q-ANALOGS OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

C. Z. Jia
Department of Applied Mathematics, Dalian University of Technology Dalian 116024, P.R. China e-mail: cangzhijia@yahoo.com.cn
H. M. Liu
Department of Applied Mathematics, Dalian University of Technology Dalian 116024, P.R. China
T. M. Wang
Department of Mathematics, Hainan Normal University, Haikou 571158, P.R. China
(Submitted April 2005-Final Revision October 2005)

Abstract

The Fibonacci operator approach inspired by Andrews (2004) is explored to investigate q-analogs of the generalized Fibonacci and Lucas polynomials introduced by Chu and Vicenti (2003). Their generating functions are compactly expressed in terms of Fibonacci operator fractions. A determinant evaluation on q-binomial coefficients is also established which extends a recent result of Sun (2005).

1. INTRODUCTION

The generalized Fibonacci and Lucas polynomials are defined in [11] by

$$
\begin{equation*}
F_{n+1}(t)=F_{n}(t)+t F_{n-1}(t), n \geq 1 \tag{1}
\end{equation*}
$$

with the initial conditions $F_{0}(t)=a$ and $F_{1}(t)=b$. When $t=1$, they reduce, for $a=b=1$ and $a=2$ and $b=1$, to Fibonacci and Lucas sequences, respectively, which have been extensively studied for their many beautiful and interesting combinatorial properties.

For the case $a=b=1$, several slightly different q-analogs of $F_{n}(t)$ have been worked out by Carlitz [4], Cigler [7] and Schur [10]. On the related literature of recurrence relations and generating functions, refer to $[1,8]$ for the theory of orthogonal polynomials and $[1,2,8,9]$ for the Rogers-Ramanujan identities.

Differently from the works just mentioned, Andrews [3] recently introduced the Fibonacci operator η_{x} by $\eta_{x} f(x)=f(x q)$ for any given function $f(x)$. Then he obtained an unusual operator expression for the generating function of q-Fibonacci polynomials. Inspired by this operator approach, we shall study the full q-analog of $F_{n}(t)$ for a and b be arbitrary numbers and establish the corresponding generating functions in terms of η-operator fractions. Then we shall evaluate a determinant related q-binomial coefficients. Finally for some particular values of a and b, we shall give q-analogs of some generating functions established in [6], again in terms of η-operator fractions. We believe that these results on the q-incomplete Fibonacci and Lucas polynomials are new.

For two indeterminate x and q, the shifted factorial is defined by

$$
(x ; q)_{0}=1 \quad \text { and } \quad(x ; q)_{n}=\prod_{k=0}^{n-1}\left(1-q^{k} x\right) \quad \text { with } \quad n=1,2, \cdots
$$

When $|q|<1$, the infinite product

$$
(x ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-q^{n} x\right)
$$

is well defined, which leads us to the following expression

$$
(x ; q)_{n}=\frac{(x ; q)_{\infty}}{\left(q^{n} x ; q\right)_{\infty}} \text { for } n \in \mathbb{Z}
$$

The Gaussian q-binomial coefficient is defined by

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}}, & 0 \leq m \leq n \\
0, & \text { otherwise }\end{cases}
$$

2. q-ANALOGS OF THE GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

The q-analogs of generalized Fibonacci and Lucas polynomials are introduced by [3]. Let us define a sequence of polynomial $S_{n}(t, q)$ by the recurrence relation

$$
\begin{equation*}
S_{n+1}(t, q)=S_{n}(t, q)+t q^{n-2} S_{n-1}(t, q), n \geq 1 \tag{2}
\end{equation*}
$$

where $S_{0}(t, q)=a, S_{1}(t, q)=b$. It is obvious that $S_{n}(t, 1)=F_{n}(t)$ with $F_{n}(t)$ being defined by (1).

