ADDITIVE EVALUATION OF THE DIVISOR FUNCTION

John A. Ewell

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115
(Submitted February 2005-Final Revision May 2005)

Abstract

Let integers m, n be given. If $n>0$, then $d(n)$ denotes the number of positive divisors of n. If $m>0$ and $n \geq 0$, then $p_{m}(n)$ denotes the number of partitions of n into parts not exceeding m; conventionally $p_{m}(0):=1$. On the strength of two identities of Euler this paper shows that the function $d(\cdot)$ can be expressed additively in terms of the restricted partition functions $p_{m}(\cdot), m>0$.

1. INTRODUCTION

Recall that $\mathbb{P}:=\{1,2,3, \ldots\}, \mathbb{N}:=\mathbb{P} \cup\{0\}$ and $\mathbb{Z}:=\{0 \pm 1, \pm 2, \ldots\}$. Then, for each $n \in \mathbb{P}, d(n)$ denotes the number of positive divisors of n. Moreover, for each complex number x such that $|x|<1$,

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} d(n) x^{n}
$$

i.e., the left-hand side of the foregoing identity generates the sequence $d(n), n \in \mathbb{P}$. For each $(m, n) \in \mathbb{P} \times \mathbb{N}, p_{m}(n)$ denotes the number of partitions of n into parts not exceeding m; conventionally $p_{m}(0):=1$. Hence, for each complex number x such that $|x|<1$,

$$
\prod_{j=1}^{m} \frac{1}{1-x^{j}}=1+\sum_{n=1}^{\infty} p_{m}(n) x^{n}
$$

In view of the fact that $p_{1}(n)=1$ for each $n \in \mathbb{N}$, the following theorem recursively determines the sequence of restricted partition functions $p_{m}(\cdot), m \in \mathbb{P}$.
Theorem 1: For each $(m, n) \in \mathbb{P}^{2}$, with $m>1$,

$$
\begin{equation*}
p_{m}(n)=\sum_{j=0}^{[n / m]} p_{m-1}(n-j m) \tag{1}
\end{equation*}
$$

As usual, $[n / m]$ denotes the integral part of n / m. For a proof see [1, p. 223].
We are now prepared to state the main result.
Theorem 2: If for each $k \in \mathbb{P}, c(k):=\sum_{m=1}^{k} m p_{m}(k-m)$, then for each $n \in \mathbb{P}$,

$$
\begin{equation*}
d(n)=c(n)+\sum_{j \geq 1}(-1)^{j}[c(n-j(3 j-1) / 2)+c(n-j(3 j+1) / 2)], \tag{2}
\end{equation*}
$$

where conventionally $c(r):=0$ whenever $r \in \mathbb{Z}-\mathbb{P}$.
Let $n \in \mathbb{P}-\{1\}$. In elementary multiplicative number theory evaluation of $d(n)$ depends on factoring n. Specifically, we find the canonical representation of n, say

$$
n=\prod_{i=1}^{r} p_{i}^{e_{i}},
$$

and then owing to the fact that $d(\cdot)$ is multiplicative, it follows that $d(n)=\left(e_{1}+1\right)\left(e_{2}+\right.$ 1) $\cdots\left(e_{r}+1\right)$. The import of our present discussion turns on the observation that we can determine the values $d(n), n \in \mathbb{P}$, without recourse to factorization.

2. PROOF OF THEOREM 2

Our proof is based on the following two identities of Euler.

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-x^{n}\right)=1+\sum_{k=1}^{\infty}(-1)^{k}\left[x^{k(3 k-1) / 2}+x^{k(3 k+1) / 2}\right] \tag{3}\\
& \prod_{n=1}^{\infty} \frac{1}{1-a x^{n}}=1+\sum_{m=1}^{\infty} a^{m} \frac{x^{m}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{m}\right)} \tag{4}
\end{align*}
$$

Identity (3) is valid for each complex number x such that $|x|<1$, and (4) is valid for pair of complex numbers a, x such that $|a x|<1$. For proofs see [3, pp. 276-280].

