \\ & \text { (A000217) } \end{aligned}$	$\begin{gathered} \text { Square } \\ (\mathbf{A 0 0 0 2 9 0}) \end{gathered}$	Pentagonal (A000326)	Heptagonal (A000566)
Fibonacci$\begin{gathered} \left\{\mathbf{F}_{\mathrm{n}}\right\} \\ (\mathbf{A 0 0 0 0 4 5}) \\ \hline \end{gathered}$	by	Ming Luo [4]	J.H.E. Cohn [2]	Ming Luo [6]	B. Srinivasa Rao [14]
	n	$0, \pm 1,2,4,8,10$	$0, \pm 1,2,12$	$0, \pm 1,2, \pm 5$	$0, \pm 1,2, \pm 7, \pm 9,10$
	F_{n}	0, 1, 3, 21, 55	0, 1, 144	0, 1, 5	$0,1,13,34,55$
Lucas$\begin{gathered} \left\{\mathbf{L}_{\mathbf{n}}\right\} \\ (\mathbf{A 0 0 0 0 3 2}) \end{gathered}$	by	Ming Luo [5]	J.H.E. Cohn [2]	Ming Luo [7]	B. Srinivasa Rao [13]
	n	$1, \pm 2$	1, 3	0, 1, ± 4	$1,3, \pm 4, \pm 6$
	\mathbf{L}_{n}	1, 3	1, 4	2, 1, 7	1, 4, 7, 18
$\begin{gathered} \text { Pell } \\ \left\{\mathbf{P}_{\mathbf{n}}\right\} \\ (\mathbf{A 0 0 0 1 2 9}) \end{gathered}$	by	Wayne McDaniel [8]	 Katayama, S.G. [3]	 B. Srinivasa Rao [10]	B. Srinivasa Rao [15]
	n	$0, \pm 1$	$0, \pm 1, \pm 7$	$0, \pm 1,2, \pm 3,4,6$	0, $\pm 1,6$
	\mathbf{P}_{n}	0, 1	0, 1, 169	0, 1, 2, 5, 12, 70	0, 1, 70
$\begin{gathered} \text { Associated } \\ \text { Pell } \\ \left\{\mathbf{Q}_{\mathbf{n}}\right\} \\ (\mathbf{A 0 0 1 3 3 3}) \end{gathered}$	by	 B. Srinivasa Rao [11]	 Katayama, S.G. [3]	 B. Srinivasa Rao [9]	Present Result
	n	0, 1, ± 2	0, 1	0, 1, 3	0, 1, 3, ± 6
	\mathbf{Q}_{n}	1, 3	1	1, 7	1, 7, 99

Table A.
In the above table, by a polygonal number we mean a generalized polygonal number (with m any integer). Further, each cell where a column and a row meet represents the numbers common to both the corresponding sequences named after the person who identified them.

2. MAIN THEOREM

We need the following well known properties of $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$: For all integers k, m and n.

$$
\begin{gather*}
\left.\begin{array}{c}
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}} \text { and } Q_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \\
\text { where } \alpha=1+\sqrt{2} \text { and } \beta=1-\sqrt{2}
\end{array}\right\} \tag{1}\\
\begin{array}{c}
P_{-n}=(-1)^{n+1} P_{n} \text { and } Q_{-n}=(-1)^{n} Q_{n} \\
Q_{n}^{2}=2 P_{n}^{2}+(-1)^{n} \\
Q_{m+n}=2 Q_{m} Q_{n}-(-1)^{n} Q_{m-n} \\
3 \mid P_{n} \text { iff } 4 \mid n \text { and } 3 \mid Q_{n} \text { iff } n \equiv 2 \quad(\bmod 4) \\
9 \mid P_{n} \text { iff } 12 \mid n \text { and } 9 \mid Q_{n} \text { iff } n \equiv 6 \quad(\bmod 12)
\end{array} \tag{2}
\end{gather*}
$$