Theorem 1: (The generating function defined by recurrence relation (2)).

$$
\sum_{n=0}^{\infty} S_{n}(t, q) x^{n}=\frac{1}{1-x-t x^{2} \eta_{x}}\{a+(b-a) x\} .
$$

Proof: Let $\sigma(x)$ stand for the expression on the left side of the equation in Theorem 1. To prove Theorem 1, we need to check the following equivalent relation:

$$
\left(1-x-t x^{2} \eta_{x}\right) \sigma(x)=a+(b-a) x .
$$

According to the definition of $\sigma(x)$, we have

$$
\begin{aligned}
& a+b x+\sum_{n \geq 2} S_{n}(t, q) x^{n}-\sum_{n \geq 0} S_{n}(t, q) x^{n+1}-t \sum_{n \geq 0} S_{n}(t, q) x^{n+2} q^{n} \\
= & a+b x-a x+\sum_{n \geq 2}\left\{S_{n}(t, q)-S_{n-1}(t, q)-t q^{n-2} S_{n-2}(t, q)\right\} x^{n}
\end{aligned}
$$

which reduces to $a+(b-a) x$ in view of recurrence relation (2).

In order to find explicit expression for $S_{n}(t, q)$, we will need the following lemma.
Lemma 2: (The Fibonacci operator composition)

$$
\begin{align*}
&\left(x+t x^{2} \eta_{x}\right)^{n} x^{2}=x^{n+2} \sum_{j \geq 0} t^{j} x^{j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{j(j+1)} . \tag{3}\\
&\left(x+t x^{2} \eta_{x}\right)^{n} x=x^{n+1} \sum_{j \geq 0} t^{j} x^{j}\left[\begin{array}{c}
n \\
j
\end{array}\right] q^{j^{2}} . \tag{4}
\end{align*}
$$

Proof: We can proceed with induction principle. For $n=0$, the first equation asserts $x^{2}=x^{2}$. Now suppose the first equation is true for n. Then we can verify it for $n+1$ as follows:

$$
\begin{aligned}
& \left(x+t x^{2} \eta_{x}\right)^{n+1} x^{2}=\left(x+t x^{2} \eta_{x}\right) x^{n+2} \sum_{j \geq 0} t^{j} x^{j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{j(j+1)} \\
= & x^{n+3} \sum_{j \geq 0} t^{j} x^{j}\left[\binom{n}{j}\right] q^{j(j+1)}+x^{n+4} \sum_{j \geq 0} t^{j+1} x^{j}\left[\begin{array}{c}
n \\
j
\end{array}\right] q^{n+2+j(j+2)} \\
= & x^{n+3} \sum_{j \geq 0} t^{j} x^{j}\left[\binom{n}{j}\right] q^{j(j+1)}+x^{n+3} \sum_{j \geq 0} t^{j} x^{j}\left[\begin{array}{c}
n \\
j-1
\end{array}\right] q^{n+1+j^{2}} \\
= & x^{n+3} \sum_{j \geq 0} t^{j} x^{j} q^{j(j+1)}\left\{\left[\begin{array}{c}
n \\
j
\end{array}\right]+q^{n+1-j}\left[\begin{array}{c}
n \\
j-1
\end{array}\right]\right\} \\
= & x^{n+3} \sum_{j \geq 0} t^{j} x^{j} q^{j(j+1)}\left[\begin{array}{c}
n+1 \\
j
\end{array}\right]
\end{aligned}
$$

where the last line has been justified by q-binomial identity

$$
\left[\binom{n+1}{j}\right]=\left[\begin{array}{c}
n \\
j
\end{array}\right]+q^{n+1-j}\left[\begin{array}{c}
n \\
j-1
\end{array}\right] .
$$

This proves the first equation. The equation (4) can be established similarly.
Corollary 3: (Explicit expression for $S_{n}(t, q)$)

$$
S_{n}(t, q)=a \sum_{j \geq 0} t^{j+1}\left[\begin{array}{c}
n-2-j \\
j
\end{array}\right] q^{j(j+1)}+b \sum_{j \geq 0} t^{j}\left[\begin{array}{c}
n-1-j \\
j
\end{array}\right] q^{j^{2}}
$$

