THREE NEW EXTRACTION FORMULAE

Wai-Fong Chuan
Department of Applied Mathematics, Chung-Yuan Christian University
Chung Li, Taiwan 32023, R.O.C.
e-mail: wfc@math2.math.nthu.edu.tw

Fei Yu

Yuanpei University of Science and Technology, 306 Yuanpei St., Hsinchu City, Taiwan 30092, R.O.C.
e-mail: aypyufei@mail.yust.edu.tw
(Submitted July 2005-Final Revision October 2006)

Abstract

Let α be an irrational number between 0 and 1 . Let a and b be distinct letters. Define $d_{n}=a$ (resp., b) if $[(n+1) \alpha]-[n \alpha]=0$ (resp., 1), $n \in \mathbb{Z}$. Define x to be the two-way infinite word whose $n^{t h}$ letter is $d_{n}, n \in \mathbb{Z}$. Define $x_{m}=d_{m+1} d_{m+2} \cdots, m \in \mathbb{Z}, s_{0}=\varepsilon$, the empty word, $s_{m}=d_{1} d_{2} \cdots d_{m}, m \geq 1$. The problem of determining the extracted word $\left\langle x_{m}, x_{0}\right\rangle$ obtained by aligning x_{m} with x_{0} was originally posed by D.R. Hofstadter in 1963. Known extraction formulae include $\left\langle x_{m}, x_{0}\right\rangle(m>0)$ (by R.J. Hendel and S.A. Monteferrante 1994), $\left\langle x_{0}, x_{m}\right\rangle(m \geq 1)$ (by W. Chuan 1995) for $\alpha=(\sqrt{5}-1) / 2$ and partial results for $\left\langle x_{m}, x_{0}\right\rangle(m \geq 1)$ (by R.J. Hendel 1996) and all cases of $\left\langle x_{0}, x_{m}\right\rangle(m \geq 0)$ (by W. Chuan and F. Yu 2000) for $\alpha=\sqrt{2}-1$. In this short note, we establish the following three new extraction formulae for $\alpha=(\sqrt{5}-1) / 2$: $$
\begin{aligned} & \left\langle x_{m}, x_{-2}\right\rangle=x_{m}(m>-2) \\ & \left\langle x_{m}, x_{-2}\right\rangle=R\left(s_{-m-2}\right)(m \leq-2) \\ & \left\langle x_{0}, x_{-m}\right\rangle=\left\{\begin{array}{l} x_{m-2}(m>1) \\ b x_{0} \neq x_{-1}(m=1) \end{array}\right. \end{aligned}
$$ which involve x_{m}, where $m<0$. We also show that the first formula is equivalent to the formula proved by Hendel and Monteferrante.

\section*{1. INTRODUCTION}

Throughout this paper, we consider only words over the alphabet $\{a, b\}$ and we adopt notations from $[3,6,7,8]$. Let ε denote the empty word. For any word $w=a_{1} a_{2} \cdots a_{n}$, where $n \geq 1, a_{i} \in\{a, b\}, 1 \leq i \leq n$, define the reversal $R(w)$ and the length $|w|$ of w by $R(w)=$ $a_{n} \cdots a_{2} a_{1},|w|=n, R(\varepsilon)=\varepsilon$, and $|\varepsilon|=0$. A word w is said to be a palindrome if $R(w)=w$. If w, w_{1}, w_{2}, \cdots are words, products, powers are defined as usual by $w^{0}=\varepsilon, w^{1}=w, w^{n+1}$ $=w^{n} w, n \geq 2, \prod_{i=1}^{\infty} w_{i}=w_{1} \prod_{i=2}^{\infty} w_{i}$. A nonempty word u is said to be a prefix (resp., suffix) of w if there exists a nonempty word x such that $w=u x$ (resp., $w=x u$).

Let α be an irrational number between 0 and 1 . Define $d_{n}=a($ resp., $b)$ if $[(n+1) \alpha]-[n \alpha]=$ 0 (resp., 1), $n \in \mathbb{Z}$. Define $x=x(\alpha)$ to be the two-way infinite word whose $n^{\text {th }}$ letter is

$d_{n}, n \in \mathbb{Z}$. Define $s_{0}=\varepsilon, s_{m}=d_{1} d_{2} \cdots d_{m}, m \geq 1, x_{m}=d_{m+1} d_{m+2} \cdots, m \in \mathbb{Z}$. Each x_{m} is called a suffix of x. x_{0} is called the characteristic word of α. Clearly, $x_{0}=s_{m} x_{m}, m \geq 0$. For $\alpha=(\sqrt{5}-1) / 2$, the word x_{0} (resp., x) is the golden sequence (resp., two-way infinite golden sequence) (see [11]). x_{0} is also called the infinite Fibonacci word.

