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ABSTRACT

The problem of computing the number of sequences of various lengths that can be ob-
tained by decimating a given binary sequence Xn of length n is considered. It is proven that
this number is maximized iff Xn is an alternating sequence and that the maximum can be
expressed in terms of the Fibonacci numbers. Some other upper bounds on this number are
also determined, including another bound in terms of the Fibonacci numbers, depending on
the run lengths in Xn.

1. INTRODUCTION

Irregular decimation of binary sequences is a well-known mathematical operation emerging
in the analysis of codes for correcting synchronization errors, used in telecommunications, and
stream ciphers based on clock-controlled shift registers, used in cryptography. For example,
see [2] and [1], respectively.

Given a binary sequence X = x1, x2, . . . , let Xn
k = xk, xk+1, . . . , xn and Xn = Xn

1 , and
let X0 be an empty set φ. A binary sequence of variable length is also denoted by X. The
complement of X is denoted by X = x0, x1, . . . , where xi = xi⊕1 and ⊕ stands for the modulo
2 addition. As usual, XmY n denotes the concatenation of Xm and Y n, and cn thus denotes
a constant sequence c, c, . . . , c.
Definition 1: Given an input binary sequence Xn and a decimation binary sequence Cn of
the Hamming weight wH(Cn) = k (defined as the number of 1’s in Cn), 0 ≤ k ≤ n, the
decimation of Xn according to Cn, denoted as Zk = DEC(Xn, Cn), is defined as the sequence
of all the bits xi, 1 ≤ i ≤ n, such that ci = 1, where the bits are taken in the same order as
in Xn. The bits xi such that ci = 0 are thus discarded, and if k = 0, then Z0 = φ.

Let
D(Xn) = {Z : (∃Cn)DEC(Xn, Cn) = Z} (1)

and let dn(Xn) = |D(Xn)| denote the number of sequences of various lengths that can be
obtained by decimating Xn. Let dn be the maximum of dn(Xn) over all Xn. Clearly, n + 1 ≤
dn(Xn) ≤ 2n and dn(Xn) = dn(X

n
).

Example 1: Given a sequence X4 = 0101, we have D(X4) = {φ, 0, 1, 00, 01, 10, 11, 010, 011,
001, 101, 0101} and hence d4(X4) = 12.

The problems dealt with in this paper are to find an algorithm for an efficient computation
of dn(Xn) and to determine tight upper bounds on dn(Xn), for an arbitrary Xn. Interestingly,
it turns out that the solutions are closely related to the Fibonacci numbers.
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2. CONCATENATION UPPER BOUNDS

It is interesting that direct counting by computer simulations can be used to obtain upper
bounds on dn, exponential in n, by using the following concatenation lemma for dn(Xn).
Lemma 1: For any m,n ≥ 1,

dm+n(XmY n) ≤ dm(Xm)dn(Y n). (2)

Proof: From the definition of the decimation operation, it follows that Z ∈ D(XmY n)
iff there exist Z1 ∈ D(Xm) and Z2 ∈ D(Y n) such that Z = Z1Z2. Therefore, we have

|D(XmY n)| ≤ |D(Xm)| · |D(Y n)|. (3)

Theorem 1: For any n ≥ m ≥ 1,

dn ≤ ηm(dm)n/m (4)
where

ηm = max
0≤l≤m−1

dl

(dm)l/m
. (5)

Proof: Let n = mbn/mc+ l, 0 ≤ l ≤ m− 1. As a direct consequence of Lemma 1, we get

dn ≤ dl(dm)bn/mc (6)

which further implies (4) and (5).
By using Theorem 1, non-trivial exponential upper bounds can be obtained from any

dm < 2m found by direct counting. It follows that dm = 2m,m = 1, 2, and that dm < 2m

already for m = 3. For example, we obtain dm = 7, 12, 20 for m = 3, 4, 5, respectively. The
corresponding upper bounds are approximately 1.094 ·1.913n, 1.155 ·1.862n, and 1.207 ·1.821n,
respectively.