If m is even, then (see [9])

$$
\begin{equation*}
Q_{n+2 k m} \equiv(-1)^{k} Q_{n} \quad\left(\bmod Q_{m}\right) \tag{7}
\end{equation*}
$$

Theorem: (a) Q_{n} is a generalized heptagonal number only for $n=0,1,3$ or ± 6;
and (b) Q_{n} is a heptagonal number only for $n=0,1$ or 3 .
Proof: (a) Case 1: Suppose $n \equiv 0,1,3, \pm 6(\bmod 600)$.
Then it is sufficient to prove that $40 Q_{n}+9$ is a perfect square if and only if $n=0,1,3, \pm 6$. To prove this, we adopt the following procedure which enables us to tabulate the corresponding values reducing repetition and space.

Suppose $n \equiv \varepsilon(\bmod N)$ and $n \neq \varepsilon$. Then n can be written as $n=2 \cdot \delta \cdot 2^{\theta} \cdot g+\varepsilon$, where $\theta \geq \gamma$ and $2 \vee g$. Furthermore, $n=2 k m+\varepsilon$, where k is odd and m is even.

Now, using (7), we get

$$
40 Q_{n}+9=40 Q_{2 k m+\varepsilon}+9 \equiv 40(-1)^{k} Q_{\varepsilon}+9 \quad\left(\bmod Q_{m}\right)
$$

Therefore, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{40 Q_{n}+9}{Q_{m}}\right)=\left(\frac{-40 Q_{\epsilon}+9}{Q_{m}}\right)=\left(\frac{Q_{m}}{M}\right) . \tag{8}
\end{equation*}
$$

But modulo $M,\left\{Q_{n}\right\}$ is periodic with period $P($ here if $n \equiv 2(\bmod 4)$, then we choose P as a multiple of 4 so that $\left.3 \vee Q_{m}\right)$. Now, since for $\theta \geq \gamma, 2^{\theta+s} \equiv 2^{\theta}(\bmod P)$, choosing $m=\mu \cdot 2^{\theta}$ if $\theta \equiv \zeta(\bmod s)$ and $m=2^{\theta}$ otherwise, we have $m \equiv c(\bmod P)$ and $\left(\frac{Q_{m}}{M}\right)=-1$, for all values of m. From (8), it follows that $\left(\frac{40 Q_{n}+9}{Q_{m}}\right)=-1$, for $n \neq \varepsilon$. For each value of ε, the corresponding values are tabulated in this way (Table B).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ε \& N \& δ \& γ \& S \& M \& P \& μ \& $\zeta(\bmod \mathbf{s})$ \& $\mathbf{c}(\bmod \mathbf{P})$

\hline 0, 1 \& 20 \& 5 \& 1 \& 4 \& 31 \& 30 \& 5 \& 0, 3 \& $2,4, \pm 10$.

\hline 3 \& 100 \& 25 \& 1 \& 36 \& 271 \& 270 \& 25

5 \& $$
6,7,15,24
$$

$$
\begin{gathered}
0,2,3,4 \\
10,12,13 \\
\pm 17,18,21 \\
22,31,35
\end{gathered}
$$ \& \[

$$
\begin{gathered}
2, \pm 10, \pm 20,32 \\
34, \pm 40,70,76 \\
\pm 80,94,106 \\
140,152,154 \\
158,166,182 \\
184,188,196 \\
212,242,248 \\
256
\end{gathered}
$$
\]

\hline ± 6 \& 600 \& 75 \& 2 \& 18 \& 439 \& \[
$$
\begin{aligned}
& 2 \cdot 438 \\
& =876
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\frac{25}{5} \\
\hline \\
3
\end{gathered}
$$

\] \& \[

\frac{3,7}{10,12,13}
\]

$$
15 .
$$ \& \[

$$
\begin{gathered}
4,16,32,64, \\
192,200,220, \\
256,296,332, \\
440,512,548, \\
572,616,664 . \\
712,740 .
\end{gathered}
$$
\]

