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ABSTRACT

Given an integer b > 1 and a string s of decimal digits, one may ask whether there exists
an integer n such that nb (in decimal form) ends in s. This paper answers that question for
the case where the exponent b is relatively prime to 10. It extends the earlier work [2], where
the question was answered for cubes.

1. INTRODUCTION

Is there an integer n such that n314159 ends in the digits 314159? Or, how about the
same question with 314159 replaced by the integer 31415962535 . . . 5275045519 formed by the
first billion digits of π? In the North Central Section MAA Team Contest of November, 2000,
problem 6 asked about the existence of an integer n such that n3 ends in 2000 ones. The
affirmative answer to that question sparked the investigation into the more general question:
Given a string s of decimal digits, is there an integer n such that n3 ends in s? A complete
answer is given in [2], where the results fall into four cases according as the final digit of s is in
{1, 3, 7, 9}, {2, 4, 6, 8}, {5} or {0}. In this work, we look at the corresponding question where
the exponent 3 is replaced by an arbitrary integer b ending in 1, 3, 7 or 9. (But note that the
final digit string s may end in any digit.) Affirmative answers to both the opening questions
above are an immediate consequence of our first theorem. It will be useful to list here the four
theorems from [2] corresponding to the four above-mentioned cases.
Theorem 1a: Let d be a positive integer and let s be a string of d decimal digits ending in 1,
3, 7 or 9. Then there is an integer n of d or fewer digits such that n3 ends in s.
Theorem 2a: Let s be a string of d decimal digits ending in 2, 4, 6 or 8. Write s = 8pt,
with p ≥ 0 and t not divisible by 8.

(A) If t is odd, then there exists an integer n with n3 ending in s.
(B) Assume that t is even.

(i) If d ≤ 3p + 1, then there is n3 ending in s.
(ii) If d = 3p + 2, then there is n3 ending in s iff t ≡ 4 (mod 8).
(iii) If d ≥ 3p + 3, then there is no integer n with n3 ending in s.

Theorem 3a: Let s be a string of d decimal digits ending in 5. Write s = 125pt, with
p ≥ 0 and t not divisible by 125.

(A) If 5 6 |t, then there is an integer n with n3 ending in s.
(B) Assume that 5|t.
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(i) If d ≤ 3p + 1, then there is n3 ending in s.
(ii) If d = 3p + 2, then there is n3 ending in s iff 25|t.
(iii) If d ≥ 3p + 3, then there is no n3 ending in s.

Theorem 4a: Let s be a string of decimal digits ending in 0. Then s is the final digit string
of a cube if and only if the number of final zeros in s is a multiple of 3 and there is an integer
m with m3 ending in the digit string s′ obtained by removing the final zeros of s.

It appears that when one asks the corresponding question for exponents other than 3,
the problem again breaks down into cases according as the final digit in the exponent is in
{1, 3, 7, 9}, {2, 4, 6, 8}, {5} or {0}. In the final section of [2], several projects are proposed, one
of which is to obtain the counterparts of the above theorems for powers higher than 3, with the
exponents ending in 1, 3, 7 or 9. In the present paper, we carry out this project. A large part
of the work in this paper was contained in the first author’s thesis [1] in partial fulfillment of
the requirements for the Bachelor of Arts with Honors in Mathematics at Concordia College,
under the direction of the second author. The theorems parallel very closely the four theorems
quoted above, Theorem N here corresponding to Theorem Na above.

2. STRINGS ENDING IN 1, 3, 7 OR 9

The strategy for Theorem 1 is the same as that in the proof of Theorem 1a; we proceed
by induction on the length d of the string s, and in the induction step we add a digit c to the
front of the integer m from the previous step to build a new integer n. For a concrete example
of this in the case of cubes, see Section 2 of [2]. As in [2], we use s to denote either a string of
d digits or the integer represented by that string. Throughout the paper s is allowed to have
initial digits equal to zero.
Theorem 1: Let d be a positive integer and let s be a string of d decimal digits ending in 1,
3, 7 or 9. Let b be a positive integer which in decimal form ends in the digit 1, 3, 7 or 9. Then
there is an integer n of d or fewer digits such that nb ends in s.

