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ABSTRACT

The Collatz Conjecture has been vexing mathematicians for over seventy years. It is the
only mathematics problem that is comprehensible to a fourth-grader, yet has caused Paul Erdos
to say, “Mathematics is not yet ready for such a problem.” This paper divides the integers
into “pure” and “impure” numbers, where the “impure” numbers occur in the trajectories of
smaller numbers. It develops an infinite set of theorems characterizing the “impure” numbers,
and establishes bounds on their density in the integers.

1. INTRODUCTION

The Collatz conjecture, also known as the 3n + 1 problem, the Syracuse problem, the
Hailstone problem, Kakutani’s problem, Hasse’s algorithm and Ulam’s problem, is tantalizingly
simple to state and thus has seduced mathematical minds since the 1930’s. Since then, many
articles about it and its generalizations have appeared but a complete solution still evades
the mathematical community. (See Lagarias [1] and Wirsching [2]) In this paper, we allow
the Collatz sequence to lead us to dividing the integers into “pure” and “impure” numbers,
and present a theorem-schema which allows us to generate a set of theorems, each theorem
characterizing a different set of numbers as impure. The Collatz conjecture is true if and only
if it is true on the set of pure numbers.

The Collatz sequence can be stated in several ways. This paper uses a traditional formu-
lation. For n a positive integer, we define the function C by

C(n) =
{

3n + 1 n odd
n
2 n even

(1.1)

and denote its iterates Ck(n). The Collatz conjecture says that for all positive n, there exists
k such that Ck(n) = 1.
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2. PURE AND IMPURE NUMBERS

Consider the following Collatz sequence, starting with n = 3:

n 3
C(n) 10
C2(n) 5
C3(n) 16
C4(n) 8
C5(n) 4
C6(n) 2
C7(n) 1
C8(n) 4
C9(n) 2
C10(n) 1

Notice that in the above example, once one verified that the conjecture held for n = 3, it
would no longer be necessary to check n = 4, 5, 8, 10 and 16 since they have appeared in its
orbit. (One would technically never need to check even numbers anyway, but the upcoming
classification of integers has interest beyond this application)
Definition 2.1: A positive integer n is pure if its entire tree of preimages under the Collatz
function C are greater than or equal to it; otherwise n is impure. Equivalently, a positive
integer n is impure if there exists r < n such that Ck(r) = n for some k.

The complexity of the 3x + 1 problem has to do with the iterates of the Collatz map
increasing or decreasing in a complicated way. The notion of “purity” reflects certain properties
of this dynamic, in focusing on numbers which are minimal in their entire tree of inverse
iterates. This justifies studying the notion of “purity” for its own sake.

We start with a trivial theorem on pure numbers:
Theorem 2.1: If n ≡ 0 (mod 3), then n is pure.

Proof: If n ≡ 0 (mod 3) then its preimages are all of the form 2kn.
We will show that if n ≡ 2 (mod 3) then n is impure, reducing our field of study to n ≡ 1

(mod 3). Our analysis will center on proving certain classes of numbers to be impure, leaving
the pure numbers to be the ones left over.

This paper will develop a theorem schema to generate sufficiency theorems to show a
number is impure, such as the ones below:
Theorem 2.2: If n ≡ 2 (mod 3) then n is impure.

The remaining case, n ≡ 1 (mod 3), is not so simple.
Theorem 2.3: Let n ≡ 1 (mod 3).

(1) If n ≡ 4 (mod 6) then n is impure.
(2) If n ≡ 4 (mod 9) then n is impure.
(3) If n ≡ 10 (mod 81) then n is impure.
These theorems will be developed by applying an algorithm to certain kinds of {0, 1}

vectors, called worthwhile vectors. To define worthwhile vectors, we use the following function:
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Definition 2: Let
→
v = (v0, v1, . . . , vm−1) be a {0, 1} m-vector. Let |→v | =

∑m−1
i=0 vi. We define

the real-valued function f by

f
(
→
v
)

=
3|
→
v |

2
(
n−|

→
v |
) . (2.1)

Definition 3: Let
→
v = (v0, v1, . . . , vm−1) be a {0, 1} m-vector. We say that

→
v is worthwhile

if:
1. It is successor-free (i.e. there is no k for which vk = vk+1 = 1)
2. v0 = 1
3. f(

→
v ) > 1 (equivalently: |→v | > m ln 2

ln 6 ).
Before developing the algorithm, we show its results for all worthwhile {0, 1} vectors with

m ≤ 5.