The concatenation lemma directly implies a basic upper bound on dn(Xn) in terms of the
run lengths in Xn. Recall that a run in a binary sequence X is a maximal-length subsequence
of X consisting of equal consecutive bits. Any binary sequence Xn can uniquely be represented
as a sequence of r runs, where 1 ≤ r ≤ n. Let l1, l2, . . . , lr be a generic notation for the positive
integer sequence of run lengths in Xn, where

∑r
i=1 li = n. The only two sequences with

the same sequence of run lenghts are Xn and X
n
. Then, by virtue of the fact that dk(ck) = k+1

for a constant sequence ck, Lemma 1 implies that

dn(Xn) ≤
r∏

i=1

(li + 1) ≤ (1 + n/r)r ≤
(

n + r

r

)
. (7)

This bound also follows from the fact that Z = DEC(Xn, Cn) depends only on how many
bits from each of the runs in Xn are taken to form Z. Note that the rightmost bound in
(7) is determined in [2]. However, the basic upper bound is not sharp enough for maximizing
dn(Xn). Namely, for r = n, that is, for an alternating sequence Xn, the bound is equal to 2n

and is hence trivial.
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3. RECURSIVE CHARACTERIZATION

In this section, we establish a recursive characterization of dn(Xn) with respect to the
sequence length n. This characterization enables one to compute dn(Xn), for an arbitrary
sequence Xn, in at most 2(n − 1) steps. It is also used in the next section to prove that
dn(Xn) is maximized iff Xn is an alternating sequence and to determine an explicit expression
for the maximum dn in terms of the Fibonacci numbers.

To this end, we first introduce the concept of minimal decimation sequences and then
define an appropriate partition of the set D(Xn). Note that the natural partition according
to the Hamming weight of decimation sequences, that is, according to the length of output
sequences obtained after the decimation does not turn out to be convenient.

Each Z ∈ D(Xn) can be obtained as DEC(Xn, Cn), where the decimation sequence Cn

need not be unique. All Cn giving rise to the same Z are thus equivalent. They must have the
same Hamming weight and can be represented by a unique decimation sequence C̃n which is
called minimal and is defined as follows.
Definition 2: Every decimation sequence Cn of Hamming weight wH(Cn) = k ≥ 1 can
uniquely be represented as an increasing sequence of positive integers i1, i2, . . . , ik where ij is
the index of the jth 1 in Cn. A decimation sequence C̃n = i1, i2, . . . , ik is called minimal if, for
each 1 ≤ j ≤ k, ij is minimal on the set of all Cn such that DEC(Xn, Cn) = DEC(Xn, C̃n).
Formally, the all-zero sequence Cn = 0n is considered to be minimal, for Z = φ.

Given Zk ∈ D(Xn), the corresponding minimal decimation sequence can recursively be
constructed as follows: i1 is the index of the first bit of Xn equal to z1, and for each 2 ≤ j ≤
k, ij is the index of the first remaining bit xi, ij−1 < i ≤ n, equal to zj . The constructed
sequence is the unique minimal decimation sequence, because if we suppose that there exists a
sequence C ′n such that i′j < ij for at least one value of j, then we get a contradiction. Namely,
from the construction, it then follows that i′j′ < ij′ for every 1 ≤ j′ < j, which is impossible
for j′ = 1.
Example 2: Given a sequence X4 = 0101 from Example 1: for Z = 0, there are two
equivalent decimation sequences 1000 and 0010, where 1000 is minimal; for Z = 1, there are
two equivalent decimation sequences 0100 and 0001, where 0100 is minimal; for Z = 01, there
are three equivalent decimation sequences 1100, 1001, and 0011, where 1100 is minimal; and
for each of the remaining nine sequences Z, there is exactly one decimation sequence, which
is then minimal.

Consequently, for a given Xn, there is an 1-1 correspondence between all possible Z
from D(Xn) and all minimal decimation sequences, so that dn(Xn) is equal to the number of
minimal decimation sequences given Xn.

The basic properties of minimal decimation sequences are given by the following lemma,
which directly follows from Definition 2.
Lemma 2: If Cn is minimal for Xn, then Cn−1 is minimal for its prefix Xn−1. Furthermore,
for any 0 < i < n, Ci0n−i is minimal for Xn iff Ci is minimal for its prefix Xi.