Proof: To begin an induction on the length d of the string, we need to show that for
every b ending in 1, 3, 7 or 9 and every k in {1, 3, 7, 9} there is an integer n such that nb ends
in k. Obviously, 1b always ends in 1 and 9b ends in 9 because b is odd. Also, from the fact that
34 = 81 and 33 = 27, we see that 3b ends in 3 if b = 4p + 1 and in 7 if b = 4p + 3. Similarly,
from the fact that 74 = 2401 and 73 = 343, we see that 7b ends in 7 if b = 4p + 1 and in 3 if
b = 4p + 3. Thus the assertion is true for d = 1.

Now, suppose that the assertion is true for d = r, and consider a string

s = kr+1, kr, kr−1, . . . , k1,

where k1 is 1, 3, 7 or 9. By the induction hypothesis, there is an integer m of r or fewer digits
such that mb ends in br+1, kr, kr−1, . . . , k1, where br+1 may or may not be equal to kr+1. We
will show that there is an integer c, 0 ≤ c ≤ 9, such that (m + c · 10r)b ends in s. Note that
m + c · 10r is an integer of r + 1 digits with c as its leftmost digit. Consider

(m + c · 10r)b = mb + bmb−1c · 10r +
(

b

2

)
mb−2c2102r + · · ·+ cb10br

≡ mb + bmb−1c · 10r (mod 10r+1).
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The last r digits of this number are kr, kr−1, . . . , k1, and the digit in position r + 1, which we
want to be kr+1, is br+1 + bmb−1c (mod 10). Because both b and m are relatively prime to 10,
bmb−1 has an inverse mod 10. By choosing c = (bmb−1)−1(kr+1−br+1) we have n = m+c ·10r

such that nb ends in s. The theorem then follows by induction.
We note here, as we did in [2], the connection to elementary group theory. The strings

s of length d may be regarded as the elements of Z/(10d), where Z is the ring of integers.
Those strings ending in 1,3,7 or 9 constitute the multiplicative group of invertible elements of
Z/(10d), and the fact that all of them occur as final digit sequences of bth powers corresponds
to the fact that the operation of raising to the bth power is bijective on this abelian group.
There are no elements of order b.

3. STRINGS ENDING IN 2, 4, 6 OR 8

Unlike the situation when s ends in 1, 3, 7 or 9, when s ends in 2, 4, 6 or 8 there may or
may not be a bth power ending in s. The answer depends on the number of factors of 2 in s. If
that number is a multiple of b, then there is an n with nb ending in s. For example, with b = 7,
if s = (128)(314 159) = 40 212 352, or any odd multiple of 128, there is a seventh power ending
in s. If not, there is such an nb if and only if the number of factors of 2 in s is at least as large
as d, the number of digits in s. E.g., if s = (256)(314 159) = 80 424 704, then s has 8 digits and
8 factors of 2, so there is a seventh power ending in s. But if s = (256)(514 139) = 131 619 584,
then s has 9 digits but only 8 factors of 2, and there is no seventh power ending in s. This is
exactly what Theorem 2a states for the case b = 3. We begin with two lemmas.
Lemma 1: Let s be a string of d digits ending in 2, 4, 6 or 8, and b be a positive integer
ending in 1, 3, 7 or 9. If d ≥ b and nb ends in s, then 2b|s.

Proof: It is clear that n must be even; write n = 2m. Then

nb = 2bmb = s + 10dk

for some integer k ≥ 0, and because d ≥ b, 2b is a divisor of 10dk, and therefore of s.
The key to the proof of Theorem 2 is now given in the next lemma.