Vector f(
→
v ) Resultant sufficiency theorem

1 3 n ≡ 4 (mod 6) is impure (Theorem 2.2)
10 3/2 n ≡ 2 (mod 3) is impure (Theorem 2.1)
100 3/4 sequence not worthwhile
101 9/2 n ≡ 16 (mod 18) is impure (weaker form of Theorem 2.2)
1000 3/8 sequence not worthwhile
1001 9/4 n ≡ 4 (mod 18) is impure (weaker form of Theorem 2.2)
1010 9/4 n ≡ 8 (mod 9) is impure (weaker form of Theorem 2.1)
10000 3/16 sequence not worthwhile
10001 9/8 n ≡ 16 (mod 18) is impure (weaker form of Theorem 2.2)
10010 9/8 n ≡ 2 (mod 9) is impure (weaker form of Theorem 2.1)
10100 9/8 n ≡ 4 (mod 9) is impure (Theorem 2.3)
10101 27/4 n ≡ 52 (mod 54) is impure (weaker form of Theorem 2.2)

3. THE THEOREM GENERATING ALGORITHM

We now present the algorithm by which a worthwhile vector is transformed into a impure-
number sufficiency theorem. We let

→
v = (v0, v1, . . . , vm−1) be a {0, 1} worthwhile m-vector.

Step 0: Set a0 = 2, b0 = 1
Step i: (This step is iterated from i = 1 to m)

Case 1: If ai−1 is even and bi−1 is even
If vi−1 then the sequence was not worthwhile.
If vi−1 = 0 then set ai = ai−1

2 and bi = bi−1
2 .

Case 2: If ai−1 is even and bi−1 is odd
If vi−1 = 1 then set ai = 3ai−1 and bi = 3bi−1 + 1.
If vi−1 = 0 then the sequence was not worthwhile.

Case 3: If ai−1 is odd and bi−1 is even
If vi−1 = 1 then set ai = 6ai−1 and bi = 3ai−1 + 3bi−1 + 1.
If vi−1 = 0 then set ai = ai−1 and bi = bi−1

2 .
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Case 4: If ai−1 is odd and bi−1 is odd
If vi−1 = 1 then set ai = 6ai−1 and bi = 3bi−1 + 1.
If vi−1 = 0 then set ai = ai−1 and bi = ai−1+bi−1

2 .
After the algorithm is completed, we wind up with a pair (am, bm) which are used in the

following theorem:
Theorem 3.1: (Sufficiency schema) Let

→
v = (v0, v1, . . . , vm−1) be a {0, 1} worthwhile

m-vector. Let (am, bm) be the result of applying the above algorithm to
→
v . Then it is true

that if n ≡ bm (mod am) then n is impure.
Proof: For a given integer n, define a sequence of 0-1 valued quantities xi(n) by

Ci(n) ≡ xi(n) (mod 2) (3.1)

as in [1]. It can be shown that if
→
v is a successor-free {0, 1} m vector, then

→
v =

(x0(n), x1(n), . . . , xm−1(n)) for some n. (This can be shown by applying Theorem B in [1], and
using the fact that a (. . . , 1, 0, . . . ) in the traditional formulation of the conjecture corresponds
to a (. . . , 1, . . . ) in Lagarias’.)