We are now ready to introduce a convenient partition of D(Xn) that allows a recursive
characterization of dn(Xn). Let for any 1 ≤ i ≤ n, D̃i(Xn) denote the set of all the minimal
decimation sequences C̃n such that i is the index of the last bit of C̃n equal to 1, whereas
for i = 0, let D̃0(Xn) = {0n}. Let ∆i(Xn) = |D̃i(Xn)|, 0 ≤ i ≤ n. According to Lemma 2,
we have ∆i(Xn) = ∆i(Xi). It follows that ∆0(X0) = ∆1(X1) = 1, whereas ∆2(00) = 1 and
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∆2(01) = 2. Since Ci = 1i is always minimal, ∆i(Xi) ≥ 1 is true. Consequently, dn(Xn) can
be put into the form

dn(Xn) =
n∑

i=0

∆i(Xi) = dn−1(Xn−1) + ∆n(Xn), (8)

where formally d0(X0) = 1.
The desired recursive characterization of ∆n(Xn) is established by the following two

lemmas. Recall that l1, l2, . . . , lr denotes the run-length structure of Xn. In particular, if
xn 6= xn−1, then lr = 1.
Lemma 3: If xn = xn−1, then

∆n(Xn) = ∆n−1(Xn−1). (9)

Proof: According to Lemma 2, if C̃n ∈ D̃n(Xn), then its prefix C̃n−1 is a minimal
decimation sequence for Xn−1. If xn = xn−1, then it follows that c̃n−1 = 1, that is, C̃n−1 ∈
D̃n−1(Xn−1). Namely, if c̃n−1 = 0, then it would be possible to swap the last two bits of
C̃n without changing the output sequence, that is, DEC(Xn, C̃n−201) = DEC(Xn, C̃n−210),
which implies that C̃n would not be minimal for Xn. Consequently, ∆n(Xn) ≤ ∆n−1(Xn−1).

On the other hand, if C̃n−1 ∈ D̃n−1(Xn−1), then the corresponding decimation sequence
C̃n−11 is minimal for Xn, that is, C̃n−11 ∈ D̃n(Xn). Namely, if C̃n−11 is not minimal
for Xn, then there exists another decimation sequence Cn such that cn = 0 giving rise to
the same output sequence, DEC(Xn, C̃n−11). It follows that the same output sequence,
DEC(Xn−1, C̃n−1), could then be produced by using another decimation sequence obtained
by taking the first n − 1 bits of Cn and by substituting a 0 for the last bit of Cn equal to 1.
As the last bit of this decimation sequence is equal to zero, this implies that C̃n−1 would not
be minimal for Xn−1. Therefore, ∆n(Xn) ≥ ∆n−1(Xn−1).
Lemma 4: If xn 6= xn−1 and xn−1 = xn−2 = · · · = xn−lr−1 6= xn−lr−1−1, then

∆n(Xn) = lr−1∆n−1(Xn−1) + ∆n−lr−1−1(Xn−lr−1−1). (10)

Proof: According to Lemma 2, if C̃n ∈ D̃n(Xn), then its prefix C̃n−1 is a minimal
decimation sequence for Xn−1. If xn 6= xn−1 and xn−1 = xn−2 = · · · = xn−lr−1 6= xn−lr−1−1,
then it follows that the index i of the last bit of C̃n−1 equal to 1 satisfies n−lr−1−1 ≤ i ≤ n−1,
that is, C̃n−1 ∈ D̃i(Xn−1) for such an i. Namely, if i < n− lr−1− 1, then it would be possible
to swap the bits c̃n and c̃n−lr−1−1 without changing the output sequence, which implies that
C̃n would not be minimal for Xn.

The converse is also true, that is, if C̃n−1 ∈ D̃i(Xn−1) for any n−lr−1−1 ≤ i ≤ n−1, then
the corresponding decimation sequence C̃n−11 is minimal for Xn, that is, C̃n−11 ∈ D̃n(Xn).
Namely, if C̃n−11 is not minimal for Xn, then there exists another decimation sequence Cn

giving rise to the same output sequence, DEC(Xn, C̃n−11), such that the index j of the
last bit equal to 1 satisfies j ≤ n − lr−1 − 1. It follows that the same output sequence,
DEC(Xn−1, C̃n−1), could then be produced by using another decimation sequence obtained
by taking the first n−1 bits of Cn and by substituting a 0 for the last bit of Cn equal to 1. As
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the index of the last bit of this decimation sequence equal to 1 is thus smaller than n− lr−1−1,
this implies that C̃n−1 would not be minimal for Xn−1. Accordingly, we have

∆n(Xn) =
n−1∑

i=n−lr−1−1

∆i(Xi), (11)

which further, by virtue of Lemma 3, implies (10).
The recursions (9) and (10) enable a very efficient computation of all ∆i(Xi), 1 ≤ i ≤ n,

for an arbitrary Xn, in at most n−1 steps, where each step consists of one integer addition. In
view of (8), the computation of dn(Xn) then requires at most n− 1 further integer additions.
Note that a brute force computation would require an exhaustive testing of all 2n decimation
sequences.

