SPECIAL MULTIPLIERS OF k th-ORDER LINEAR RECURRENCES MODULO p^{r}

Lawrence Somer
Department of Mathematics, Catholic University of America, Washington, DC 20064 USA
e-mail: somer@cua.edu

(Submitted January 2005-Final Revision March 2006)

Abstract

The author has previously generalized the concept of a multiplier of a second-order linear recurrence modulo p^{r}, where p is an odd prime and r is a positive integer, to that of a special multiplier of a second-order linear recurrence modulo p^{r}. In this paper, we will extend these results to show that infinitely many k th-order linear recurrences have special multipliers modulo p^{r}, where $k \geq 2$ and p is a prime, not necessarily odd.

1. INTRODUCTION

In [1], [2], and [8], Somer generalized the concept of a multiplier of a second-order linear recurrence modulo p^{r}, where p is an odd prime and $r \geq 1$, to that of a special multiplier of a second-order linear recurrence modulo p^{r}. Special multipliers modulo p^{r} were used in [1] to investigate the distribution of residues in second-order recurrences reduced modulo p^{r}. In this paper, we will extend these results to show that infinitely many k th-order linear recurrences satisfying certain conditions have special multipliers modulo p^{r}, where $k \geq 2$ and p is a prime, not necessarily odd. Throughout this paper, p will denote a rational prime.

2. PRELIMINARIES

Let $k \geq 2$ and let $w\left(a_{1}, a_{2}, \ldots, a_{k}\right)=(w)$ be a k th-order linear recurrence satisfying the recursion relation

$$
\begin{equation*}
w_{n+k}=a_{1} w_{n+k-1}-a_{2} w_{n+k-2}+\cdots+(-1)^{k+1} a_{k} w_{n} \tag{2.1}
\end{equation*}
$$

where the parameters a_{1}, \ldots, a_{k} and initial terms w_{0}, \ldots, w_{k-1} are all rational integers. We will assume throughout this paper that $w\left(a_{1}, \ldots, a_{k}\right)$ is a regular recurrence, that is, $w\left(a_{1}, \ldots, a_{k}\right)$ satisfies no linear recursion relation of order less than k. We will distinguish one particular recurrence, the unit sequence satisfying the recursion relation (2.1) and having initial terms $u_{0}=u_{1}=\cdots=u_{k-2}=0, u_{k-1}=1$.

Associated with $w\left(a_{1}, \ldots, a_{k}\right)$ is the characteristic polynomial

$$
\begin{equation*}
f(x)=x^{k}-a_{1} x^{k-1}+\cdots+(-1)^{k} a_{k}=\prod_{i=1}^{t}\left(x-\alpha_{i}\right)^{m_{1}} \tag{2.2}
\end{equation*}
$$

where the distinct characteristic roots α_{i} appear with multiplicity m_{i} for $i=1,2, \ldots, t$. We let D be the discriminant of $f(x)$. We further let $\mathcal{K}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ be the Galois field associated with $f(x)$, i.e., the splitting field of the characteristic roots of $f(x)$, and let R be the ring of integers of \mathcal{K}. Note that $\alpha \in R$ for $1 \leq i \leq t$. In this paper, we will also be
considering recurrences $w^{\prime}\left(a_{1}, \cdots, a_{k}\right)$ satisfying the recursion relation (2.1), but having initial terms $w_{0}^{\prime}, \ldots, w_{k-1}^{\prime}$ in R and not necessarily just in \mathbb{Z}. We also let

$$
\begin{equation*}
\hat{f}(x)=\prod_{i=1}^{t}\left(x-\alpha_{i}\right) \tag{2.3}
\end{equation*}
$$

be the square-free kernel of $f(x)$. Then the coefficients of $\hat{f}(x)$ are rational integers. We let the discriminant of $\hat{f}(x)$ be denoted by \hat{D}. If $t=1$, we let $\hat{D}=1$. We let (p) denote the principal ideal in R generated by p.