Originally, Hofstadter [9] formulated the concept of aligning x_{m} with $x_{0}, m \geq 1$ (see also $[3,6,7,8]$). The idea is to try to match each term (letter) in x_{0} with a term in x_{m}, beginning at the first term of x_{m}. After a term in x_{0} has been matched with a term in x_{m}, one looks for the earliest match to the next term in x_{0}. Those terms in x_{m} that are skipped over from the extracted word $\left\langle x_{m}, x_{0}\right\rangle$. For example, when $\alpha=(\sqrt{5}-1) / 2$ and $m=4$,

Here we say that x_{m} aligns (with) x_{0} with extraction $\left\langle x_{m}, x_{0}\right\rangle$. The word x_{0} is called the aligned word. The relationship (1.1) is an alignment. Hendel and Monteferrante [8] were the first to provide a rigorous definition of alignment of finite words. Hendel [7] was the first to introduce the functional notation $\left\langle x_{m}, x_{0}\right\rangle$. The original notation for $\langle u, v\rangle=w$ was $u \supset v ; w$. In [9], Hofstadter conjectured that $\left\langle x_{m}, x_{0}\right\rangle=x_{m-2}$, for $m \geq 2$. Hendel and Monteferrante [8] observed that this was not always the case, and for $\alpha=(\sqrt{5}-1) / 2$, they successfully established a modified formula for $\left\langle x_{m}, x_{0}\right\rangle$. In order to state their result, we need to define the notation m^{*}.

Lemma A:

(a) (see $[2,10])$ Each positive integer m has a unique representation as $m=\sum_{i=1}^{n} r_{i} F_{i+1}$, where

$$
\begin{equation*}
r_{i} \in\{0,1\}, r_{i}+r_{i+1} \geq 1,1 \leq i \leq n-1, \quad \text { and } r_{n}=1 . \tag{1.2}
\end{equation*}
$$

(This representation of m is called the maximal representation of m.)
(b) (see $[1,10]$) Each positive integer m can be expressed uniquely as $m=\sum_{i=1}^{n} r_{i} F_{i+1}$, where $r_{n}=1, r_{i} \in\{0,1\}$, and $r_{i}=0$ whenever $r_{i+1}=1,1 \leq i \leq n-1$. (This result is known as Zeckendorf's theorem, and this representation of m is called the minimal representation or Zeckendorf representation of m.)
If m is a positive integer and $m=\sum_{i=1}^{n} r_{i} F_{i+1}$ is the minimal representation of m given by part (b) of Lemma A, define a binary string $m^{*}=r_{1} r_{2} \cdots r_{n}$. Define $0^{*}=\lambda$, the empty binary string. Let

$$
\begin{align*}
M=\left\{m \in \mathbb{Z}_{+}: m^{*}=\right. & 10^{2 k-1} 1 s \text { for some } k \in \mathbb{Z}_{+} \\
& \text {and some binary string } s\} . \tag{1.3}
\end{align*}
$$

The modified formula for $\left\langle x_{m}, x_{0}\right\rangle$, proved by Hendel and Monteferrante [8] for $\alpha=$ $(\sqrt{5}-1) / 2$ is as follows.
Theorem B: For $m \geq 2$,

$$
\left\langle x_{m}, x_{0}\right\rangle= \begin{cases}x_{m-2}, & \text { if } m \notin M \tag{1.4}\\ a x_{m-1} \neq x_{m-2}, & \text { if } m \in M\end{cases}
$$

The extractions $\left\langle x_{0}, x_{n}\right\rangle$ and $\left\langle x_{m}, x_{n}\right\rangle$, where $m, n \geq 1$, were first considered by Chuan [3] who proved the following formula for $\alpha=(\sqrt{5}-1) / 2$.
Theorem C: $\left\langle x_{0}, x_{n}\right\rangle=R\left(s_{n}\right), n \geq 1$.
In [3], Chuan also proved that

$$
\begin{align*}
& \left\langle x_{m}, x_{n}\right\rangle \text { differs from } x_{m-n-2} \text { (if } m>n \geq 0 \text {) or from } \\
& R\left(s_{n-m}\right) \text { (if } n>m \geq 0 \text {) by at most the first letter. } \tag{1.6}
\end{align*}
$$

For $\alpha=\sqrt{2}-1$, Hendel proved some results for $\left\langle x_{m}, x_{0}\right\rangle$ and $\left\langle x_{0}, x_{m}\right\rangle, m \geq 1$ (see[7]). Chuan and Yu introduced the subtraction rule for exponents, which is equivalent to the equation $\left\langle x_{0}, x_{m}\right\rangle=R\left(s_{m}\right), m \geq 0$ (see [6]). In this short note, we extend the extraction problem for $\alpha=(\sqrt{5}-1) / 2$ to include x_{m}, where $m<0$.

