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ABSTRACT

Let r0, r1, · · · , ra−1 be the least nonnegative residues of 0, b, 2b, · · · , (a−1)b modulus a. In
this note, we give several recurrence formulas for the number of pairs {i, j} with (i−j)(ri−rj) <
0. These formulas together with Zolotareff’s lemma give a proof of the Law of Reciprocity for
Legendre symbol. Furthermore, we prove that if a is a positive odd integer and b an integer
with (a, b) = 1, then the permutation r0, r1, · · · , ra−1 is even or odd according as the value of
Jacobi symbol is 1 or −1. This gives an arithmetic meaning of Jacobi symbol.

1. INTRODUCTION

For any sequence of real numbers

α1, α2, · · · , αm,

the number

m∑
i=2

#{j : j < i, αj > αi}

is called the reverse order number of the sequence α1, · · · , αm. Let a be a positive integer, b
an integer and

ri ≡ bi (mod a), 0 ≤ ri < a− 1.

We use P (a, b) to denote the sequence r0, r1, · · · , ra−1 and τ(a, b) to denote the reverse order
number of P (a, b).

In 1872, Zolotareff [4] proved that (see also Riesz [2] or Slavutskii [3])
Zolotareff’s Lemma: Let p be an odd prime not dividing b. Then(

b

p

)
= (−1)τ(p,b).

We may ask the following question:
What is the explicit formula for τ(p, b) if p is an odd prime?
In this note we give several recurrence formulas for τ(a, b), which together with Zolotareff’s

lemma give a proof of the Law of Reciprocity for the Legendre symbol. Furthermore, we prove
that if a is a positive odd integer and (a, b) = 1, then τ(a, b) is even or odd according to
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whether the value of Jacobi symbol is 1 or −1, where the notation (a, b) denotes the greatest
common divisor of a and b. This gives an arithmetic meaning of Jacobi symbol.

In this note, the following results are proved.
Theorem 1: Let a be a positive integer and b an integer. Then

τ(a, b) = (a, b)τ
(

a

(a, b)
,

b

(a, b)

)
+

1
4
a ((a, b)− 1)

(
a

(a, b)
− 1

)
.

The proof of Theorem 1 is easy. We omit the proof.
It is clear that τ(a, b1) = τ(a, b2) if b1 ≡ b2 (mod a), and τ(a, 0) = 0, τ(a, 1) = 0,

τ(1, b) = 0. Thus we need only to consider a > b > 1 and (a, b) = 1.
Theorem 2: Let a, b, q, r be positive integers with (a, b) = 1 and a = bq + r, 1 ≤ r < b. Then

τ(a, b) =
1
4
b(b− 1)q(q + 1) + (q + 1)τ(r, b)− qτ(b− r, r).

Corollary 1: Let a > b > 1 with (a, b) = 1. Then

τ(a, b) = τ(a− b, b)− τ(b, a) +
1
2
(a− 1)(b− 1).

Corollary 2: Let a, b, q and r be as in Theorem 2. Then

τ(a, b) = τ(r, b)− qτ(b, a) +
1
2
(a− 1)(b− 1)q − 1

4
b(b− 1)q(q − 1).

Remark: For any given b we can give an explicit formula for τ(a, b). For example, τ(a, 2) =
(a2 − 1)/8 if a is an odd number.
Theorem 3: Let a, b be positive odd integers with (a, b) = 1. Then

τ(a, b) + τ(b, a) ≡ 1
4
(a− 1)(b− 1) (mod 2).

Remark: Theorem 3 and Zolotareff’s lemma give a proof of the Law of Reciprocity for the
Legendre symbol. Theorem 3 is significant because we can use it together with the identity
τ(a, b) + τ(a, a − b) = (a − 1)(a − 2)/2 to calculate the Legendre symbol without using the
Jacobi symbol.
Theorem 4: Let a be a positive odd integer and b an integer with (a, b) = 1. Then(

b

a

)
= (−1)τ(a,b),

where
(

b
a

)
is the value of Jacobi symbol.

2. PROOFS

In this section, let a, b, q, r be as in Theorem 2. For 0 ≤ i < r , let mi be the integer such
that

0 ≤ bi−mir < r.
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For 1 ≤ i ≤ b− r, let ni be the integer such that

0 ≤ −ir + (b− r)ni < b− r.

Then 0 ≤ mi < b and 1 ≤ ni ≤ r. Thus we have

bi−mir = bi−mi(a− bq)
= b(miq + i)−mia = rmiq+i, (1)

and

−ir + (b− r)ni = bni − r(ni + i− 1)− r

= bni − (a− bq)(ni + i− 1)− r

= b(ni + q(ni + i− 1))− (ni + i− 1)a− r

= rni+q(ni+i−1) − r. (2)

Let
ui = miq + i (0 ≤ i < r)

and
vi = ni + q(ni + i− 1) (1 ≤ i ≤ b− r).

Lemma 1:
ui+1 > ui (0 ≤ i < r − 1), 0 ≤ ui < a (0 ≤ i < r);

vi+1 > vi (1 ≤ i < b− r), 1 ≤ vi < a (0 ≤ i ≤ b− r).