We now can prove the Sufficiency Schema theorem. We start with a successor-free {0, 1}
m-vector

→
v , and generate its associated n. We first show that Cm(n) ≡ bm (mod am). Then

we show that the process is reversible, that if q ≡ bm (mod am), where am and bm are the
result of applying the algorithm to a vector

→
v , then there is a p such that Cm(p) ≡ q, and

→
v = (x0(p), x1(p), . . . , xm−1(p)). Finally, we show that if

→
v is a worthwhile vector, then it is

true that p < q and thus q is impure.
Lemma 3.1: If

→
v = (x0(p), x1(p), . . . , xm−1(p)) for some p, and x0(p) = 1, then q = Cm(p) ≡

bm (mod am).
Proof: Since x0(p) = 1 we know that p is odd. So we can write

p = a0k0 + b0 (3.2)

where a0 = 2, b0 = 1 and k0 is a nonnegative constant. Now

C1(p) = 3p + 1 = 6k0 + 4. (3.3)

So we can say that a1 = 6 and b1 = 4. We can also set k1 = k0 to write

C1(p) = a1k1 + b1. (3.4)

We now iterate this procedure. Note that if vi = 1 then Ci+1(p) = 3Ci(p)+1 and if vi = 0
then Ci+1(p) = Ci(p)

2 .
Case 1: If ai is even and bi is even
In this case, aiki+bi is always even, and thus Ci(p) = ai

2 ki+ bi

2 . We set ai+1 = ai

2 , bi+1 = bi

2
and ki+1 = ki to obtain Ci+1(p) = ai+1ki+1 + bi+1

Case 2: If ai is even and bi is odd
In this case, aiki + bi is always odd, and thus Ci(p) = 3aiki + 3bi + 1. We set ai+1 =

3ai, bi+1 = 3bi + 1 and ki+1 = ki to obtain Ci+1(p) = ai+1ki+1 + bi+1

Case 3: If ai is odd and bi is even
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Here, aiki + bi may be odd or even, depending on the parity of ki. If vi = 0 then ki is
even and we set ki = 2ki+1. We now have Ci+1(p) = 2aiki+1+bi

2 = aiki+1 + bi

2 . We set
ai+1 = ai, bi+1 = bi

2 to obtain Ci+1(p) = ai+1ki+1 + bi+1.
If vi = 1 then ki is odd and we set ki = 2ki+1 + 1. We now have Ci+1(p) = 3(ai(2ki+1 +

1) + bi) + 1. We set ai+1 = 6ai, bi+1 = 3ai + 3bi + 1 to obtain Ci+1(p) = ai+1ki+1 + bi+1.
Case 4: If ai is odd and bi is odd
Here, aiki + bi may be odd or even, depending on the parity of ki. If vi = 0 then ki is odd

and we set ki = 2ki+1 + 1. Applying the same process as above, we obtain ai+1 = ai, bi+1 =
ai+bi

2 such that Ci+1(p) = ai+1ki+1 + bi+1.
If vi = 1 then ki is even and we set ki = 2ki+1. In this case we obtain ai+1 = 6ai, bi+1 =

3bi + 1 such that Ci+1(p) = ai+1ki+1 + bi+1.
After the algorithm is completed, we have that q = Cm(p) = amkm + bm and thus that

q ≡ bm (mod am).
Lemma 3.2: If q ≡ bm (mod am), where am and bm are the results of applying the algorithm
to a vector

→
v , then there is a p such that Cm(p) = q and

→
v = (x0(p), x1(p), . . . , xm−1(p)).

Proof: For a given
→
v , we can think of kn as a function of k0, obtained as a composition

of the functions 2x, 2x + 1 and the identity function. This is an invertible function. Thus we
can write q = anK + bn for some K, and apply the inverse function to obtain a k0 such that
K = kn. Now let p = 2k0 + 1. Applying the algorithm gives Cm(p) = q.

We now have that, for any {0, 1} successor-free vector
→
v (with v0 = 1) if q is the appropri-

ate parity, it appears as part of a number p’s orbit. We now need show that if
→
v is worthwhile,

then p < q.
Lemma 3.3: Let

→
v = (x0(p), x1(p), . . . , xm−1(p)) for some odd p. Then Cm(p) is given

explicitly by

Cm(p) =
(

2
(
m−|

→
v |
))−1

(
p3|

→
v | +

m−1∑
k=0

vk2
(
k−
∑k−1

i=0
vi

)
3
(∑m−1

i=k+1
vi

))
. (3.5)

Notice that the expressions immediately to the right of the 2s and the 3s are their expo-
nents, not multiplicands.

Proof: By induction on n.
If n = 2, then

→
v = (1, 0) and the result follows.

(
C2(p) = 3p+1

2

)
.