The new extraction formulae are
Theorem 1.1: $\left\langle x_{m}, x_{-2}\right\rangle=x_{m}, m>-2$.
Theorem 1.2: $\left\langle x_{m}, x_{-2}\right\rangle=R\left(s_{-m-2}\right)$, for $m \leq-2$.
Theorem 1.3: $\left\langle x_{0}, x_{-m}\right\rangle=x_{m-2}, m \geq 2$,

$$
\begin{equation*}
\left\langle x_{0}, x_{-1}\right\rangle=b x_{0} \neq x_{-1} . \tag{1.8}
\end{equation*}
$$

We remark that Theorem 1.3 directly extends Theorem C; Theorem 1.2 clearly extends Theorem B to negative m; in Theorem 3.4 below, we show that Theorem B and Theorem 1.1 are equivalent. It is remarkable that the extracted words obtained in Theorem 1.1 and 1.2 are always suffixes and reversals of prefixes of x respectively. The methods used in this paper, can be used to generalize Theorems 1.1-1.3 to the case $\alpha=\sqrt{2}-1$.

We first state some known results that will be used later. Define a sequence $\left\{w_{n}\right\}$ of words by

$$
w_{1}=a, w_{2}=b, w_{n}=w_{n-2} w_{n-1}(n \geq 3)
$$

Clearly

$$
\begin{equation*}
\left|w_{n}\right|=F_{n}, \text { for } n \geq 1 \tag{1.11}
\end{equation*}
$$

Lemma D:

(a) (see Lemma 3.10 and Corollary 3.8 of [5], [8]) Let $m \geq 0$. If $m=\sum_{i=1}^{n} r_{i} F_{i+1}$ where $r_{i} \in\{0,1\}(1 \leq i \leq n)$, then

$$
\begin{align*}
& R\left(s_{m}\right)=w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{n+1}^{r_{n}}, \tag{1.12}\\
& x_{m}=w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{n+1}^{1-r_{n}} w_{n+2} w_{n+3} \cdots . \tag{1.13}
\end{align*}
$$

(b) (see [3])

$$
\begin{align*}
& w_{n}=w_{2}\left(w_{1} w_{2} \cdots w_{n-2}\right), \text { if } n \geq 4 \text { is even. } \tag{1.14}\\
& s_{m}=R\left(w_{n}\right) s_{m-F_{n}}, \text { if } F_{n} \leq m \leq F_{n+2}-2, n \geq 2 \tag{1.15}
\end{align*}
$$

(c) (see [8]) If u_{n}, v_{n} and e_{n} are words with $\left\langle u_{n}, v_{n}\right\rangle=e_{n}, n=1,2 \cdots$, then $\left\langle\prod u_{n}, \prod v_{n}\right\rangle=$ $\prod e_{n}$.
(d) (see [8])

$$
\begin{equation*}
\left\langle w_{n}, w_{n-1}\right\rangle=w_{n-2} \text { for } n \geq 3 . \tag{1.16}
\end{equation*}
$$

2. PROOFS OF THE MAIN THEOREMS

In order to prove the main theorems, we first use the known factorizations (1.12)-(1.14) of $R\left(s_{m}\right)$ and x_{m} to derive more factorizations of suffixes of x in terms of w_{n} 's.

Lemma 2.1:

(a) $d_{-n}=d_{n-1}(n \geq 2)$.
(b) $x_{-2}=w_{2 n} w_{2 n-1} w_{2 n} w_{2 n+1} \cdots(n \geq 1)$.
(c) $x_{-m}=R\left(s_{m-2}\right) x_{-2}(m \geq 2)$.
(d) Let $m \geq 0$. Let $n \geq 0$ be such that $F_{n+2}-1 \leq m \leq F_{n+3}-2$. Then

$$
\begin{equation*}
x_{m}=R\left(s_{k}\right) w_{n+3} w_{n+4} \cdots, \text { where } k=F_{n+4}-m-2 . \tag{2.4}
\end{equation*}
$$

Proof: Part (a) is clear. Part (b) follows from (1.13) with $m=0$, and (1.14). Part (c) follows from (2.1).
(d): The case $m=0$ is trivial. Now let $m \geq 1$. Since $F_{n+2}-1 \leq m \leq F_{n+3}-2, m=$ $\sum_{i=1}^{n} r_{i} F_{i+1}$, for some $r_{i} \in\{0,1\}(1 \leq i \leq n)$.