We will assume throughout this article that $a_{k} \neq 0$ and $\operatorname{gcd}\left(a_{k}, p^{r}\right)=1$. Then it is known (see [3, pp. 344-345]) that $w\left(a_{1}, \ldots, a_{k}\right)$ is purely periodic modulo p^{r}. The period $\lambda\left(p^{r}\right)$ of (w) modulo p^{r} is the least positive integer λ such that

$$
w_{n+\lambda} \equiv w_{n}\left(\bmod p^{r}\right)
$$

for all n. Any positive integer m such that $w_{n+m} \equiv w_{n}\left(\bmod p^{r}\right)$ for all n is called a general period of (w) modulo p^{r}. Clearly, if m is a general period of (w) modulo p^{r}, then $\lambda\left(p^{r}\right) \mid m$.

In [3, pp. 345-355], R. D. Carmichael generalized the concept of the period $\lambda\left(p^{r}\right)$ of (w) modulo p^{r} to that of the restricted period $h\left(p^{r}\right)$ of (w) modulo p^{r}. He defined $h\left(p^{r}\right)$ to be the least positive integer h such that for some integer M, coprime to p, and for all n

$$
w_{n+h} \equiv M w_{n}\left(\bmod p^{r}\right) .
$$

The integer $M=M\left(p^{r}\right)$, defined up to congruence modulo p^{r}, is called the multiplier of (w) modulo p^{r}. Any positive integer c such that $w_{n+c} \equiv G w_{n}\left(\bmod p^{r}\right)$ for some integer G and all n is called a general restricted period of (w) modulo p^{r}, and G is called a general multiplier of (w) modulo p^{r}. If c is a general restricted period of (w) modulo p^{r}, then $h\left(p^{r}\right) \mid c$. It was shown in [3, pp. 345-355] that $h\left(p^{r}\right) \mid \lambda\left(p^{r}\right)$ and that $E\left(p^{r}\right)=\lambda\left(p^{r}\right) / h\left(p^{r}\right)$ is the multiplicative order in $(\mathbb{Z} / p \mathbb{Z})^{*}$ of the multiplier $M\left(p^{r}\right)$. Moreover, if $h=h\left(p^{r}\right)$ and $M=M\left(p^{r}\right)$, then, for all n,

$$
\begin{equation*}
w_{n+i h} \equiv M^{i} w_{n}\left(\bmod p^{r}\right) \tag{2.4}
\end{equation*}
$$

Thus, every general multiplier G satisfies $G \equiv M^{i}\left(\bmod p^{r}\right)$ for some i, and the general multipliers of (w) modulo p^{r} form a cyclic group of order $E\left(p^{r}\right)$ in $(\mathbb{Z} / p \mathbb{Z})^{*}$.

Given the prime p, we define the positive integer $e(p)=e$ as follows. If p is an odd prime, we define e to be the largest integer, if it exists, such that $h\left(p^{e}\right)=h(p)$. If $p=2$, we let e be the largest integer, if it exists, such that $h\left(2^{2}\right)=h\left(2^{e}\right)$. If e does not exist, we write informally that $e=\infty$. We will give conditions shortly that show that it is usual that $e<\infty$.

As was pointed out in [1], restricted periods and multipliers may be viewed from another perspective. If $h=h\left(p^{r}\right)$ and $M=M\left(p^{r}\right)$, then for every n the sequence (w^{*}) defined by $w_{m}^{*}=w_{n+m h}$ satisfies the first-order recursion relation $w_{m+1}^{*} \equiv M w_{m}^{*}\left(\bmod p^{r}\right)$. Thus, the restricted period modulo p^{r} can be characterized as the smallest positive integer h such that for all n, the subsequence $\left\{w_{n+m h}\right\}_{m=0}^{\infty}$ satisfies the same first-order recursion relation modulo p^{r}.