\hline
\end{tabular}

Table B.
Since L.C.M. of $(20,100,600)=600$, the first part of the theorem follows for $n \equiv 0,1,3$ or $\pm 6(\bmod 600)$.
Case 2: Suppose $n \not \equiv 0,1,3$ or $\pm 6(\bmod 600)$. Step by step we proceed to eliminate certain integers n congruent modulo 600 for which $40 Q_{n}+9$ is not a square. In each step we choose an integer m such that the period k (of the sequence $\left\{Q_{n}\right\} \bmod m$) is a divisor of 600 and thereby eliminate certain residue classes modulo k. For example.
Mod 41: The sequence $\left\{Q_{n}\right\} \bmod 41$ has period 10 . We can eliminate $n \equiv \pm 2(\bmod 10)$, since $40 Q_{n}+9 \equiv 6(\bmod 41)$ and 6 is a quadratic nonresidue modulo 41 . There remain $n \equiv 0,1,3,4,5,6,7$ or $9(\bmod 10)$.

Similarly we can eliminate the remaining values of n. We tabulate them in the following way (Table C) which proves part (a) of the theorem completely.

HEPTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE ...

Period k	Modulus m	Required values of n where $\left(\frac{40 Q_{n}+9}{m}\right)=-1$	Left out values of $\mathbf{n}(\bmod \mathbf{t})$ where t is a positive integer
10	41	± 2.	$0, \pm 1, \pm 3, \pm 4$, or $5(\bmod 10)$
20	29	10, 11, 13, 17 and 19	$0,1,3, \pm 4, \pm 5, \pm 6,7$ or $9(\bmod 20)$
100	$\begin{array}{r} 1549 \\ 29201 \end{array}$	$\begin{gathered} 15, \pm 16, \pm 20,21,29,35, \pm 46,55 \\ 63,69,81,87 \text { and } 95, \\ \pm 4,5,7, \pm 34,43, \pm 44,45,65 \text { and } \\ 85 \end{gathered}$	$\begin{gathered} 0,1,3, \pm 6,9, \pm 14,23, \pm 24, \pm 25 \\ \pm 26,27, \pm 36, \pm 40,41,47,49,61 \\ 67,83 \text { or } 89(\bmod 100) \end{gathered}$
30	31	$\pm 5,7, \pm 9,11$ and 17.	$0,1,3, \pm 6, \pm 75$ or $183(\bmod 300)$
60	269	43 and 49.	
150	751	$\begin{gathered} \pm 14, \pm 24,27, \pm 36, \pm 40, \pm 44,49 \\ \pm 56, \pm 61, \pm 64, \pm 74,117,133 \\ 139, \text { and } 147 \end{gathered}$	
	151	$\begin{gathered} \pm 26, \pm 50,59, \pm 60,73,83,123 \\ \text { and } 149 \end{gathered}$	
	1201	$\pm 10,23,53$ and 91.	
600	9001	$\begin{gathered} \pm 75,183, \pm 225, \pm 294,300,301 \\ 303 \text { and } 483 . \end{gathered}$	$0,1,3$, or $\pm 6(\bmod 600)$

Table C.
For part (b), since, an integer N is heptagonal if and only if $40 N+9=(10 \cdot m-3)^{2}$ where m is a positive integer, we have the following table which proves the theorem.

\boldsymbol{n}	0	1	3	± 6
$\boldsymbol{Q}_{\boldsymbol{n}}$	1	1	7	99
$\mathbf{4 0} \boldsymbol{Q}_{\boldsymbol{n}}+\mathbf{9}$	7^{2}	7^{2}	17^{2}	63^{2}
\boldsymbol{m}	1	1	2	-6
$\boldsymbol{P}_{\boldsymbol{n}}$	0	1	5	± 70

