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ABSTRACT

Let integers m,n be given. If n > 0, then d(n) denotes the number of positive divisors
of n. If m > 0 and n ≥ 0, then pm(n) denotes the number of partitions of n into parts not
exceeding m; conventionally pm(0) := 1. On the strength of two identities of Euler this paper
shows that the function d(·) can be expressed additively in terms of the restricted partition
functions pm(·), m > 0.

1. INTRODUCTION

Recall that P := {1, 2, 3, . . . }, N := P ∪ {0} and Z := {0 ± 1,±2, . . . }. Then, for each
n ∈ P, d(n) denotes the number of positive divisors of n. Moreover, for each complex number
x such that | x |< 1,

∞∑
n=1

xn

1− xn
=

∞∑
n=1

d(n)xn,

i.e., the left-hand side of the foregoing identity generates the sequence d(n), n ∈ P. For each
(m,n) ∈ P × N, pm(n) denotes the number of partitions of n into parts not exceeding m;
conventionally pm(0) := 1. Hence, for each complex number x such that | x |< 1,

m∏
j=1

1
1− xj

= 1 +
∞∑

n=1

pm(n)xn.

In view of the fact that p1(n) = 1 for each n ∈ N, the following theorem recursively determines
the sequence of restricted partition functions pm(·), m ∈ P.
Theorem 1: For each (m,n) ∈ P2, with m > 1,

pm(n) =
[n/m]∑
j=0

pm−1(n− jm). (1)

As usual, [n/m] denotes the integral part of n/m. For a proof see [1, p. 223].
We are now prepared to state the main result.

Theorem 2: If for each k ∈ P, c(k) :=
∑k

m=1 mpm(k −m), then for each n ∈ P,

d(n) = c(n) +
∑
j≥1

(−1)j [c(n− j(3j − 1)/2) + c(n− j(3j + 1)/2)], (2)
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where conventionally c(r) := 0 whenever r ∈ Z− P.
Let n ∈ P− {1}. In elementary multiplicative number theory evaluation of d(n) depends

on factoring n. Specifically, we find the canonical representation of n, say

n =
r∏

i=1

pei
i ,

and then owing to the fact that d(·) is multiplicative, it follows that d(n) = (e1 + 1)(e2 +
1) · · · (er + 1). The import of our present discussion turns on the observation that we can
determine the values d(n), n ∈ P, without recourse to factorization.

2. PROOF OF THEOREM 2

Our proof is based on the following two identities of Euler.

∞∏
n=1

(1− xn) = 1 +
∞∑

k=1

(−1)k
[
xk(3k−1)/2 + xk(3k+1)/2

]
, (3)

∞∏
n=1

1
1− axn

= 1 +
∞∑

m=1

am xm

(1− x)(1− x2) · · · (1− xm)
. (4)

Identity (3) is valid for each complex number x such that | x |< 1, and (4) is valid for pair of
complex numbers a, x such that | ax |< 1. For proofs see [3, pp. 276-280].

Differentiate both sides of (4) with respect to a, and in the resulting identity let a = 1 to
get

∞∑
n=1

xn

1− xn

∞∏
1

1
1− xn

=
∞∑

m=1

m
xm

(1− x)(1− x2) · · · (1− xm)

=
∞∑

m=1

∞∑
n=0

mpm(n)xm+n (Let k = m + n.) (5)

=
∞∑

k=1

xk
k∑

m=1

mpm(k −m)

:=
∞∑

k=1

c(k)xk.
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Now, multiply both sides of (5) by the infinite product
∏

(1 − xn), and appeal to (3) to
get

∞∑
n=1

d(n)xn =
∞∑

n=1

xn

1− xn

=
∞∏
1

(1− xn)
∞∑

k=1

c(k)xk

=

1 +
∞∑

j=1

(−1)j
[
xj(3j−1)/2 + xj(3j+1)/2

]
∞∑

k=1

c(k)xk

=
∞∑

n=1

c(n)xn +
∞∑

n=1

xn

∑
j≥1

(−1)j [c(n− j(3j − 1)/2) + c(n− j(3j + 1)/2)]


Equating coefficients of xn, n ∈ P, we thus prove our theorem.
Corollary: For each n ∈ P,

n−1∑
k=0

d(n− k)p(k) =
n∑

m=1

mpm(n−m), (6)

where p(·) denotes the unrestricted partition function, and conventionally p(0) := 1.
Fortunately, H. Gupta, C.E. Gwyther and J.C.P. Miller [2] have compiled an extensive

table of the values pm(n), (m,n) ∈ P × N. Construction of the following brief table of values
for the coefficients c(n) :=

∑n
m=1 mpm(n−m), n ∈ P, relies heavily on their work.

n c(n) n c(n)
1 1 13 556
2 3 14 780
3 6 15 1068
4 12 16 1463
5 20 17 1965
6 35 18 2644
7 54 19 3498
8 86 20 4630
9 128 21 6052
10 192 22 7899
11 275 23 10206
12 399 24 13174

TABLE 1

On the strength of the foregoing table and Theorem 2 we then construct a brief table of
values of the divisor function d(·).
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n d(n) n d(n)
1 1 13 2
2 2 14 4
3 2 15 4
4 3 16 5
5 2 17 2
6 4 18 6
7 2 19 2
8 4 20 6
9 3 21 4
10 4 22 4
11 2 23 2
12 6 24 8

TABLE 2

For the sake of concreteness let us supply some detail for d(23) and d(24).

d(23) = c(23)− c(23− 1)− c(23− 2) + c(23− 5) + c(23− 7)
− c(23− 12)− c(23− 15) + c(23− 22)

= c(23) + c(18) + c(16) + c(1)− c(22)− c(21)− c(11)− c(8)
= 10206 + 2644 + 1463 + 1− 7899− 6052− 275− 86
= 14314− 14312 = 2,

d(24) = c(24)− c(24− 1)− c(24− 2) + c(24− 5) + c(24− 7)
− c(24− 12)− c(24− 15) + c(24− 22)

= c(24) + c(19) + c(17) + c(2)− c(23)− c(22)− c(12)− c(9)
= 13174 + 3498 + 1965 + 3− 10206− 7899− 399− 128
= 18640− 18632 = 8.
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