Lemma 2: Let s be a string of d digits ending in 2, 4, 6 or 8. If s = 2bt and there is an
integer m such that mb ends in t, then there is n such that nb ends in s. (Here if s has initial
zeros as its first digits, then t is assumed to have an equal number of them.)
Example: Suppose s = 00 854 912 and b = 7. Now, 854 912 = (27)(6679), but our t will be
006 679. There is indeed a seventh power ending in 006 679, namely 397 = 137 231 006 679. The
lemma then asserts that there is an integer n with n7 ending in s = 00 854 912, and the proof
shows how to find such an n. Our t has 6 digits, so, in the notation of the proof, d−r = 6, and
d = 8; m = 39. For appropriate choice of c, the proof shows, n = 2m+ c10d−r = 78+ c106 will
work. By following the steps in the proof, one finds that c = 19 works. (One needs 17+7c ≡ 0
(mod 25).) And indeed, with n = 19 000 078, we find that n7 is a 51-digit number ending in
00 854 912.

Proof: The lemma is obviously true if b = 1, so we assume without loss of generality that

b ≥ 3. (3.1)
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Let v = bb log10 2c, so that 10v < 2b < 10v+1, and let z be the number of initial zeros in s;
0 ≤ z < d. Because 10d−z−1 < s < 10d−z, we have

10d−z−v−2 < t =
s

2b
< 10d−z−v,

so t has d− r digits, including the z initial zeros, where

r = v or r = v + 1. (3.2)

Note that

v <
b

3
, (3.3)

and
d− r ≥ 1. (3.4)

By hypothesis, mb = t+k ·10d−r for some integer k. We will show that for an appropriate
choice of c, the integer n = 2m + c · 10d−r has the property that nb ends in s. We have

nb = (2m + c · 10d−r)b

= 2bmb + b2b−1mb−1c10d−r +
(

b

2

)
2b−2mb−2c2102(d−r) + · · ·+ cb10b(d−r)

= 2b(t + k10d−r) + b2b−1mb−1c10d−r +
(

b

2

)
2b−2mb−2c2102(d−r) + · · ·+ cb10b(d−r)

= s + 10d−r(2bk + f(c)), (3.5)

where

f(c) = b2b−1mb−1c +
(

b

2

)
2b−2mb−2c210d−r + · · ·+ cb10(b−1)(d−r).

In order that s be the final digit string of nb, it suffices that 2bk + f(c) be a multiple of 10r,
for then nb = s + 10du for some integer u. We first observe that every term in 2bk + f(c) is a
multiple of 2r. To see this note that from (3.2), (3.3) and (3.1),

r + 1 ≤ v + 2 <
b

3
+ 2 ≤ b,

so 2b and 2b−1 are multiples of 2r. In each subsequent term of f(c), the exponent of 2 decreases
by 1 and that of 10 increases by d − r, which is at least 1 by (3.4). Thus, each term has 2r

as a factor, and 2bk + f(c) is a multiple of 2r, whatever the value of c. We now show that for
some choice of c, 2bk + f(c) is a multiple of 5r; i.e., f(c) ≡ −2bk (mod 5r) for some c.

Let S = {0, 1, 2, . . . , 5r−1} be the set of integers modulo 5r, and consider f as a mapping
of S to S. We shall show that f :S → S is injective (one-to-one) and therefore, because S is
finite, surjective (onto). We may write

f(c) = a1c + a2c
2 + · · ·+ abc

b,
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and note that a1 = b2b−1mb−1 cannot be a multiple of 5, for b is not, and m is not (because
s ends in 2, 4, 6 or 8). On the other hand, each of a2, . . . , ab is a multiple of 10 and therefore
of 5. Suppose that f(c1) ≡ f(c2) (mod 5r). Then

0 ≡ a1(c1 − c2) + a2(c2
1 − c2

2) + · · ·+ ab(cb
1 − cb

2)

≡ (c1 − c2)[a1 + a2(c1 + c2) + · · ·+ ab(cb−1
1 + cb−2

1 c2 + · · ·+ cb−1
2 )] (mod 5r).