Proof: According to the geometric series expansion, we have

$$
\begin{aligned}
& \sum_{n \geq 0} S_{n}(t, q) x^{n}=\frac{1}{1-x-t x^{2} \eta_{x}}(a+(b-a) x) \\
& =\sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n}\{a+(b-a) x\} \\
& =\sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n} a+\sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n}(b-a) x \\
& =a \sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n-1}\left(x+t x^{2}\right)+(b-a) \sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n} x \\
& =a \sum_{n \geq 0} x^{n} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j^{2}}+a t \sum_{n \geq 0} x^{n+1} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j(j+1)} \\
& \quad+(b-a) \sum_{n \geq 0} x^{n+1} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{j^{2}} .
\end{aligned}
$$

Extract the coefficient of x^{n} and we get Corollary 3 .
In view of Corollary 3 , we can easily deduce that

$$
\begin{aligned}
S_{n, k} & =\left[t^{k}\right] S_{n}(t, q) \\
& =\left[t^{k}\right]\left\{a \sum_{j \geq 0} t^{j+1}\left[\begin{array}{c}
n-2-j \\
j
\end{array}\right] q^{j(j+1)}\right. \\
& \left.+b \sum_{j \geq 0} t^{j}\left[\begin{array}{c}
n-1-j \\
j
\end{array}\right] q^{j^{2}}\right\} \\
& =a\left[\begin{array}{c}
n-1-k \\
k-1
\end{array}\right] q^{k(k-1)}+b\left[\begin{array}{c}
n-1-k \\
k
\end{array}\right] q^{k^{2}} .
\end{aligned}
$$

For $B_{n, k}=S_{2 n+1, n-k}$, it is trivial to see that

$$
B_{n+k+i, k+i}=a\left[\begin{array}{c}
n+2 k+2 i \\
n-1
\end{array}\right] q^{2\binom{n}{2}}+b\left[\begin{array}{c}
n+2 k+2 i \\
n
\end{array}\right] q^{n^{2}},
$$

then we have the following determinant evaluation.
Theorem 4: (determinant identity on q-binomial coefficients).

$$
\operatorname{det}_{0 \leq k, n \leq m}\left[B_{n+k+i, k+i}\right]=b^{m+1} q^{\frac{m(m+1)}{6}(1+5 m+6 i)} \prod_{n=0}^{m} \frac{\left(q^{2} ; q^{2}\right)_{n}}{(q ; q)_{n}} .
$$

When $q \rightarrow 1$, we recover from this theorem a binomial determinant identity appeared in [11].

Proof: Note that $B_{n+k+i, k+i}$ is a polynomial of degree n in $q^{2 k}$ with the leading coefficient $\frac{b(-1)^{n}}{(q ; q)_{n}} q^{\frac{n}{2}(1+3 n+4 i)}$. We can write $B_{n+k+i, k+i}$ formally as

$$
B_{n+k+i, k+i}=\sum_{j=0}^{n} \lambda_{j}(n) q^{2 k j} \quad \text { with } \quad \lambda_{n}(n)=\frac{b(-1)^{n}}{(q ; q)_{n}} q^{\frac{n}{2}(1+3 n+4 i)}
$$

where $\left\{\lambda_{j}(n)\right\}_{j=0}^{n}$ are constants independent of q^{k}.
For each n with $0 \leq n \leq m$, defining further

$$
\lambda_{j}(n)=0 \quad \text { if } \quad n<j \leq m
$$

then we have the following determinant factorization

$$
\operatorname{det}_{0 \leq k, n \leq m}\left[B_{n+k+i, k+i}\right]=\operatorname{det}_{0 \leq k, j \leq m}\left[q^{2 k j}\right] \times \operatorname{det}_{0 \leq j, n \leq m}\left[\lambda_{j}(n)\right] .
$$