In fact, one can first compute the run-length structure of Xn, with n−1 bit comparisons,
and then, according to (10), recursively apply

∆Li(X
Li) = li−1∆Li−1(X

Li−1) + ∆Li−2(X
Li−2) (12)

for 2 ≤ i ≤ r, where Li =
∑i

j=1 lj , 1 ≤ i ≤ r, and L0 = 0, starting from ∆0(X0) = ∆l1(X
l1) =

1. Finally, according to (8), dn(Xn) is computed by

dn(Xn) = 1 +
r∑

i=1

li∆Li(X
Li). (13)

The recursion (12) can be regarded as a linear recursion with variable coefficients and
does not allow one to obtain an analytical expression for dn(Xn), for an arbitrary Xn.

4. OPTIMALITY OF ALTERNATING SEQUENCES
AND FIBONACCI NUMBERS

If a sequence Xn is alternating, that is, if xi 6= xi−1 for each 2 ≤ i ≤ n, then r = n and
li = 1, for each 1 ≤ i ≤ n. The recursion (9) then never applies, whereas the recursion (10)
(i.e., (12)) then becomes the well-known Fibonacci recursion

∆n(Xn) = ∆n−1(Xn−1) + ∆n−2(Xn−2), (14)

with the initial values ∆0(X0) = ∆1(X1) = 1. Its solution can directly be expressed in terms
of the Fibonacci numbers as

∆n(Xn) = F (n + 1) =
1√
5
(αn+1 − βn+1), (15)

where, as usual, α = (1 +
√

5)/2 and β = (1−
√

5)/2.
If we further apply (8), then we obtain an explicit expression for dn(Xn) for an alternating

sequence Xn, in terms of the Fibonacci numbers.
Theorem 2: If Xn is an alternating sequence, then

dn(Xn) =
n+1∑
i=0

F (i) =
√

5 + 2√
5

αn +
√

5− 2√
5

βn − 1. (16)
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For simplicity, if Xn is an alternating sequence, then denote dn(Xn) as d̃n, whereas,
according to (15), ∆n(Xn) = F (n + 1). The optimality of alternating sequences to be proved
means that dn = d̃n or, equivalently, that d̃n is the tightest possible upper bound on ∆n(Xn)
that holds for every Xn. The main idea of the proof is to study the sequence of differences
δn(Xn) = F (n + 1) −∆n(Xn) and to prove that this sequence is positive at the point where
Xn starts to differ from an alternating sequence and nonnegative after that point. Initially, we
have δ1(X1) = δ0(X0) = 0. This is achieved by induction, by using the following two lemmas.
Lemma 5: If xn = xn−1, then δn(Xn) > 0 if δn−1(Xn−1) ≥ 0.

Proof: From (9), it follows that

δn(Xn) = δn−1(Xn−1)) + (F (n + 1)− F (n)). (17)

The claim then follows since F (n + 1) > F (n), for any n ≥ 2.
Lemma 6: If xn 6= xn−1 and xn−1 = xn−2 = · · · = xn−lr−1 6= xn−lr−1−1, then δn(Xn) ≥ 0 if
δi(Xi) ≥ 0 for each 1 ≤ i < n.

Proof: From (10) and (9), it follows that

δn(Xn) =lr−1δn−lr−1(X
n−lr−1) + δn−lr−1−1(Xn−lr−1−1) (18)

+ F (n + 1)− lr−1F (n− lr−1 + 1)− F (n− lr−1). (19)

The claim then follows since

F (n + 1) = F (lr−1 + 1)F (n− lr−1 + 1) + F (lr−1)F (n− lr−1) (20)
≥ lr−1F (n− lr−1 + 1) + F (n− lr−1) (21)

holds for any n ≥ lr−1 + 1, which itself is a consequence of the following properties of the
Fibonacci numbers: F (j+1) ≥ 1, F (j+1) ≥ j, and F (i+1) = F (j+1)F (i−j+1)+F (j)F (i−j),
for any i ≥ j ≥ 0.
Theorem 3: For an arbitrary sequence Xn,

dn(Xn) ≤ d̃n (22)
with equality iff Xn is an alternating sequence.