Clearly,

$$
F_{n+4}-2-m=\sum_{i=1}^{n+1} F_{i+1}-\sum_{i=1}^{n} r_{i} F_{i+1}=\sum_{i=1}^{n}\left(1-r_{i}\right) F_{i+1}+F_{n+2} .
$$

Therefore, by (1.12),

$$
R\left(s_{k}\right)=w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{n+1}^{1-r_{n}} w_{n+2},
$$

where $k=F_{n+4}-2-m$. Consequently, by (1.13),

$$
\begin{equation*}
x_{m}=w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{n+1}^{1-r_{n}} w_{n+2} w_{n+3} \cdots=R\left(s_{k}\right) w_{n+3} w_{n+4} \cdots \tag{2.5}
\end{equation*}
$$

Lemma 2.2: $\left\langle x_{-2}, w_{n} w_{n+1} \cdots\right\rangle=w_{n+1}$, for $n \geq 1$.
Proof: We repeatedly apply Lemma D (c) to the representation (2.2) of x_{-2}. If $n=1$, then

$$
\begin{aligned}
\left\langle x_{-2}, w_{1} w_{2} \cdots\right\rangle & =\left\langle w_{2}\left(w_{1} w_{2} \cdots\right), w_{1} w_{2} \cdots\right\rangle \\
& =\left\langle w_{2} w_{1}, w_{1}\right\rangle\left\langle w_{2} w_{3} \cdots, w_{2} w_{3} \cdots\right\rangle \\
& =w_{2} .
\end{aligned}
$$

If $n \geq 3$ is odd, then

$$
\begin{aligned}
& \left\langle x_{-2}, w_{n} w_{n+1} \cdots\right\rangle=\left\langle w_{n+1}\left(w_{n} w_{n+1} \cdots\right), w_{n} w_{n+1} \cdots\right\rangle \\
& =\left\langle w_{n+1}, w_{n}\right\rangle\left\langle w_{n} w_{n+1}, w_{n+1}\right\rangle\left\langle w_{n+2} w_{n+3} \cdots, w_{n+2} w_{n+3} \cdots\right\rangle \\
& =w_{n-1} w_{n}(\text { by }(1.16)) \\
& =w_{n+1} .
\end{aligned}
$$

If n is even, then

$$
\begin{aligned}
& \left\langle x_{-2}, w_{n} w_{n+1} \cdots\right\rangle=\left\langle w_{n}\left(w_{n-1} w_{n} \cdots\right), w_{n} w_{n+1} \cdots\right\rangle \\
& =\left\langle w_{n}, w_{n}\right\rangle\left\langle w_{n-1} w_{n}, w_{n+1}\right\rangle\left\langle w_{n+1} w_{n+2}, w_{n+2}\right\rangle\left\langle w_{n+3} w_{n+4} \cdots, w_{n+3} w_{n+4} \cdots\right\rangle \\
& =w_{n+1}(\text { by }(1.16)) . \quad \square
\end{aligned}
$$

Lemma 2.3: Let $m \geq 3$. Let $n \geq 2$ be such that either $F_{n+2} \leq m \leq F_{n+3}$ and n is even, or $F_{n+2}+1 \leq m \leq F_{n+3}-1$ and n is odd. Then

$$
\begin{equation*}
\left\langle R\left(s_{m}\right), w_{2}\left(w_{1} w_{2} \cdots w_{n}\right)\right\rangle=R\left(s_{m-F_{n+2}}\right) . \tag{2.6}
\end{equation*}
$$

Proof: We proceed by induction on n. When $n=2$ or 3 , the result clearly holds. Suppose that $k \geq 3$ and that the result holds for all $n \leq k$. Now let $n=k+1$. Let $F_{k+3} \leq m \leq F_{k+4}-1$. There are five cases to consider:
Case 1: $m=F_{k+3}$;
Case 2: $m=2 F_{k+2}$;
Case 3: $F_{k+3}+1 \leq m \leq 2 F_{k+2}-1$;
Case 4: $2 F_{k+2}+1 \leq m \leq F_{k+4}-2$;
Case 5: $m=F_{k+4}-1$.
We prove only Cases 2 and 4 . The proof of Case 1 (resp., Cases 3 and 5) is similar to Case 2 (resp., Case 4).