Assume true for n, and consider n + 1. If
→
v n+1 = 0, we want to leave the numerator of

equation (3.5) unchanged, and to increase the denominator by a factor of 2. It is easy to check
that this occurs.

If
→
v n+1 = 0, we want to leave the denominator of equation (3.5) unchanged. This is also

easy to check.

In going from x to 3x+1, we want to multiply the numerator by 3, and then add 2
(
m−|

→
v |
)

to it. We see that the summations that appear as exponents of 3 are increased by one. A new

non-zero term is added at the end, 2
(
m−|

→
v |
)
.

Lemma 3.4: Let
→
v be a worthwhile {0, 1} m vector. Let p be an integer such that xi(p) = vi.

If q = Cm(p) then p < q.
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Proof: By the previous lemma, we have an explicit formula for q in terms of p. This
formula could be written q = kp + b where b is always positive and k is given explicitly by

k =
(

2
(
m−|

→
v |
))−1 (

3|
→
v |
)

. (3.6)

So if k > 1, then p < q.
As previously stated, Lemmas 3.1 - 3.4 prove the sufficiency theorem, Theorem 3.1.
We have shown that we can create sufficiency theorems, such as Theorems 2.2 - 2.3, that

characterize certain classes of numbers as impure. We now show the converse, that every
impure number can be shown to be impure by one of the theorems generated by the scheme.
Theorem 3.2: For every impure number n there is a sufficiency theorem, generated by a
worthwhile vector, that shows n to be impure.

Proof: If n is impure, there is a number p < n with n = Ck(p). Let
→
v be the associated

{0, 1} vector and apply the algorithm to
→
v .

4. OBSERVATIONS AND EXTENSIONS

The theorems above dealt with branding certain numbers as impure. Is it possible to
characterize the pure numbers? We can nicely summarize the findings of Theorems 2.1, 2.2,
2.3 (1) and 2.3 (2) in the following table:

n ≡ 0 (mod 18) n is pure
n ≡ 1 (mod 18) n may be pure or impure
n ≡ 2 (mod 18) n is impure
n ≡ 3 (mod 18) n is pure
n ≡ 4 (mod 18) n is impure
n ≡ 5 (mod 18) n is impure
n ≡ 6 (mod 18) n is pure
n ≡ 7 (mod 18) n may be pure or impure
n ≡ 8 (mod 18) n is impure
n ≡ 9 (mod 18) n is pure
n ≡ 10 (mod 18) n is impure
n ≡ 11 (mod 18) n is impure
n ≡ 12 (mod 18) n is pure
n ≡ 13 (mod 18) n is impure
n ≡ 14 (mod 18) n is impure
n ≡ 15 (mod 18) n is pure
n ≡ 16 (mod 18) n is impure
n ≡ 17 (mod 18) n is impure

The inclusion of Theorem 2.3 (3) would not add a lot to this table; it would take the cases
where n is congruent to 1 or 7 mod 18, and classify as impure those numbers that are also 10
modulo 81, i.e. adding information to the special case of n ≡ 91 (mod 162).
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Observation 4.1: Theorems 2.1 - 2.3 cover all of the impure numbers from 1 - 500 except
for 61, 205, 325 and 433. Surprisingly, the shortest vector that generates the theorem to cover
61 has length 85. This is because 61 appears very late in the orbit of 27, and so the vector
linking 27 to 61 is very long.
Observation 4.2: If

→
v is a worthwhile m vector, the condition |→v | > m ln 2

ln 6 ≈ 0.387m gives a

lower bound on |→v |. Similarly, the condition that
→
v is successor-free means that |→v | < m+1

2 ≈
0.5m, which gives an upper bound on |→v |. So, for a given large m, the set of worthwhile m

vectors have a relatively narrow range of admissible sizes: 0.386m < |→v | < m+1
2 .

We can also categorize the theorems that result from the generating algorithm.
Theorem 4.2: If a sufficiency theorem (b mod a is impure) comes from a worthwhile m vector
→
v , with |→v | = k, then a = 3k if

→
v m−1 = 0, and a = 2(3k) if

→
v m−1 = 1.