The quantity in brackets is not divisible by 5 (because a1 is not and the other aj are), so 5r

is a factor of c1 − c2; i.e., c1 ≡ c2 (mod 5r). Thus, f(c) ≡ −2bk (mod 5r) for some integer c,
and it follows from (3.5) that

nb = s + u · 10d

for some integer u; i.e., nb ends in the d-digit string s.
Theorem 2: Let d be a positive integer and s be a string of d decimal digits ending in 2, 4,
6 or 8, and let b be a positive integer relatively prime to 10. If the number of factors of 2 in s
is a multiple of b, then there is an integer n with nb ending in s. If not, then there is such an
nb if and only if the number of factors of 2 in s is at least d.

Proof: Write s = 2bpt, with p ≥ 0 and 2b 6 |t. We prove the theorem by showing:
(A) If t is odd, then there is an integer n with nb ending in s.
(B) Assume that 2|t.

(i) If d ≤ bp + w where 1 ≤ w < b and 2w|t, then there is an integer n such that nb

ends in s.
(ii) If d ≥ bp + w where w ≥ 1 and 2w 6 |t, then there is no bth power ending in s.

(A) is immediate from Lemma 2 and Theorem 1, because t cannot end in 5.
For (B)(i), as a first case, suppose that d ≤ bp. Place the digit 1 in position bp+1 in front

of s (with intermediate zeros if d < bp), to create a new integer s′:

s′ = 10bp + s = 10bp + 2bpt = 2bp(5bp + t) = 2bpt′,

where t′ = 5bp + t is clearly odd (because 2|t) and does not end in 5. By part (A), there is an
n with nb ending in s′ and therefore ending in s.

Now, suppose that d = bp+w0 with 1 ≤ w0 ≤ w ≤ b−1. Then s < 10bp+w0 , and we want
to put a digit or string of digits c in front of s to form the string s′. Let

s′ = c · 10bp+w0 + s = 2bp(c · 2w05bp+w0 + t).

By hypothesis, 2w|t, so 2w0 |t. Write t = 2w0t0, and we have

s′ = 2bp(c · 2w05bp+w0 + 2w0t0) = 2bp+w0(c · 5bp+w0 + t0).

Because 5bp+w0 is relatively prime to 2bk−w0 for k ≥ 1, we may choose an integer ck in
{0, 1, . . . , 2bk−w0 − 1} to make (ck5bp+w0 + t0) a multiple of 2bk−w0 , and for such ck,

s′ = ck · 10bp+w0 + s = 2bp+w02bk−w0u = 2b(p+k)u = 2bqt′
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for some integer u, where q ≥ p + k and 2b 6 |t′, and we have allowed for the possibility that u
itself has factors of 2b. ¿From the fact that

ck < 2bk−w0 < 2bk+b−1 < 10d
bk+b−1

3 e,

we see that
s′ < 10bp+w010d

bk+b−1
3 e,

and for large enough k, the number d′ of digits in s′ satisfies

d′ ≤ bp + w0 +
⌈

bk + b− 1
3

⌉
≤ bp + bk ≤ bq.

For such k, we have bq factors of 2 in s′ and at most bq digits in s′, so by the first case above,
if t′ is even, or by (A) if t′ is odd, there is an integer n with nb ending in s′ and therefore
ending in s.

We now prove (B)(ii). As a first case, suppose that d = bp + w, with w ≥ b. If p = 0, the
assertion follows from Lemma 1. Thus, assume that p ≥ 1, and suppose, on the contrary, that
there is an integer n with nb ending in s:

nb = s + k10d = 2bpt + k10bp+w = 2bp(t + k2w5bp+w).

Then 2bp|nb, so 2p|n. Write n = 2pm. Then

2bpmb = nb = 2bp(t + k2w5bp+w),

and
mb = t + k2w5bp+w = t + k5bp10w.