Proof of Case 2. $m=2 F_{k+2}$:

$$
\begin{align*}
& \left\langle R\left(s_{m}\right), w_{2}\left(w_{1} w_{2} \cdots w_{k+1}\right)\right\rangle \\
& = \begin{cases}\left\langle w_{k+2} w_{k+2}, w_{k+3}\right\rangle & \text { if } \mathrm{k} \text { is even } \\
\left\langle w_{k+2} w_{k+2}, w_{k+2} w_{k+1}\right\rangle & \text { if } \mathrm{k} \text { is odd }\end{cases} \tag{1.11}\\
& =w_{k}(\text { by }(1.16)) .
\end{align*}
$$

Proof of Case 4. $2 F_{k+2}+1 \leq m \leq F_{k+4}-2$: Since $F_{k+2}+1 \leq m-F_{k+2} \leq F_{k+3}-2$, it follows that

$$
\begin{aligned}
& \left\langle R\left(s_{m}\right), w_{2}\left(w_{1} w_{2} \cdots w_{k+1}\right)\right\rangle \\
= & \left\langle R\left(s_{m-F_{k+2}}\right), w_{2}\left(w_{1} w_{2} \cdots w_{k}\right)\right\rangle\left\langle w_{k+2}, w_{k+1}\right\rangle(\text { by }(1.15)) \\
= & R\left(s_{\left.m-F_{k+2}-F_{k+2}\right) w_{k}(\text { by the inductive hypothesis and }(1.16))}^{=}\right. \\
= & R\left(s_{m-2 F_{k+2}+F_{k}}\right)(\text { by }(1.15)) \\
= & R\left(s_{m-F_{k+3}}\right) .
\end{aligned}
$$

Therefore the result holds for $n=k+1$. This completes the proof.
Proof of Theorem 1.1: We consider $m \geq 3$. Let $F_{n+2}-1 \leq m \leq F_{n+3}-2$, where $n \geq 2$. Let $k=F_{n+4}-m-2$. Then $F_{n+2} \leq k \leq F_{n+3}-1$. There are two cases.

Case 1. $k=F_{n+2}$ and n is odd:

$$
\begin{aligned}
& \left\langle x_{m}, x_{-2}\right\rangle \\
= & \left\langle R\left(s_{k}\right), w_{2}\left(w_{1} w_{2} \cdots w_{n-1}\right)\right\rangle\left\langle w_{n+3} w_{n+4} \cdots, w_{n} w_{n+1} \cdots\right\rangle \quad(\text { by }(2.2),(2.4)) \\
= & R\left(s_{k-F_{n+1}}\right)\left\langle w_{n+3}, w_{n} w_{n+1}\right\rangle\left\langle w_{n+4}, w_{n+2} w_{n+3}\right\rangle \prod_{i=n+4}^{\infty}\left\langle w_{i+1}, w_{i}\right\rangle \quad \text { (by Lemma 2.3) } \\
= & R\left(s_{k-F_{n+1}}\right) w_{n+1} w_{n+3} w_{n+4} \cdots(\text { by (1.16)) } \\
= & R\left(s_{k}\right) w_{n+3} w_{n+4} \cdots(\text { by }(1.15)) \\
= & x_{m}(\operatorname{by}(2.4)) .
\end{aligned}
$$

Case 2. Either $F_{n+2} \leq k \leq F_{n+3}-1$ and n is even, or $F_{n+2}+1 \leq k \leq F_{n+3}-1$ and n is odd:

$$
\begin{aligned}
& \left\langle x_{m}, x_{-2}\right\rangle \\
= & \left\langle R\left(s_{k}\right), w_{2}\left(w_{1} w_{2} \cdots w_{n}\right)\right\rangle\left\langle w_{n+3} w_{n+4} \cdots, w_{n+1} w_{n+2} \cdots\right\rangle \quad(\text { by }(2.2),(2.4)) \\
= & R\left(s_{k-F_{n+2}}\right)\left\langle w_{n+3}, w_{n+1} w_{n+2}\right\rangle \prod_{i=n+3}^{\infty}\left\langle w_{i+1}, w_{i}\right\rangle \quad \text { (by Lemma 2.3) } \\
= & R\left(s_{\left.k-F_{n+2}\right)}\right) w_{n+2} w_{n+3} \cdots(\text { by }(1.16)) \\
= & R\left(s_{k}\right) w_{n+3} w_{n+4} \cdots(\text { by }(1.15)) \\
= & x_{m}(\text { by }(2.4)) .
\end{aligned}
$$

The proofs for $m=-1,0,1,2$ are almost identical to the above proof.
Proof of Theorem 1.2: We consider $m \geq 6$. Let $n \geq 2$ be such that either $F_{n+2} \leq$ $m-2 \leq F_{n+3}$ and n is even, or $F_{n+2}+1 \leq m-2 \leq F_{n+3}-1$ and n is odd. Then

$$
\begin{aligned}
& \left\langle x_{-m}, x_{-2}\right\rangle \\
= & \left\langle R\left(s_{m-2}\right), w_{2}\left(w_{1} w_{2} \cdots w_{n}\right)\right\rangle\left\langle x_{-2}, w_{n+1} w_{n+2} \cdots\right\rangle \\
& \quad(\text { by }(2.2),(2.3)) \\
= & R\left(s_{m-2-F_{n+2}}\right) w_{n+2}(\text { by Lemma } 2.3 \text { and }(2.5)) \\
= & R\left(s_{m-2}\right)(\text { by }(1.15)) .
\end{aligned}
$$