The former is the Vadermonde determinant whose evaluation reads as

$$
\begin{aligned}
\operatorname{det}_{0 \leq k, j \leq m}\left[q^{2 k j}\right] & =\prod_{0 \leq \jmath<j \leq m}\left(q^{2 j}-q^{2 \jmath}\right) \\
& =(-1)^{\binom{1+m}{2}} \prod_{n=0}^{m} q^{2 n(m-n)}\left(q^{2} ; q^{2}\right)_{n} .
\end{aligned}
$$

The latter is the determinant of a diagonal matrix, which is evaluated by the product of the diagonal elements:

$$
\left.\operatorname{det}_{0 \leq j, n \leq m}\left[\lambda_{j}(n)\right]=\prod_{n=0}^{m} \lambda_{n}(n)=b^{1+m}(-1)^{\left({ }^{1+m}\right.}{ }^{2}\right) \prod_{n=0}^{m} \frac{q^{\frac{n}{2}(1+3 n+4 i)}}{(q ; q)_{n}} .
$$

Multiplying both evaluations just displayed and then simplifying the result, we get the determinant identity stated in the theorem.

3. q-ANALOGS OF THE INCOMPLETE FIBONACCI AND LUCAS POLYNOMIALS

For the initial values $a=b=1$, (1) reduces to the q-Fibonacci polynomial of Calitz [4]. Similarly for $a=2, b=1$, (1) reduces to the q -analog of the incomplete Lucas polynomial in [6].

For $a=b=1$ and $a=2, b=1$ the generating function of $F_{n}(t, q)$ and $L_{n}(t, q)$ are given by Theorem 1 as follows:

$$
\begin{align*}
\sum_{n=0}^{\infty} F_{n}(t, q) x^{n} & =\frac{1}{1-x-t x^{2} \eta_{x}} \tag{5}\\
\sum_{n=0}^{\infty} L_{n}(t, q) x^{n} & =\frac{1}{1-x-t x^{2} \eta_{x}}(2-x) \tag{6}
\end{align*}
$$

where equation (5) has first been established by Andrews [3].
From them we can derive also the explicit generating functions.
Theorem 5: (Generating functions)

$$
\begin{align*}
& \sum_{n \geq 0} F_{n}(t, q) x^{n}=\sum_{j \geq 0} \frac{x^{2 j} t^{j} q^{j(j-1)}}{(x ; q)_{j+1}} \tag{7}\\
& \sum_{n \geq 0} L_{n}(t, q) x^{n}=\sum_{j \geq 0} \frac{x^{2 j} t^{j} q^{j(j-1)}}{(x ; q)_{j+1}}\left\{2-x q^{j}\right\} \tag{8}
\end{align*}
$$

Proof: By means of geometric series and equations (3)-(4), we can compute

$$
\begin{aligned}
& \frac{1}{1-x-t x^{2} \eta_{x}}=\sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n} 1=\sum_{n \geq 0}\left(x+t x^{2} \eta_{x}\right)^{n-1}\left(x+t x^{2}\right) \\
= & \sum_{n \geq 0} x^{n} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j^{2}}+t \sum_{n \geq 0} x^{n+1} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j(j+1)} \\
= & \sum_{n \geq 0} x^{n} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j^{2}}+\sum_{n \geq 0} x^{n} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{j(j-1)} \\
= & \sum_{n \geq 0} x^{n} \sum_{j \geq 0} x^{j} t^{j}\left[\begin{array}{c}
n \\
j
\end{array}\right] q^{j(j-1)}=\sum_{n, j \geq 0} x^{n+2 j} t^{j}\left[\begin{array}{c}
n+j \\
j
\end{array}\right] q^{j(j-1)} .
\end{aligned}
$$

Recalling (5) and then applying the q-binomial formula

$$
\sum_{j \geq 0}\left[\begin{array}{c}
n+j \\
j
\end{array}\right] x^{j}=\frac{1}{(x ; q)_{n+1}}
$$

we get the generating function (7). Similarly, one can derive the generating function (8).
Theorem 6: (Generating functions)

$$
\begin{align*}
& \sum_{k \geq n} F_{k}(t, q) x^{k}=x^{n} \frac{F_{n}(t, q)+x t q^{n-2} F_{n-1}(t, q)}{1-x-t x^{2} \eta_{x}} \tag{9}\\
& \sum_{k \geq n} L_{k}(t, q) x^{k}=x^{n} \frac{L_{n}(t, q)+x t q^{n-2} L_{n-1}(t, q)}{1-x-t x^{2} \eta_{x}} . \tag{10}
\end{align*}
$$