Because w ≥ b, mb ends in the last b digits of t. Now,

t =
s

2bp
>

s

10d
bp
3 e

,

so t has at least bp + w − d bp
3 e > w ≥ b digits, while 2b 6 |t, contradicting Lemma 1. Hence,

there is no n with nb ending in s.
In the remaining case we have d = bp + w and 1 ≤ w ≤ b − 1. Suppose that there is n

with nb ending in s:

nb = s + k10d = 2bpt + k10bp+w = 2bp(t + k2w5bp+w).

This shows that 2bp|nb, so 2p|n; write n = 2pm. Then

mb = t + k2w5bp+w.

Recall that 2|t, so 2|mb and therefore 2|m and 2b|mb. But with w ≤ b − 1, this implies that
2w|mb and hence that 2w|t, a contradiction. This completes the proof of Theorem 2.
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4. STRINGS ENDING IN 5

In this section, we deal with the case where s ends in 5. There is a close parallel with
Theorem 2, where the number of factors of 2 in s determines whether or not there is a bth

power ending in s. Here it is the number of factors of 5. Although the arguments are much the
same as in the preceding section, the lemmas necessary to obtain Theorem 3 are a bit more
complex than those for Theorem 2. Lemma 3 below is preparatory to Lemma 4, which says
that for d ≤ b + 1, there is nb ending in s if and only if s (or the last b digits of s, in case
d = b + 1) occurs as the final digit string of an odd multiple of 5b less than 10b.
Lemma 3: Let q and r be odd positive integers. Then (5q)b and (5r)b have the same final
b-digit sequences if, and only if, q and r differ by a multiple of 2b.

Proof: Assume that (5q)b and (5r)b have the same final b-digit sequences. Then

(5q)b − (5r)b = 10ba

for some integer a, whence
5b(qb − rb) = 10ba = 2b5ba,

so that
2ba = qb − rb = (q − r)(qb−1 + qb−2r + · · ·+ qrb−2 + rb−1).

Each term in the last factor on the right is odd because both q and r are odd. Furthermore,
the number of terms, b, is odd, so that factor is odd. It follows that q − r is a multiple of 2b.

Conversely, suppose that q − r is a multiple of 2b. Then q = r + 2bk for some integer k,
and

qb = (r + 2bk)b = rb + 2bu

for some integer u. Thus,
(5q)b − (5r)b = 5b2bu = 10bu;

i.e., (5q)b and (5r)b have the same final b-digit strings.
Lemma 4: (A) If s (ending in 5) has exactly b digits and there is a bth power ending in s,
then s must be one of the odd multiples of 5b less than 10b (including initial zeros as nec-
essary so that the multiple has exactly b digits).

(B) Conversely, all odd multiples of 5b less than 10b (again, with initial zeros if
necessary) are b-digit final sequences of bth powers.

(C) Furthermore, every sequence of b + 1 digits that ends in one of the above b-digit
strings is the ending digit sequence of a bth power. (And, of course, these are then the only
(b + 1)-digit final sequences of bth powers.)

Proof: (A) Suppose that nb ends in the b-digit string s with final digit 5. Then n = 5q
for some odd integer q, and

(5q)b = a10b + s

for some integer a. Thus s = 5bqb − a10b is an odd multiple of 5b.
(B) From Lemma 3 one sees that there are 2b−1 different b-digit sequences ending in 5 that

are final sequences of bth powers, namely the 2b−1 odd multiples of 5b from 1 · 5b to (2b − 1)5b,
supplied as necessary with initial zeros to have length b. These are all the odd multiples of 5b

which are smaller than 10b, so (B) follows.
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(C) If q and r are odd integers, then (5q)b and (5r)b have the same final b + 1 digits if,
and only if, q and r differ by a multiple of 2b+1, as one shows exactly in the way that Lemma
3 was proved: If

(5q)b − (5r)b = 10b+1a

then
5bqb − 5brb = 5b+12b+1a,

and
5 · 2b+1a = qb − rb = (q − r)(qb−1 + qb−2r + · · ·+ qrb−2 + rb−1). (4.1)

The last factor on the right above is odd, so q − r is a multiple of 2b+1. Equation (4.1) also
shows that 5|(qb − rb), and we now show that then 5 must divide q − r. We show this by
showing that 0b, 1b, 2b, 3b, 4b are all distinct modulo 5.