Proof: At step i, if
→
v i = 1 then a is multiplied by 3 or 6. If it is multiplied by 6, b will

be divided by 2 if there is a next iteration.
Observation 4.3: If the Collatz Conjecture is true, then there is an algorithm to decide if a
given integer n is pure. All we need do is test every number n′ < n, to see if n appears in the
trajectory of n′. These tests are guaranteed to terminate if the conjecture is true.

5. THE DENSITY OF IMPURE NUMBERS IN R

Let I be the set of impure numbers. The asymptotic density of I is given by

d = lim
N→∞

1
N
| {n : n ∈ I, 1 ≤ n ≤ N} . (5.1)

Clearly, if this limit exists, then d ≤ 2
3 , by Theorem 4.1.

Theorem 5.1: There exists a set of sufficiency theorems (b mod a is impure) generated by
the algorithm, that induce a partition P = {P1, P2, . . . } of I, where Pi are sets of the form
{n|n ≡ b (mod k), n > 0, k = 3l or 2 · 3l for some l > 0}.

Proof: We construct P as follows. The first element is P1 = {2, 5, 8, 11, 14, . . . }, corre-
sponding to theorem 2.2.

Assume that P is not yet a partition of I. Let i be the smallest element of I not covered.
Theorem 3.2 guarantees a sufficiency theorem, i (mod a), covering i. If {i, i + a, i + 2a, . . . } is
disjoint from the elements of P , then let {i, i + a, i + 2a, . . . } be the next element of P and i
(mod a).

If {i, i + a, i + 2a, . . . } is not disjoint from all the elements of P , then let k be the lcm of
the modulii of the elements of the partion that intersect it. (Theorem 4.2 guarantees that k
will be of the form 2r3s, where r ∈ {0, 1}). Now the subsequence {i, i+ka, i+2ka, . . . } covers
i, and is disjoint from all the elements of P .
Corollary 5.1: The set P of pure numbers and the set I = N\P of impure numbers each
have a natural density.

Proof: We will show d limN→∞
1
N |{n : n ∈ I, 1 ≤ n ≤ N}| exists. This will be the density

of the impure numbers, and the density of the pure numbers will be 1− d.
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Let Pi = {bi, bi + ai, bi + 2ai, . . . }. Then limN→∞
1
N |{n : n ∈ Pi, 1 ≤ n ≤ N} = 1

ai
|. We

thus obtain that d =
∑∞

i=1
1
ai

. Now the sequence of partial sums of this series is increasing
and bounded by 2

3 (Theorem 2.1), therefore d exists and is less than or equal to 2
3 .

Observation 5.1: 91
162 < d < 2

3 .
The following table shows the first four elements of the partition, and hence the first four

partial sums of d.

Partition Sufficiency Theorem Partial Sum
P1 = {2, 5, 8, 11, 14, . . . } n ≡ 2 (mod 3) is impure 1

3

P2 = {4, 10, 16, 22, 28, . . . } n ≡ 4 (mod 6) is impure 1
3 + 1

6 = 1
2

P3 = {13, 31, 49, 67, 85, . . . } n ≡ 13 (mod 18) is impure 1
3 + 1

6 + 1
18 = 5

9

P4 = {91, 253, 415, 577, . . . } n ≡ 91 (mod 162) is impure 1
3 + 1

6 + 1
18 + 1

162 = 91
162

Computer analysis of the first million positive integers gives a lower bound on d of
0.567636. For comparison, 91

162 ≈ 0.561728.
The following is a list of all the pure numbers, not congruent to 0 mod 3, less than 1000:

1 7 19 25 37 43 55 73 79 97 109 115 127
133 145 151 163 169 181 187 199 217 223 235 241 259
271 277 289 295 307 313 331 343 349 361 367 379 385
397 403 421 439 451 457 469 475 487 493 505 511 523
529 541 547 559 565 583 595 601 613 619 631 649 655
667 673 685 691 703 709 721 727 745 757 763 775 781
793 799 811 817 829 835 847 853 865 871 883 889 907
925 937 943 955 961 973 979 997

Notice that, as predicted earlier, all the pure numbers that are not congruent to 0 mod 3
are congruent to 1 or 7 mod 18.
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