The proof for $m=2,3,4,5$ is almost identical to the above proof.
Finally, we use the following lemma to prove Theorem 1.3 (see [6] for a similar lemma for the case $\alpha=\sqrt{2}-1$).
Lemma 2.4 (Subtraction rule of exponents): Let $n \geq 1$. If $r_{1} r_{2} \cdots r_{n}$ is a string such that (1.2) holds then

$$
\begin{equation*}
\left\langle w_{2} w_{3} \cdots w_{n+1}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{n+1}^{r_{n}}\right\rangle=w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{n+1}^{1-r_{n}} . \tag{2.7}
\end{equation*}
$$

Proof: We proceed by induction on n. When $n=1,2,3,4$, the result clearly holds. Suppose that $k \geq 4$ and that the result holds for $n \leq k$. Now let $n=k+1$. Let $r_{1} r_{2} \cdots r_{n}$ be a string satisfying (1.2). There are two cases to consider:

Case 1: $r_{1} r_{2} \cdots r_{k+1}=r_{1} r_{2} \cdots r_{k-1} 11:$

$$
\begin{aligned}
& \left\langle w_{2} w_{3} \cdots w_{k+2}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{k+2}^{r_{k+1}}\right\rangle \\
= & \left\langle w_{2} w_{3} \cdots w_{k+1}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{k+1}^{r_{k}}\right\rangle\left\langle w_{k+2}, w_{k+2}\right\rangle \\
= & w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{k+1}^{1-r_{k}} \text { (by the inductive hypothesis) } \\
= & w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{k+2}^{1-r_{k+1}} .
\end{aligned}
$$

Case 2: $r_{1} r_{2} \cdots r_{k+1}=r_{1} r_{2} \cdots r_{k-2} 101:$

$$
\begin{aligned}
& \left\langle w_{2} w_{3} \cdots w_{k+2}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{k+2}^{r_{k+1}}\right\rangle \\
= & \left\langle w_{2} w_{3} \cdots w_{k}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{k}^{r_{k-1}}\right\rangle\left\langle w_{k+1} w_{k+2}, w_{k+2}\right\rangle \\
= & w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{k}^{1-r_{k-1}} w_{k+1}
\end{aligned}
$$

(by the inductive hypothesis and (1.16))

$$
=w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{k+2}^{1-r_{k+1}}
$$

This completes the proof.
Proof of Theorem 1.3: Proof of (1.9): When $m=2$, (1.9) follows from (1.7). Now let $m>2$, and let $m-2=\sum_{i=1}^{n} r_{i} F_{i+1}$ be the maximal representation of $m-2$ given by part (a) of Lemma A. Then

$$
\begin{aligned}
& \left\langle x_{0}, x_{-m}\right\rangle \\
= & \left\langle w_{2} w_{3} \cdots w_{n+1}, R\left(s_{m-2}\right)\right\rangle\left\langle w_{n+2} w_{n+3} \cdots, x_{-2}\right\rangle(\text { by }(1.13),(2.3)) \\
= & \left\langle w_{2} w_{3} \cdots w_{n+1}, w_{2}^{r_{1}} w_{3}^{r_{2}} \cdots w_{n+1}^{r_{n}}\right\rangle\left\langle w_{n+2} w_{n+3} \cdots, x_{-2}\right\rangle(\text { by }(1.12)) \\
= & w_{2}^{1-r_{1}} w_{3}^{1-r_{2}} \cdots w_{n+1}^{1-r_{n}} w_{n+2} w_{n+3} \cdots(\text { by }(2.7),(1.7)) \\
= & x_{m-2}(\text { by }(1.13)) .
\end{aligned}
$$

This proves (1.9).
Proof of (1.10):

$$
\left\langle x_{0}, x_{-1}\right\rangle=\langle b a b, a b\rangle \prod_{i=3}^{\infty}\left\langle w_{i+1}, w_{i}\right\rangle=b w_{2} w_{3} \cdots=b x_{0} \neq x_{-1}
$$

3. EQUIVALENCE OF THEOREM B AND THEOREM 1.1

In this section, we show that Theorem B and Theorem 1.1 are equivalent.
Lemma 3.1 (see Theorem 3.1 of [4]): Let $m \geq 0$. Then the prefix of x_{m} having length 2 is $b b$ if and only if $m^{*}=01 s$ for some binary string s.
Lemma 3.2: Let M be the set defined by (1.3). Then

$$
\begin{equation*}
M=\left\{m \in \mathbb{Z}_{+}: x_{m-2}=b b x_{m}\right\} \tag{3.1}
\end{equation*}
$$