Either b = 4k + 1 or b = 4k + 3 for some integer k. Note that by Fermat’s Little
Theorem (or by direct calculation) that 14k, 24k, 34k and 44k are all equal to 1 modulo 5. If
b = 4k + 1, then 0b ≡ 0, 1b ≡ 1, 2b ≡ 2, 3b ≡ 3 and 4b ≡ 4 modulo 5. If b = 4k + 3, then
0b ≡ 0, 1b ≡ 1, 2b ≡ 3, 3b ≡ 2 and 4b ≡ 4 modulo 5. Hence, if (5q)b and (5r)b have the
same final (b + 1)-digit strings, then q − r is a multiple of 5 · 2b+1 = 10 · 2b. Thus there are
10 · 2b−1 different (b + 1)-digit final strings of bth powers ending in 5, and these must be all
those obtained by putting an arbitrary extra digit in front of the 2b−1 different b-digit strings.

We omit the proof of the converse, which is done exactly as in Lemma 3.
Lemma 5: If d ≥ b and nb ends in s with final digit 5, then 5b|s.

Proof: Let s0 be the number formed by the last b digits of s. Then

s = s0 + 10bk = s0 + 5b2bk

for some integer k. By Lemma 4, s0 is a multiple of 5b, and therefore so is s.
Lemma 6: Let s = 5bt be an integer of d digits ending in 5, with z initial zeros, where
0 ≤ z < d and b is an integer ending in 1, 3, 7 or 9. If there is an integer m such that mb

ends in t (assumed also to have z initial zeros), then there is an integer n such that nb ends
in s.

Proof: The case b = 3 is proved in [2], so we may assume that

b ≥ 7. (4.2)

Let q = bb log10 5c, so that 10q < 5b < 10q+1. Because 10d−z−1 < s < 10d−z, we then have

10d−z−q−2 < t =
s

5b
< 10d−z−q,

so that t has d− r digits (including the initial zeros), where

r = q or q + 1. (4.3)

Note that
q < .7b (4.4)

and
d− r ≥ 1. (4.5)
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By hypothesis, mb = t + k · 10d−r for some integer k. We shall show that for appropriate
choice of the integer c, n = 5m + c · 10d−r has the property that nb ends in s. We have

nb = (5m + c · 10d−r)b

= 5bmb + b5b−1mb−1c10d−r +
(

b

2

)
5b−2mb−2c2102(d−r) + · · ·+ cb10b(d−r)

= 5b(t + k · 10d−r) + b5b−1mb−1c10d−r +
(

b

2

)
5b−2mb−2c2102(d−r) + · · ·+ cb10b(d−r)

= s + 10d−r(5bk + f(c)), (4.6)

where

f(c) = b5b−1mb−1c +
(

b

2

)
5b−2mb−2c210d−r + · · ·+ cb10(b−1)(d−r).

In order that s be the final d-digit string of nb, it suffices that 5bk + f(c) be a multiple of 10r.
For starters, let’s show that every term in 5bk + f(c) is a multiple of 5r. This will follow from
the facts that (i) b− 1 ≥ r, and (ii) (d− r) ≥ 1, because of the fact that the first term in f(c)
has the factor 5b−1 (times 100(d−r)), and in each subsequent term the exponent of 5 is reduced
by 1 while that of 10 is increased by d− r. ¿From (4.3), (4.4), and (4.2) we have

r + 1 ≤ q + 2 < .7b + 2 < b,

proving (i), and (ii) is (4.5). Thus, 5bk + f(c) is a multiple of 5r, whatever the value of c.
It remains only to show that for some choice of c, 5bk + f(c) is a multiple of 2r; i.e., that
f(c) ≡ −5bk (mod 2r) for some c.