It may occur, however, that for a fixed n, there exists a nonnegative integer $g<h$ such that the subsequence defined by $w_{m}^{*}=w_{n+m g}$ satisfies a first-order recursion relation $w_{m+1}^{*} \equiv M^{*} w_{m}^{*}\left(\bmod p^{r}\right)$. We will be interested in this phenomenon when $g=h\left(p^{c}\right)$ for
some positive integer $c<r$ and $h\left(p^{c}\right)<h\left(p^{r}\right)$, where $h\left(p^{c}\right)$ and $h\left(p^{r}\right)$ are restricted periods of (w). (In this case, g becomes a restricted period when (w) is reduced modulo p^{c}.) Since $h(p)=h\left(p^{2}\right)=\cdots=h\left(p^{e}\right)$ when p is an odd prime and $h\left(p^{2}\right)=h\left(p^{3}\right)=\cdots=h\left(p^{e}\right)$ when $p=2$, we will assume that $r>e$. This motivates the following definition.
Definition 2.1: Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a kth-order recurrence and p be a prime. For fixed integers $n \geq 0, r>e$, and c such that $e \leq c<r$, we call $h\left(p^{c}\right)=h^{\prime}$ a general special restricted period of (w) with respect to w_{n} modulo p^{r} if $h\left(p^{c}\right)<h\left(p^{r}\right)$ and the sequence $w_{m}^{*}=w_{n+m h^{\prime}}$ satisfies a first-order recursion relation $w_{m+1}^{*} \equiv M^{*} w_{m}^{*}\left(\bmod p^{r}\right)$ for some rational integer M^{*}. The integer $M^{*}=M^{*}\left(n, h\left(p^{c}\right), p^{r}\right)$ (defined up to congruence modulo p^{r}) is called a general special multiplier of (w) with respect to w_{n} modulo p^{r}. If c is the least positive integer greater than or equal to e such that $h\left(p^{c}\right)$ is a general special restricted period of (w) with respect to w_{n} modulo p^{r}, then $h\left(p^{c}\right)$ is called the principal special restricted period of (w) with respect to w_{n} modulo p^{r}.

We note that if $e \leq c<r, h^{\prime}=h\left(p^{c}\right)$, and $w_{n} \not \equiv 0(\bmod p)$, then $M^{*}\left(n, h\left(p^{c}\right), p^{r}\right) \equiv$ $w_{n+h^{\prime}} w_{n}^{-1}\left(\bmod p^{r}\right)$.
Example 2.2: Consider the Fibonacci sequence $u(1,-1)$. Here $h\left(3^{4}\right)=108$ and $M\left(3^{4}\right) \equiv 80$ $\left(\bmod 3^{4}\right)$. Let $h^{*}=h\left(3^{2}\right)=12$ and $h^{\prime}=h(3)=4$. We note that if $u_{i}^{*}=u_{1+h^{*} i}=u_{1+12 i}$, then $u_{i+1}^{*} \equiv 71 u_{i}^{*}\left(\bmod 3^{4}\right)$, while if $u_{i}^{\prime}=u_{1+h^{\prime} i}=u_{1+4 i}$, then (u_{i}^{\prime}) does not satisfy a first-order recursion relation modulo 2^{4}. Hence, $h\left(3^{2}\right)=12$ is the principal special restricted period of $u(1,-1)$ with respect to u_{1} modulo 3^{4}, while

$$
M^{*}\left(1, h\left(3^{2}\right), 3^{4}\right)=M^{*}(1,12,81) \equiv 71\left(\bmod 3^{4}\right)
$$

is the principal special multiplier of (u) with respect to $u_{1}\left(\bmod 3^{4}\right)$.
We further observe that if $h^{\prime \prime}=h\left(3^{3}\right)=36$ and $u_{i}^{\prime \prime}=u_{1+h^{\prime \prime} i}=u_{1+36 i}$, then $u_{i+1}{ }^{\prime \prime} \equiv 53$ $\left(\bmod 3^{4}\right)$. Thus, $h\left(3^{3}\right)=36$ is a nonprincipal general special restricted period of (u) with respect to $u_{1}\left(\bmod 3^{4}\right)$ and