Proof: Since the sets on both sides of (3.1) do not contain 1 , we consider only $m \geq 2$. Applying Lemma 3.1 with $m-2$ in place of m, we see that

> the prefix of x_{m-2} having length 2 is $b b$
> $\Leftrightarrow(m-2)^{*}=01 s$ for some binary string s
> $\Leftrightarrow m^{*}=10^{2 k-1} 1 s^{\prime}$ for some $k \in \mathbb{Z}_{+}$and some binary string s^{\prime}
> $\Leftrightarrow m \in M$.

Lemma 3.3 (see, for example, Theorem 3.1 of [4]): The words $a a, b b b$ and $a b a b a$ are not factors of x.
Theorem 3.4: Theorem B and Theorem 1.1 are equivalent.
Proof: We prove that $(1.4) \Leftrightarrow(1.7)$.
Proof of $\mathbf{(1 . 4)} \Rightarrow \mathbf{(1 . 7)}$: Suppose that (1.4) holds. Let $m \geq-1$. By Lemma 3.3, there are four cases to consider.
Case 1: $x_{m}=b a x_{m+2}$: By (3.1), $m+2 \notin M$. Therefore, by (1.4), $\left\langle x_{m+2}, x_{0}\right\rangle=x_{m}$. Hence $\left\langle x_{m}, x_{-2}\right\rangle=\left\langle b a x_{m+2}, b a x_{0}\right\rangle=\langle b a, b a\rangle\left\langle x_{m+2}, x_{0}\right\rangle=x_{m}$.
Case 2: $x_{m}=a b a x_{m+3}$: By (3.1) and (1.4), $\left\langle x_{m+3}, x_{0}\right\rangle=x_{m+1}$. Hence $\left\langle x_{m}, x_{-2}\right\rangle=$ $\left\langle a b a x_{m+3}, b a x_{0}\right\rangle=\langle a b a, b a\rangle\left\langle x_{m+3}, x_{0}\right\rangle=a x_{m+1}=x_{m}$.
Case 3: $x_{m}=a b b a x_{m+4}$: By (3.1) and (1.4), $\left\langle x_{m+4}, x_{0}\right\rangle=x_{m+2}$. Hence $\left\langle x_{m}, x_{-2}\right\rangle=$ $\left\langle a b b a x_{m+4}, b a x_{0}\right\rangle=\langle a b b a, b a\rangle\left\langle x_{m+4}, x_{0}\right\rangle=a b x_{m+2}=x_{m}$.
Case 4: $x_{m}=b_{b a x}^{m+3}$: By (3.1) and (1.4), $\left\langle x_{m+3}, x_{0}\right\rangle=x_{m+1}$. Hence $\left\langle x_{m}, x_{-2}\right\rangle=$ $\left\langle b b a x_{m+3}, b a x_{0}\right\rangle=\langle b b a, b a\rangle\left\langle x_{m+3}, x_{0}\right\rangle=b x_{m+1}=x_{m}$.

This proves (1.7).
Proof of (1.7) \Rightarrow (1.4): Suppose that (1.7) holds. Let $m \geq 2$. By Lemma 3.3, there are four cases to consider.
Case 1: $m \notin M$ and $x_{m-2}=b a x_{m}$: By (1.7), $\left\langle x_{m-2}, x_{-2}\right\rangle=x_{m-2}$. Hence $\left\langle x_{m}, x_{0}\right\rangle=$ $\left\langle b a x_{m}, b a x_{0}\right\rangle=\left\langle x_{m-2}, x_{-2}\right\rangle=x_{m-2}$.
Case 2: $m \notin M$ and $x_{m-2}=a b a x_{m+1}=a b a b x_{m+2}: ~ \mathrm{By}(1.7),\left\langle x_{m-2}, x_{-2}\right\rangle=x_{m-2}$. Hence

$$
\begin{aligned}
\left\langle x_{m}, x_{0}\right\rangle & =\left\langle a b x_{m+2}, b x_{1}\right\rangle=a\left\langle x_{m+2}, x_{1}\right\rangle=\langle a b a, b a\rangle\left\langle b x_{m+2}, b x_{1}\right\rangle \\
& =\left\langle a b a b x_{m+2}, b a b x_{1}\right\rangle=\left\langle x_{m-2}, x_{-2}\right\rangle=x_{m-2} .
\end{aligned}
$$