Let S = {0, 1, 2, . . . , 2r−1} be the set of integers modulo 2r, and consider f as a mapping
from S to S. We show that this mapping is injective (one-to-one), and therefore, because S is
finite, it is surjective (onto). Write

f(c) = a1c + a2c
2 + · · ·+ abc

b,

and note that a1 is odd (for m must be odd), but the remaining aj are even. Suppose that
f(c1) ≡ f(c2) (mod 2r). Then

0 ≡ a1(c1 − c2) + a2(c2
1 − c2

2) + · · ·+ ab(cb
1 − cb

2)

≡ (c1 − c2)[a1 + a2(c1 + c2) + · · ·+ ab(cb−1
1 + cb−2

1 c2 + · · ·+ cb−1
2 )] (mod 2r).

The quantity in brackets is odd, so 2r is a factor of c1 − c2; i.e., c1 ≡ c2 (mod 2r). Thus, for
some c, 5bk + f(c) is a multiple of 2r, and therefore of 10r, and it now follows from (4.6) that

nb = s + u · 10d

for some integer u; i.e., nb ends in the d-digit string s.
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Theorem 3: Suppose that the digit string s ends in 5. If the number of factors of 5 in the
integer s is a multiple of b, then there is an integer n with nb ending in s. If not, then there
is such an nb if and only if the number of factors of 5 in s is at least as big as d, the number
of digits in s.
Remark: Although it is in fact implied by Theorem 3, it seems worth noting here again the
result of Lemma 4: For d ≤ b + 1, there is an integer n with nb ending in s if and only if s (or
the last b digits of s, in case d = b + 1) occurs as the final digit string of an odd multiple of 5b

less than 10b.
Proof: Write s = 5bpt with p ≥ 0 and 5b 6 |t. We prove the theorem by showing:
(A) If 5 6 |t, then there is an integer n with nb ending in s.
(B) Assume that 5|t.

(i) If d ≤ bp + w, where 1 ≤ w < b and 5w|t, then there is an integer n such that nb

ends in s.
(ii) If d ≥ bp + w where w ≥ 1 and 5w 6 |t, then there is no bth power ending in s.

To prove (A), note first that because t is odd and not divisible by 5, t ends in 1, 3, 7 or
9. By Theorem 1, there is an integer m such that mb ends in t. Then, by Lemma 6, there is
an integer n such that nb ends in s.

For (B)(i), first consider the case d ≤ bp. Just as in this case in Theorem 2, let

s′ = 10bp + s = 5bp(2bp + t) = 5bpt′,

where t′ = 2bp + t. Note that t′ is odd and not divisible by 5 because t is divisible by 5, and
thus t′ ends in 1, 3, 7 or 9. By Theorem 1, there is a bth power ending in t′, so by Lemma 6
there is a bth power ending in s′ and therefore ending in s.

Now suppose that d = bp + w0 with 1 ≤ w0 ≤ w ≤ b− 1. Then s < 10bp+w0 , and we will
put a digit or string of digits c in front of s to form a new string s′. Let

s′ = c10bp+w0 + s = 5bp(c5w02bp+w0 + t), (4.7)

and note that 5w0 |t because by hypothesis 5w|t. Write t = 5w0t0. Then

s′ = 5bp(c5w02bp+w0 + 5w0t0) = 5bp+w0(c2bp+w0 + t0).