$$
M^{*}\left(1, h\left(3^{3}\right), 3^{4}\right)=M^{*}(1,36,81) \equiv 53\left(\bmod 3^{4}\right)
$$

is a nonprincipal general special multiplier of (u) with respect to $u_{1}\left(\bmod 3^{4}\right)$. Since $h\left(3^{3}\right)=$ $3 \cdot h\left(3^{2}\right)$, it follows from (2.4) that

$$
M^{*}\left(1, h\left(3^{3}\right), 3^{4}\right) \equiv 53 \equiv\left[M^{*}\left(1, h\left(3^{2}\right), 3^{4}\right)\right]^{3} \equiv 71^{3}\left(\bmod 3^{4}\right)
$$

Before presenting our main theorem, we will need some results and definitions concerning regular and p-regular recurrences. Given the recurrence $w\left(a_{1}, \ldots, a_{k}\right)$, we define the k th-order determinant

$$
A_{n}(w)=\left|\begin{array}{cccc}
w_{n} & w_{n+1} & \ldots & w_{n+k-1} \tag{2.5}\\
w_{n+1} & w_{n+2} & \ldots & w_{n+k} \\
\ldots & \ldots & \ldots & \ldots \\
w_{n+k-1} & w_{n+k} & \ldots & w_{n+2 k-2}
\end{array}\right|
$$

It is known that $w\left(a_{1}, \ldots, a_{k}\right)$ is regular if and only if $A_{0}(w) \neq 0$. By Heymann's theorem [4, Chapter 12.12],

$$
\begin{equation*}
A_{n}(w)=a_{k}^{n} A_{0}(w) \tag{2.6}
\end{equation*}
$$

Given the prime p, the recurrence (w) is called p-regular if

$$
\begin{equation*}
\operatorname{gcd}\left(A_{0}(w), p\right)=1 \tag{2.7}
\end{equation*}
$$

We note that $w\left(a_{1}, \ldots, a_{k}\right)$ is p-regular if and only if (w), when reduced modulo p, does not satisfy a recursion relation of order less than k. Notice that by (2.6), if $w\left(a_{1}, \ldots, a_{k}\right)$ is p regular, then $A_{n}(w) \not \equiv 0(\bmod p)$ for all $n \geq 0$. We observe that $A_{0}(u)=(-1)^{k(k-1) / 2}$, and thus, $u\left(a_{1}, \ldots, a_{k}\right)$ is p-regular for all primes p. If $w^{\prime}\left(a_{1}, \ldots, a_{k}\right)$ is a recurrence satisfying (2.1) with initial terms $w_{0}^{\prime}, \ldots, w_{k-1}^{\prime}$ in R such that $\operatorname{gcd}\left(\left(A_{0}\left(w^{\prime}\right)\right),(p)\right)=(1)$, we say that $\left(w^{\prime}\right)$ is (p)-regular, where $\left(A_{0}\left(w^{\prime}\right)\right)$ and (p) are principal ideals in R.

Let $w\left(a_{1}, \ldots, a_{k}\right)$ be p-regular and $w^{\prime}\left(a_{1}, \ldots a_{k}\right)$ be any other recurrence satisfying (2.1) with initial terms $w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{k-1}^{\prime}$ in R and not necessarily (p)-regular. Then (2.7) together with Cramer's rule imply the existence of algebraic integers $c_{0}, c_{1}, \ldots, c_{k-1}$ in R (which are all in \mathbb{Z} if $w_{0}^{\prime}, \ldots, w_{k-1}^{\prime}$ are all in \mathbb{Z}) such that

$$
\begin{array}{ccccccccc}
c_{0} w_{0} & + & c_{1} w_{1} & + & \cdots & + & c_{k-1} w_{k-1} & \equiv & w_{0}^{\prime}\left(\bmod \left(p^{r}\right)\right) \\
c_{0} w_{1} & + & c_{1} w_{2} & + & \cdots & + & c_{k-1} w_{k} & \equiv & w_{1}^{\prime}\left(\bmod \left(p^{r}\right)\right) \\
\ldots & \cdots & \ldots & \cdots & \cdots & \cdots & \ldots & \cdots & \cdots \\
c_{0} w_{k-1} & + & c_{1} w_{k} & + & \cdots & + & c_{k-1} w_{2 k-2} & \equiv & w_{k-1}^{\prime}\left(\bmod \left(p^{r}\right)\right) .
\end{array}
$$