Proof: Since mi+1 > mi, ni+1 ≥ ni, q > 0, 0 ≤ mi < b and 1 ≤ ni ≤ r, Lemma 1 is
proved.

Since rui
< r ≤ rvj

, we have ui 6=vj for 0 ≤ i < r and 1 ≤ j ≤ b − r. Rearrange
u0, u1, · · · , ur−1, v1, · · · , vb−r in increasing order as l0, l1, · · · , lb−1. Then rli < r is equivalent
to that li is one of u0, u1, · · · , ur−1.

Lemma 2:
P (r, b) = {ru0 , ru1 , · · · , rur−1},

P (b− r,−r) = {rvb−r
− r, rv1 − r, rv2 − r, · · · , rvb−r−1 − r}

and
P (b,−a) = {rl0 , rl1 , · · · , rlb−1}.

Proof: The conclusions for P (r, b) and P (b−r,−r) follow from (1), (2) and the definitions
of ui and vj . Now we prove the conclusion for P (b,−a). By (1) and (2) we have that each rli

has the form bli − pia (0 ≤ i ≤ b− 1). Since

0 ≤ rli < b and 0 ≤ l0 < l1 < · · · < lb−1 < a,

we have 0 ≤ p0 < p1 < · · · < pb−1 < b, whence pi = i(0 ≤ i ≤ b− 1). This completes the proof
of Lemma 2.
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Lemma 3: Let lb = a. Then for i = 0, 1, 2, · · · , b− 1,

li+1 − li =
{

q, if rli ≥ r,

q + 1, if rli < r,

rli+k = rli + kb, if 0 ≤ k < li+1 − li.

Proof: Since there are exactly b numbers in P (a, b) which are less than b, these b numbers
are rl0 , rl1 , · · · , rlb−1 . If rli ≥ r(i < b− 1), then

rli + (q − 1)b < b + (q − 1)b < a,

0 ≤ rli + qb− a < b + qb− a < b.

So li+1 − li = q(i < b − 1) and rli+k = rli + kb if 0 ≤ k < q. If rli < r(i < b − 1), similarly,
we have li+1 − li = q + 1 and rli+k = rli + kb if 0 ≤ k < q + 1. Since lb−1 is determined
by 0 ≤ blb−1 − (b − 1)a < b, we have lb−1 = a − q and rlb−1 = blb−1 − (b − 1)a = r. Thus,
lb − lb−1 = q and rlb−1+k = rlb−1 + kb if 0 ≤ k < q. This completes the proof of Lemma 3.

Let
σi = #{j : j < i, rj > ri},

δui
= #{j : j < i, ruj

> rui
}

and
τvi

= #{j : j < i, rvj
< rvi

}.

Lemma 4:

lj+1−lj−1∑
k=0

σlj+k =
{ 1

2q(q + 1)j + (q + 1)δlj , if rlj < r,
1
2q(q + 1)j − qτlj , if rlj ≥ r,

j = 0, 1, · · · , b− 1.

Proof: For 0 ≤ i < j and 0 ≤ k < lj+1 − lj we consider

rli , rli+1, · · · , rli+k, · · · , rli+1−1. (Ii(k))

(Note. If k = q and rli ≥ r, the term rli+k does not appear in (Ii(k)) ). Noting that 0 ≤ rli < b
and 0 ≤ rlj < b, by Lemma 3 we have

rli+t < rlj+k, if 0 ≤ t < k < lj+1 − lj ;

rli+t > rlj+k, if 0 ≤ k < t < li+1 − li,

and rli+k < rlj+k is equivalent to rli < rlj if 0 ≤ k < min{li+1 − li, lj+1 − lj}.
First, we assume that rlj < r. If rli ≥ r or rli < rlj , then by Lemma 3 there are q − k

numbers in (Ii(k)) which exceed rlj+k. If rlj < rli < r, then by Lemma 3 there are q + 1− k
numbers in (Ii(k)) which exceed rlj+k. Thus we have

σlj+k = (q − k)j + δlj . (3)
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Now we assume that rlj ≥ r. If rli < r or rli > rlj , then by Lemma 3 there are q − k
numbers in (Ii(k)) which exceed rlj+k. If rlj > rli ≥ r, then by Lemma 3 there are q − k − 1
numbers in (Ii(k)) which exceed rlj+k. Thus we have

δlj+k = (q − k)j − τlj , (4)

and Lemma 4 follows from (3), (4) and Lemma 3.
Proof of Theorem 2: By Lemma 4 we have

τ(a, b) =
b−1∑
j=0

lj+1−lj−1∑
k=0

σlj+k

=
1
4
q(q + 1)b(b− 1) + (q + 1)

r−1∑
i=0

δui − q

b−r∑
j=1

τvj .

By Lemma 2 we have

r−1∑
i=0

δui = τ(r, b).

Putting rvb−r
= r, one gets from (2) that

P (b− r, r) = {0, b− rv1 , b− rv2 , · · · , b− rvb−r−1}.