Proof: The proof is based on Lemmas 5 and 6 and

d̃n − dn(Xn) =
n∑

i=0

δi(Xi), (23)

which follows from (8).
If Xn is an alternating sequence, then (22) holds with equality. If Xn is not an alternating

sequence, then let j be the minimal index such that xj = xj−1, where 2 ≤ j ≤ n. It then
follows that Xj−1 is an alternating sequence, so that di(Xi) = d̃i, 1 ≤ i ≤ j − 1. For i = j,
Lemma 5 and (23) then imply that dj(Xj) < d̃j . For any j < i ≤ n, Lemmas 6 and 5 together
with (23) then imply that di(Xi) < d̃i.
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Corollary 1:

dn = d̃n <

√
5 + 2√

5
αn < 1.89443 · 1.6181n. (24)

5. ANOTHER BOUND IN TERMS OF FIBONACCI NUMBERS

In this section, we prove yet another upper bound on dn(Xn) in terms of the Fibonacci
numbers. It depends on the run-length structure, l1, l2, . . . , lr, of Xn and, when maximized
over Xn, yields another exponential upper bound on dn(Xn), which is larger than the tightest
possible upper bound dn.
Theorem 4: For an arbitrary sequence Xn,

dn(Xn) ≤
r+1∑
i=0

F (i)
r∏

i=1

li ≤
r+1∑
i=0

F (i)
(n

r

)r

(25)

with equalities if Xn is an alternating sequence.
Proof: As dn(Xn) is equal to the number of minimal decimation sequences given Xn, the

bound can be proven by analyzing the structure of minimal decimation sequences in terms of
the run lengths in Xn, l1, l2, . . . , lr. Each minimal decimation sequence C̃n can be characterized
by an r-bit sequence b1, . . . , br such that bi = 1 iff at least one bit from the ith run of Xn is
taken to the output, together with the numbers of bits taken to the output from each of the
runs such that bi = 1, where it is assumed that these bits have minimal indexes in each of
these runs. The minimality of decimation sequences implies that there are no two consecutive
0’s in b1, . . . , br, except possibly at the end, and that if bi = 0, then the number of bits taken
to the output from the (i− 1)th run is maximal possible, li−1. So, C̃n is minimal iff it can be
represented in this way.

Letting Nr denote the number of all r-bit sequences b1, . . . , br that can contain consecutive
0’s only at the end, we thus obtain

dn(Xn) ≤ Nr

r∏
i=1

li. (26)

If Xn is an alternating sequence, that is, if r = n, then C̃n is minimal iff there are no
consecutive 0’s in b1, . . . , br, except possibly at the end. Consequently, (26) then holds with
equality and reduces to dn(Xn) = Nn.

The number Nr can be expressed as
∑r

j=0 Mj , where Mj is the number of all r-bit
sequences under consideration with the additional property that j is the index of the last bit
equal to 1 (where j = 0 means that there are no 1’s at all). It follows that M0 = M1 = 1.
Letting Mj denote the set of all j-bit sequences with the jth bit equal to 1 and without
consecutive 0’s, we have Mj = |Mj |, j ≥ 1. If b1, . . . , bj ∈ Mj , j ≥ 2, then bj−1 can be equal
to 1 or 0. In the former case, we get b1, . . . , bj−1 ∈Mj−1 and in the latter case, provided that
j ≥ 3, we get b1, . . . , bj−2 ∈Mj−2. Accordingly, we have

Mj = Mj−1 + Mj−2, j ≥ 2. (27)
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Therefore, Mj = F (j + 1) are the Fibonacci numbers, so that Nr =
∑r+1

j=0 F (j). The left-
hand inequality in (25) thus follows from (26), whereas the right-hand inequality in (25) is a
consequence of (

∏r
i=1 li)1/r ≤ (

∑r
i=1 li)/r = n/r.

Corollary 2:

dn <

√
5 + 2√

5

(
eα/e

)n

< 1.89443 · 1.81347n. (28)

Proof: In view of Theorem 2 and Corollary 1, (25) implies that

dn(Xn) <

√
5 + 2√

5
αr

(n

r

)r

=
√

5 + 2√
5

(
eg(r/n)

)n

(29)

where g(γ) = γ lnα− γ ln γ, and γ = r/n. Accordingly, we have

dn <

√
5 + 2√

5
(egmax)n (30)

where gmax is the maximum of g(γ) on (0,1]. It is easy to prove that g′′ is negative, so that g
is concave and has a unique maximum reached for γ = α/e. Consequently, we get (28).
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