It now follows by the recursion relation defining both $w\left(a_{1}, \ldots, a_{k}\right)$ and $w^{\prime}\left(a_{1}, \ldots, a_{k}\right)$ that for all n,

$$
w_{n}^{\prime} \equiv c_{0} w_{n}+c_{1} w_{n+1}+\cdots+c_{k-1} w_{n+k-1}\left(\bmod \left(p^{r}\right)\right)
$$

Therefore, $w^{\prime}\left(a_{1}, \ldots, a_{k}\right)$ has the period, restricted period, and multiplier modulo p^{r} of the p-regular recurrence $w\left(a_{1}, \ldots, a_{k}\right)$ as a general period, general restricted period, and general multiplier modulo $\left(p^{r}\right)$, respectively. Moreover, it follows that all p-regular recurrences have the same period, restricted period, and multiplier modulo p^{r}. Further, all p-regular recurrences therefore have the same value for $e(p)$.

We say that the recurrence $w\left(a_{1}, \ldots, a_{k}\right)$ is degenerate if α_{i} / α_{j} is a root of unity for some pair of distinct characteristic roots α_{i} and α_{j}, where $1 \leq i<j \leq t$. Let p be an odd prime. Since $u\left(a_{1}, \ldots, a_{k}\right)$ is p-regular for all odd primes p, it follows that if $w\left(a_{1}, \ldots, a_{k}\right)$ is any p regular recurrence, then $e(p)=\infty$ if and only if $u_{h(p)+i}=0$ for $i=0,1, \ldots, k-2$. By Corollary C. 1 on page 38 of [5], this occurs only if $w\left(a_{1}, \ldots, a_{k}\right)$ is a degenerate sequence. (Note that $u\left(a_{1}, \ldots, a_{k}\right)$ is also then degenerate.)

The following theorem determines the value of $h\left(p^{r}\right)$ for p-regular recurrences $w\left(a_{1}, \ldots, a_{k}\right)$ in terms of $h\left(p^{e}\right)$ when $r \geq e$.
Theorem 2.3: Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a p-regular recurrence for which $e(p)<\infty$. Suppose that $r \geq e$. Then $h\left(p^{r}\right)=p^{r-e} h\left(p^{e}\right)$.

Proof: This is proved in Theorem 1.5.18 on pages 24-25 of [6].

3. THE MAIN THEOREM

Theorem 3.1: Let $k \geq 2$ and let $w\left(a_{1}, \ldots, a_{k}\right)$ be a nondegenerate regular recurrence with $a_{k} \neq 0$, initial terms w_{0}, \ldots, w_{k-1} all in \mathbb{Z}, and distinct characteristic roots $\alpha_{1}, \ldots, \alpha_{t}$. Let the multiplicity of α_{i} be $m_{i}(1 \leq i \leq t)$ and suppose that $m_{1} \leq 2$ and $m_{2}=m_{3}=\cdots=m_{t}=1$.

Let p be a rational prime such that $p \wedge a_{k} A_{0}(w)$. If $k \geq 3$, suppose further that $p \wedge \hat{D}$. Then (w) is p-regular, purely periodic modulo p^{r}, and $e(p)<\infty$. Suppose that $r>e$. Let $r^{*}=\max (\lceil r / 2\rceil, e)$. Suppose that n is a fixed nonnegative integer such that $w_{n} \not \equiv 0(\bmod p)$.