So

b−r∑
i=1

τvi
=

b−r∑
i=1

#{j : j < i, rvj
< rvi

}

=
b−r∑
i=1

#{j : j < i, b− rvj
> b− rvi

} = τ(b− r, r).

Hence

τ(a, b) =
1
4
q(q + 1)b(b− 1) + (q + 1)τ(r, b)− qτ(b− r, r).

This completes the proof of Theorem 2.
Proof of Corollary 1: By Theorem 2 we have

τ(2a + b, a + b) =
1
2
(a + b)(a + b− 1)− τ(b, a) + 2τ(a, b), (5)
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τ(2a + b, a) =
3
2
a(a− 1)− 2τ(a− b, b) + 3τ(b, a). (6)

Again,

τ(2a + b, a + b) + τ(2a + b, a) = τ(2a + b,−a) + τ(2a + b, a)

=
1
2
(2a + b− 1)(2a + b− 2). (7)

By (5), (6) and (7) we obtain a proof of Corollary 1.
Proof of Corollary 2: By Corollary 1, for i = 0, 1, · · · , q − 1, we have

τ(a− ib, b) = τ(a− (i + 1)b, b)− τ(b, a− ib) +
1
2
(b− 1)(a− ib− 1)

= τ(a− (i + 1)b, b)− τ(b, a) +
1
2
(b− 1)(a− ib− 1).

Adding up these equalities, we obtain a proof of Corollary 2.
Proof of Theorem 3: Since τ(a, 1) = τ(1, a) = 0, we have

τ(a, 1) + τ(1, a) =
1
4
(a− 1)(1− 1) (mod 2).

So Theorem 3 is true for a + b ≤ 4. We use induction on a + b. Suppose that Theorem 3 is
true for a + b ≤ 2n. Assume that a, b are positive odd integers with a + b = 2n + 2, a > b > 1
and (a, b) = 1. Let a = bq + r with 0 ≤ r ≤ b− 1. By (a, b) = 1 and a > b > 1 we have r > 0.
Thus, by virtue of Theorem 2 we have

τ(a, b) =
1
4
b(b− 1)q(q + 1) + (q + 1)τ(r, b)− qτ(b− r, r). (8)

Since (b, r) = 1, we have

τ(b, b− r) + τ(b, r) = τ(b,−r) + τ(b, r) =
1
2
(b− 1)(b− 2). (9)

Hence

τ(b, a) = τ(b, r) = (q + 1)τ(b, r) + qτ(b, b− r)− 1
2
q(b− 1)(b− 2). (10)

If r is odd, then q is even. By (8), (10), bq = a− r and the inductive hypothesis we have

τ(a, b) + τ(b, a) ≡ 1
4
(b− 1)(a− r)(q + 1) + τ(r, b) + τ(b, r)

≡ 1
4
(b− 1)(a− r) + τ(r, b) + τ(b, r)

≡ 1
4
(b− 1)(a− r) +

1
4
(b− 1)(r − 1) ≡ 1

4
(a− 1)(b− 1) (mod 2).
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If r is even, then both b− r and q are odd. By (8), (10), b(q +1) = a+ b− r and the inductive
hypothesis we have

τ(a, b) + τ(b, a) ≡ 1
4
(b− 1)(a + b− r)q + τ(b− r, r) + τ(b, b− r) +

1
2
q(b− 1)b

≡ 1
4
(b− 1)(a + b− r) + τ(b− r, b) + τ(b, b− r) +

1
2
(b− 1)b

≡ 1
4
(b− 1)(a + b− r) +

1
4
(b− r − 1)(b− 1) +

1
2
(b− 1)b

≡ 1
4
(a− 1)(b− 1) (mod 2).

This completes the proof of Theorem 3.
Proof of Theorem 4: We use induction on a. First, it is easy to see that Theorem 4 is

true for b = 1. Second, If b1 ≡ b2 (mod a), then(
b1

a

)
=

(
b2

a

)
, τ(a, b1) = τ(a, b2).

Thus, without loss of generality, we may assume that a > b > 1. Since

τ(3, 2) = 1,

(
2
3

)
= −1,

Theorem 4 is true for a = 3. Suppose that Theorem 4 is true for a ≤ 2n− 1 (n ≥ 2). Now, let
a = 2n + 1. If b is a positive odd integer with (a, b) = 1 and a > b > 1, then, by the Law of
Reciprocity for the Jacobi symbol, the inductive hypothesis and Theorem 3, we have(

b

a

)
=

(
a

b

)
(−1)

1
4 (a−1)(b−1) = (−1)τ(b,a)(−1)

1
4 (a−1)(b−1) = (−1)τ(a,b).

If b is a positive even integer with (a, b) = 1 and a > b > 1, then a− b is odd and by (9),

(
b

a

)
=

(
a− b

a

)(
−1
a

)
= (−1)τ(a,a−b)(−1)

1
2 (a−1)

= (−1)τ(a,−b)(−1)
1
2 (a−2)(a−1)

= (−1)τ(a,b).

This completes the proof.
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