Proof: Let us denote by $\delta(x)$ the expression on the left side of the equation in (9). We prove equivalently the relation:

$$
\left(1-x-t x^{2} \eta_{x}\right) \delta(x)=\left\{F_{n}(t, q)+x t q^{n-2} F_{n-1}(t, q)\right\} x^{n}
$$

This can be accomplished as follows:

$$
\begin{aligned}
& \left(1-x-t x^{2} \eta_{x}\right) \sum_{k \geq n} F_{k}(t, q) x^{k} \\
= & \sum_{k \geq n} F_{k}(t, q) x^{k}-\sum_{k \geq n} F_{k}(t, q) x^{k+1}-t \sum_{k \geq n} F_{k}(t, q) x^{k+2} q^{k} \\
= & F_{n}(t, q) x^{n}+F_{n+1}(t, q) x^{n+1}-F_{n}(t, q) x^{n+1} \\
+ & \sum_{k \geq n}\left\{F_{k+2}(t, q)-F_{k+1}(t, q)-F_{k}(t, q) t q^{k-2}\right\} x^{k+2} \\
= & \left\{F_{n}(t, q)+x t q^{n-2} F_{n-1}(t, q)\right\} x^{n} .
\end{aligned}
$$

Therefore (9) is valid. The equation (10) follows in the same way.
Letting $a=b=1$ and $a=2, b=1$ in corollary 3 , we have

$$
\begin{aligned}
f_{n}(t, q) & =\sum_{j \geq 0} t^{j+1}\left[\begin{array}{c}
n-2-j \\
j
\end{array}\right] q^{j(j+1)}+\sum_{j \geq 0} t^{j}\left[\begin{array}{c}
n-1-j \\
j
\end{array}\right] q^{j^{2}} \\
& =\sum_{j \geq 0} t^{j}\left[\begin{array}{c}
n-j \\
j
\end{array}\right] q^{j(j-1)} \\
l_{n}(t, q) & =2 \sum_{j \geq 0} t^{j+1}\left[\binom{n-2-j}{j}\right] q^{j(j+1)}+\sum_{j \geq 0} t^{j}\left[\binom{n-1-j}{j}\right] q^{j^{2}} \\
& =\sum_{j \geq 0} t^{j}\left[\binom{n-j}{j}\right] q^{j(j-1)}+\sum_{j \geq 1} t^{j}\left[\binom{n-1-j}{j-1}\right] q^{j(j-1)} .
\end{aligned}
$$

For two incomplete polynomial sequences defined by

$$
F_{m, n}(t, q)=\sum_{j=0}^{m} t^{j}\left[\begin{array}{c}
n-j \\
j
\end{array}\right] q^{j(j-1)}
$$

and

$$
L_{m, n}=\sum_{j=0}^{m} t^{j}\left[\begin{array}{c}
n-j \\
j
\end{array}\right] q^{j(j-1)}+\sum_{j=1}^{m} t^{j}\left[\begin{array}{c}
n-1-j \\
j-1
\end{array}\right] q^{j(j-1)}
$$

Their generating functions defined respectively by

$$
\Phi(x, y):=\sum_{m, n=0}^{\infty} F_{m, n}(t, q) x^{m} y^{n} \quad \text { where } \quad 0 \leq m \leq \frac{n}{2}
$$

and

$$
\Psi(x, y):=\sum_{m, n=0}^{\infty} L_{m, n}(t, q) x^{m} y^{n} \quad \text { where } \quad 0 \leq m \leq \frac{n}{2}
$$

are given by the following:
Theorem 7: (Generating function)

$$
\begin{align*}
& \Phi(x, y)=\frac{1}{1-x} \cdot \frac{1}{1-y-t x y^{2} \eta_{y}} \tag{11}\\
& \Psi(x, y)=\frac{1}{1-x} \cdot \frac{1}{1-y-t x y^{2} \eta_{y}}(2-y) \tag{12}
\end{align*}
$$