Because 2bp+w0 is relatively prime to 5bk−w0 for k ≥ 1, there is for every k ≥ 1 an integer ck

in {0, 1, . . . , 5bk−w0 − 1} such that (ck2bp+w0 + t0) is a multiple of 5bk−w0 . For such a ck,

s′ = 5bp+w05bk−w0u = 5b(p+k)u = 5bqt′ (4.8)

for some integer u, where q ≥ p + k and 5b 6 |t′. Here we have allowed for the possibility that
u contains additonal factors of 5b. From the first equation in (4.7) and the fact that

ck < 5bk−w0 < 5bk+b−1 < 10(0.7)(bk+b−1),

it follows that for sufficiently large k, the number d′ of digits in s′ satisfies

d′ ≤ bp + w0 + (0.7)(bk + b− 1) ≤ bp + bk ≤ bq. (4.9)
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For such k and the corresponding ck, (4.8) shows that we have bq factors of 5 in s′ and (4.9)
shows that s′ has at most bq digits. Therefore, by the first case above (if 5|t′), or by (A) (if
5 6 |t′), there is an integer n with nb ending in s′ and therefore ending in s.

We proceed now to (B)(ii). It suffices to prove it for d = bp + w. As a first case, suppose
that w ≥ b. If p = 0 we have d ≥ b but 5b 6 |s because s = t. Then Lemma 5 implies that there
is no bth power ending in s. Assume that p ≥ 1. To show there is no nb ending in s, suppose
on the contrary that there is one:

nb = s + k10d = 5bpt + k10bp+w = 5bp(t + k2bp10w).

Thus 5bp|nb, so 5p|n and we may write n = 5pm. Then

5bpmb = nb = 5bp(t + k2bp10w),

so
mb = t + k2bp10w,

and because w ≥ b, mb ends in the last b digits of t. Now,

t =
s

5bp
>

s

100.7bp
,

so t has at least bbp + w − .7bpc ≥ bbp + b − .7bpc ≥ b digits. Then Lemma 5 says that 5b|t,
contrary to our hypothesis. Thus, there is no integer n with nb ending in s.

In the remaining case, we have d = bp + w with 1 ≤ w ≤ b − 1. By assumption, 5|t but
5w 6 |t, so in fact 2 ≤ w ≤ b− 1. Suppose that there did exist an integer n with nb ending in s:

nb = s + k10d = 5bpt + k10bp+w = 5bp(t + k5w2bp+w).

Then 5bp|nb, so 5p|n, and we may write n = 5pm for some integer m. Then

mb = t + k5w2bp+w.

Because 5|t, this shows that 5|m and therefore 5b|mb. Then 5w|mb and hence 5w|t, a contra-
diction. Thus, no such n exists.

5. STRINGS ENDING IN 0

Having determined in the preceding sections which digit strings s, not ending in 0, are
final digit strings of integer powers of the form nb if b ends in 1, 3, 7 or 9, it is easy now to deal
with strings ending in 0. If nb ends in 0, then n itself ends in 0, and we may write n = 10pm
where 10 6 |m. Thus nb = 10bpmb, and this proves Theorem 4:
Theorem 4: Suppose that s is a string of decimal digits ending in 0 but having at least one
nonzero digit. Then there exists an integer n such that nb ends in s if and only if the number
of final zeros in s is a multiple of b and there exists an integer m such that mb ends in the
string s′ obtained by removing the final zeros of s. (Of course if s consists entirely of zeros
there is always an integer n with nb ending in s.)
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6. CONCLUSION

The above theorems characterise all ending digit sequences for integers of the form nb

where b is relatively prime to 10; i.e., b ends in 1, 3, 7 or 9, and thus completes Project 1 of
[2]. There remain two projects suggested in [2]:
Project 2: Investigate final digit sequences for squares of integers; for fifth powers.
Project 3: Investigate final digit sequences for integer powers in base 8; in base 12.

We would suggest an expansion of Project 2, namely
Project 2A: What are final digit sequences for numbers of the form nb when b ends in 2, 4,
6 or 8?
Project 2B: What are final digit sequences for numbers of the form nb when b ends in 5?
What about exponents ending in 0?

These projects lend themselves well to undergraduate research in that they do not appear
to use deep mathematics unavailable to undergraduates, but yet are decidedly nontrivial.
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