Differentiate both sides of (4) with respect to a, and in the resulting identity let $a=1$ to get

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}} \prod_{1}^{\infty} \frac{1}{1-x^{n}} \\
& =\sum_{m=1}^{\infty} m \frac{x^{m}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{m}\right)} \\
& =\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} m p_{m}(n) x^{m+n} \quad(\text { Let } k=m+n .) \tag{5}\\
& =\sum_{k=1}^{\infty} x^{k} \sum_{m=1}^{k} m p_{m}(k-m) \\
& :=\sum_{k=1}^{\infty} c(k) x^{k} .
\end{align*}
$$

Now, multiply both sides of (5) by the infinite product $\Pi\left(1-x^{n}\right)$, and appeal to (3) to get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} d(n) x^{n}=\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}} \\
& =\prod_{1}^{\infty}\left(1-x^{n}\right) \sum_{k=1}^{\infty} c(k) x^{k} \\
& =\left\{1+\sum_{j=1}^{\infty}(-1)^{j}\left[x^{j(3 j-1) / 2}+x^{j(3 j+1) / 2}\right]\right\} \sum_{k=1}^{\infty} c(k) x^{k} \\
& =\sum_{n=1}^{\infty} c(n) x^{n}+\sum_{n=1}^{\infty} x^{n}\left\{\sum_{j \geq 1}(-1)^{j}[c(n-j(3 j-1) / 2)+c(n-j(3 j+1) / 2)]\right\}
\end{aligned}
$$

Equating coefficients of $x^{n}, n \in \mathbb{P}$, we thus prove our theorem.
Corollary: For each $n \in \mathbb{P}$,

$$
\begin{equation*}
\sum_{k=0}^{n-1} d(n-k) p(k)=\sum_{m=1}^{n} m p_{m}(n-m) \tag{6}
\end{equation*}
$$

where $p(\cdot)$ denotes the unrestricted partition function, and conventionally $p(0):=1$.
Fortunately, H. Gupta, C.E. Gwyther and J.C.P. Miller [2] have compiled an extensive table of the values $p_{m}(n),(m, n) \in \mathbb{P} \times \mathbb{N}$. Construction of the following brief table of values for the coefficients $c(n):=\sum_{m=1}^{n} m p_{m}(n-m), n \in \mathbb{P}$, relies heavily on their work.

n	$c(n)$	n	$c(n)$
1	1	13	556
2	3	14	780
3	6	15	1068
4	12	16	1463
5	20	17	1965
6	35	18	2644
7	54	19	3498
8	86	20	4630
9	128	21	6052
10	192	22	7899
11	275	23	10206
12	399	24	13174
TABLE 1			

On the strength of the foregoing table and Theorem 2 we then construct a brief table of values of the divisor function $d(\cdot)$.

n	$d(n)$	n	$d(n)$
1	1	13	2
2	2	14	4
3	2	15	4
4	3	16	5
5	2	17	2
6	4	18	6
7	2	19	2
8	4	20	6
9	3	21	4
10	4	22	4
11	2	23	2
12	6	24	8

TABLE 2
For the sake of concreteness let us supply some detail for $d(23)$ and $d(24)$.

$$
\begin{aligned}
d(23)= & c(23)-c(23-1)-c(23-2)+c(23-5)+c(23-7) \\
& -c(23-12)-c(23-15)+c(23-22) \\
= & c(23)+c(18)+c(16)+c(1)-c(22)-c(21)-c(11)-c(8) \\
= & 10206+2644+1463+1-7899-6052-275-86 \\
= & 14314-14312=2, \\
d(24)= & c(24)-c(24-1)-c(24-2)+c(24-5)+c(24-7) \\
& -c(24-12)-c(24-15)+c(24-22) \\
= & c(24)+c(19)+c(17)+c(2)-c(23)-c(22)-c(12)-c(9) \\
= & 13174+3498+1965+3-10206-7899-399-128 \\
= & 18640-18632=8 .
\end{aligned}
$$

REFERENCES

[1] E. Grosswald. Topics from the Theory of Numbers, 1st ed., MacMillan Company, New York, 1966.
[2] H. Gupta, G.E. Gwyther and J.C.P. Miller. Tables of Partitions, University Press Cambridge, 1962.
[3] G. H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers, Clarendon Press, Oxford (1960), 4th ed.

AMS Classification Numbers: 11E25, 05A20

国