Table D.
If d is a positive integer which is not a perfect square it is well known that $x^{2}-d y^{2}= \pm 1$ is called the Pell's equation and that if $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution of it (that is, x_{1} and y_{1} are least positive integers), then $x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$ is also a solution of the same equation; and conversely every solution of it is of this form. Now by (3), it follows that

$$
Q_{2 n}+\sqrt{2} P_{2 n} \text { is a solution of } x^{2}-2 y^{2}=1,
$$

while

$$
Q_{2 n+1}+\sqrt{2} P_{2 n+1} \text { is a solution of } x^{2}-2 y^{2}=-1 .
$$

Therefore, by Table D and the Theorem, the two corollaries follows.
Corollary 1: The solution set of the Diophantine equation $x^{2}(5 x-3)^{2}=8 y^{2}-4$ is $\{(1, \pm 1),(2, \pm 5)\}$.

Corollary 2: The solution set of the Diophantine equation $x^{2}(5 x-3)^{2}=8 y^{2}+4$ is $\{(1,0),(-6, \pm 70)\}$.

REFERENCES

[1] Shiro Ando. "A Note on the Polygonal Numbers." The Fibonacci Quarterly 19 (1981): 180-183.
[2] J. H. E. Cohn. "Lucas and Fibonacci Numbers and Some Diophantine Equations." Proc. Glasgow Math. Assn. 7 (1965): 24-28.
[3] Shin-Ichi Katayama and Shigeru Katayama. "Fibonacci, Lucas and Pell Numbers and Class Numbers of Bicyclic Biquadratic Fields." Math. Japonica 42.1 (1995): 121-126.
[4] Ming Luo. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989): 98-108.
[5] Ming Luo. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers. Volume 4. Ed. G.E. Bergum, et. al. Kluwer Academic Pub., 1991, pp. 231-240.
[6] Ming Luo. "Pentagonal Numbers in the Fibonacci Sequence." Applications of Fibonacci Numbers. Volume 6. Ed. G.E. Bergum, et. al. Kluwer Academic Pub., 1994.
[7] Ming Luo. "Pentagonal Numbers in the Lucas Sequence." Portugaliae Mathematica 53.3 (1996): 325-329.
[8] W. L. McDaniel. "Triangular Numbers in the Pell Sequence." The Fibonacci Quarterly 34.2 (1996): 105-107.
[9] V. Siva Rama Prasad and B. Srinivasa Rao. "Pentagonal Numbers in the Associated Pell Sequence and Diophantine Equations $x^{2}(3 x-1)^{2}=8 y^{2} \pm 4$." The Fibonacci Quarterly 39.4 (2001): 299-303.
[10] V. Siva Rama Prasad and B. Srinivasa Rao. "Pentagonal Numbers in the Pell Sequence and Diophantine Equations $2 x^{2}=y^{2}(3 y-1)^{2} \pm 2$." The Fibonacci Quarterly 40.3 (2002): 233-241.
[11] V. Siva Rama Prasad and B. Srinivasa Rao. "Triangular Numbers in the Associated Pell Sequence and Diophantine Equations $x^{2}(x+1)^{2}=8 y^{2} \pm 4$." Indian J. Pure Appl. Math 33.11 (2002): 1643-1648.
[12] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences, A00032, A000129, A000045, A000217, A000290, A000326, A000566, A001333.
[13] B. Srinivasa Rao. "Heptagonal Numbers in the Lucas Sequence and Diophantine Equations $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$." The Fibonacci Quarterly 40.4 (2002): 319-322.
[14] B. Srinivasa Rao. "Heptagonal Numbers in the Fibonacci Sequence and Diophantine Equations $4 x^{2}=5 y^{2}(5 y-3)^{2} \pm 16$." The Fibonacci Quarterly 41.5 (2003): 414-420.
[15] B. Srinivasa Rao. "Heptagonal Numbers in the Pell Sequence and Diophantine Equations $2 x^{2}=y^{2}(5 y-3)^{2} \pm 2$." The Fibonacci Quarterly 43.3 (2005): 194-201.

AMS Classification Numbers: 11B39, 11D25, 11B37

必必