Case 3. $m \notin M$ and $x_{m-2}=a b b a b a x_{m+4}$: By Lemma 3.3, ababa is not a factor of x. Hence $x_{m}=b a b a b b a x_{m+7}$. Since $x_{m}=b a x_{m+2}$, it follows from Case 1 that $\left\langle x_{m+2}, x_{0}\right\rangle=x_{m}$. Thus

$$
\begin{aligned}
\left\langle x_{m}, x_{0}\right\rangle & =\left\langle b a b a b b a x_{m+7}, b a b b a x_{5}\right\rangle=a b\left\langle x_{m+7}, x_{5}\right\rangle \\
& =a b\left\langle b a b b a x_{m+7}, b a b b a x_{5}\right\rangle=a b\left\langle x_{m+2}, x_{0}\right\rangle \\
& =a b x_{m}=x_{m-2} .
\end{aligned}
$$

Case 4. $m \notin M$ and $x_{m-2}=a b b a b b x_{m+4}=a b b a b b a b x_{m+6}:$ Since $x_{m-3}=b a x_{m-1}$, it follows from Case 1 that $\left\langle x_{m-1}, x_{0}\right\rangle=x_{m-3}$. Hence

$$
\begin{aligned}
b\left\langle x_{m+2}, x_{2}\right\rangle & =\langle b b a, b a\rangle\left\langle x_{m+2}, x_{2}\right\rangle=\left\langle b b a x_{m+2}, b a x_{2}\right\rangle \\
& =\left\langle x_{m-1}, x_{0}\right\rangle=x_{m-3}=b x_{m-2} .
\end{aligned}
$$

Thus $\left\langle x_{m}, x_{0}\right\rangle=\left\langle b a x_{m+2}, b a x_{2}\right\rangle=\left\langle x_{m+2}, x_{2}\right\rangle=x_{m-2}$.
Case 5. $m \in M$, i.e., $x_{m-2}=b b x_{m}$: Since $x_{m-1}=b a x_{m+1}$, it follows from Case 1 that $\left\langle x_{m+1}, x_{0}\right\rangle=x_{m-1}$. Hence

$$
\begin{aligned}
\left\langle x_{m}, x_{0}\right\rangle & =\left\langle a b x_{m+2}, b x_{1}\right\rangle=a\left\langle b x_{m+2}, b x_{1}\right\rangle=a\left\langle x_{m+1}, x_{0}\right\rangle \\
& =a x_{m-1} \neq x_{m-2} .
\end{aligned}
$$

This proves (1.4).

ACKNOWLEDGMENT

The authors wish to express their gratitude to the anonymous referee for valuable comments and suggestions which improved the presentation of this paper. The work of the first author was partially supported by Grant NSC 94-2115-M-033-007, the National Science Council, Republic of China.

REFERENCES

[1] J.L. Brown, Jr. "Zeckendorf's Theorem and Some Applications." The Fibonacci Quarterly 2.3 (1964): 163-168.
[2] J.L. Brown, Jr. "A New Characterization of The Fibonacci Numbers." The Fibonacci Quarterly 3.1 (1965): 1-8.
[3] W. Chuan. "Extraction Property of the Golden Sequence." The Fibonacci Quarterly 33.2 (1995): 113-122.
[4] W. Chuan. "Subwords of the Golden Sequence and the Fibonacci Words." Applications of Fibonacci Number, Volume 6: 73-84. Ed. G.E. Bergum et al. Dordrecht: Kluwer, 1996.
[5] W. Chuan. "A Representation Theorem of the Suffixes of Characteristic Sequences." Discrete Applied Math. 85 (1998): 47-57.
[6] W. Chuan and F. Yu. "Extraction Problem of the Pell Sequences." The Fibonacci Quarterly 38.5 (2000): 425-431.
[7] R.J. Hendel. "Hofstadter's Conjecture for $\alpha=\sqrt{2}-1$." Applications of Fibonacci Number, Volume 6: 173-199. Ed. G.E. Bergum et al. Dordrecht: Kluwer, 1996.
[8] R.J. Hendel and S.A. Monteferrante. "Hofstadter's Extraction Conjecture." The Fibonacci Quarterly 32.2 (1994): 98-107.
[9] D.R. Hofstadter. "Eta-Lore." First presented at the Stanford Math Club, Stanford, California, 1963.
[10] V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
[11] K. Tognetti, G. Winley, and T. van Ravenstein. "The Fibonacci Tree, Hofstadter and the Golden String." Applications of Fibonacci Number, Volume 3: 325-334. Ed. G.E. Bergum et. al. Dordrecht: Kluwer, 1990.
[12] B.A. Venkov. Elementary Number Theory. Wolters-Noordhoff, Groningen, 1970.
AMS Classification Numbers: 11B83, 68R15

※ ※