Proof: This generating function can be obtained through triple sum

$$
\begin{aligned}
\Phi(x, y) & =\sum_{m, n=0}^{\infty} \sum_{j=0}^{m} t^{j}\left[\begin{array}{c}
n-j \\
j
\end{array}\right] q^{j(j-1)} x^{m} y^{n} \\
& =\sum_{0 \leq j \leq m<+\infty} x^{m} q^{j(j-1)} t^{j} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n-j \\
j
\end{array}\right] y^{n} .
\end{aligned}
$$

For the inner sum, changing the summation index by $n=i+2 j$ and then evaluating it as

$$
y^{2 j} \sum_{i=0}^{\infty} y^{i}\left[\begin{array}{c}
i+j \\
j
\end{array}\right]=\frac{y^{2 j}}{(y ; q)_{j+1}}
$$

we can simplify the double sum as follows:

$$
\begin{aligned}
\Phi(x, y) & =\sum_{0 \leq j \leq m<\infty} x^{m} t^{j} q^{j(j-1)} \frac{y^{2 j}}{(y ; q)_{j+1}} \\
& =\sum_{k=0}^{\infty} x^{k} \sum_{j=0}^{\infty} \frac{t^{j} x^{j} q^{j(j-1)} y^{2 j}}{(y ; q)_{j+1}} \\
& =\frac{1}{1-x} \cdot \frac{1}{1-y-t x y^{2} \eta_{y}}
\end{aligned}
$$

where equation (5) and (7) have been combined for justifying the last step. This proves the identity (11). Similarly we can deduce the identity (12).

REFERENCES

[1] W. A. Al-Salam and M. E. H. Ismail. "Orthogonal Polynomials Associated With the Rogers-Ramanujan Continued Fraction." Pac. J. Math. 104 (1983): 269-283.
[2] G. E. Andrews, A. Knopfmacher and P. Paule. "An Infinite Family of Engel Expansion of Rogers-Ramanujan Type." Adv. Appl. Math. 25 (2000): 2-11.
[3] G. E. Andrews. "Fibonacci Numbers and the Rogers-Ramanujan Identities." The Fibonacci Quarterly 42:1 (2004): 3-19.
[4] L. Carlitz. "Fibonacci notes 4: q-Fibonacci Polynomials." The Fibonacci Quarterly 13:2 (1975): 97-102.
[5] W. Chu and L. Di Claudio. Classical Partition Identities and Basic Hypergeometric Series, Quaderno n. 6 anno 2004 del Dipartimento di Matematica "Ennio De Giorgi", Università degli Studi di Lecce; Edizioni del Grifo (2004), pp. viii +153.
[6] W. Chu and V. Vicenti. Funzione generatrice e polinomi incompleti di Fibonacci e Lucas. Boll. Un. Mat. Ital. B-6 (2003, Serie VIII), 289-308.
[7] J. Cigler. " q-Fibonacci Polynomials." The Fibonacci Quarterly 41.1 (2003): 31-40.
[8] K. Garrett, M. E. H. Ismail and D. Stanton. "Variants of the Rogers-Ramanujan Identities." Adv. Appl. Math. 23 (1999): 274-299.
[9] M. E. H. Ismail, H. Prodinger and D. Stanton. "Schur's Determinants and Partition Theorems." Sem. Loth. Comb. B44a (2000): 10.
[10] I. Schur. "Ein beitrag zur additiven zahlentheorie." Sitzungsber., Akad. Wissencsh. Berlin, Phy.-Math. Klasse (1917): 302-321.
[11] Y. D. Sun. "Numerical Triangles and Several Classical Sequences." The Fibonacci Quarterly 43.4 (2005): 359-370.

AMS Classification Numbers: 05A15, 05A30

※玉