Then $h\left(p^{r^{*}}\right)=h^{*}$ is a general special restricted period of (w) with respect to w_{n} modulo p^{r} and

$$
M^{*}\left(n, h\left(p^{r^{*}}\right), p^{r}\right) \equiv w_{n+h^{*}} w_{n}^{-1}\left(\bmod p^{r}\right)
$$

is a general special multiplier of (w) with respect to w_{n} modulo p^{r}.
Moreover, if $k=2$, then $h\left(p^{r^{*}}\right)$ is the principal special restricted period of (w) with respect to w_{n} modulo p^{r} and $M^{*}\left(n, h\left(p^{r^{*}}\right), p^{r}\right)$ is the principal multiplier of (w) with respect to w_{n} modulo p^{r}.
Example 3.2: When $k \geq 3$ and $r>e$, we shall see below that while Theorem 3.1 guarantees that if $w\left(a_{1}, \ldots, a_{k}\right)$ is a p-regular recurrence and $w_{n} \not \equiv 0(\bmod p)$, then $h\left(p^{r^{*}}\right)$ is a general special restricted period of (w) with respect to w_{n} modulo p^{r}, it sometimes happens that $h\left(p^{r^{*}}\right)$ might not be the principal restricted period. We will also present an example in which $h\left(p^{r^{*}}\right)$ is the principal restricted period of (w) with respect to w_{n} modulo p^{r}.

For both examples, we consider the 5 -regular unit sequence $u(4,1,-6)$ modulo 5^{3}. Then $e(5)=1$ and $r^{*}=2$. We note that $u(4,1,-6)$ has the characteristic polynomial

$$
f(x)=x^{3}-4 x^{2}+x+6=(x+1)(x-2)(x-3)
$$

and that $D=\hat{D}=144$. By Theorem 3.1, $h\left(5^{r^{*}}\right)=h\left(5^{2}\right)=20$ is a general restricted period of (u) with respect to $u_{2} \equiv 1$ modulo 5^{3} and

$$
M^{*}\left(2, h\left(5^{2}\right), 5^{3}\right)=M^{*}(2,20,125) \equiv u_{22} u_{2}^{-1} \equiv 51\left(1^{-1}\right) \equiv 51(\bmod 125)
$$

is a general special multiplier of (u) with respect to u_{2} modulo 5^{3}. However, by inspection, one sees that $h(5)=4$ is the principal special restricted period with respect to u_{2} modulo 5^{3} and

$$
M^{*}\left(3, h\left(5^{2}\right), 5^{3}\right)=M^{*}(3,20,125) \equiv u_{23} u_{3}^{-1} \equiv 4\left(4^{-1}\right) \equiv 1(\bmod 125)
$$

is the principal special multiplier of (u) with respect to u_{3} modulo 5^{3}.
From looking at numerous examples, it appears that for $k \geq 3, h\left(p^{r^{*}}\right)$ is usually the principal special restricted period of $w\left(a_{1}, \ldots, a_{k}\right)$ with respect to w_{n} modulo p^{r}, but we have no proof of this.

4. NECESSARY LEMMAS

Before proving Theorem 3.1, we will need the following lemmas.
Lemma 4.1: Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a regular recurrence with $a_{k} \neq 0$ and distinct characteristic roots α_{i} with multiplicity $m_{i}(1 \leq i \leq t)$. Let

$$
b=\max _{1 \leq i \leq t}\left(m_{i}-1\right) .
$$

Let p be a rational prime such that $p>b$ and $p \nmid a_{k} \hat{D}$.
(a) There exist uniquely determined polynomials $f_{i} \in \mathcal{K}[x]$ of degree less than $m_{i}(i=$ $1,2, \ldots, t)$ such that

$$
\begin{equation*}
w_{n}=\sum_{i=1}^{t} f_{i}(n) \alpha_{i}^{n} \tag{4.1}
\end{equation*}
$$

Moreover, each of the coefficients of $f_{i}(n)$ can be expressed as a fraction r_{1} / r_{2}, where $r_{1}, r_{2} \in R$, and the prime ideal P divides r_{2} only if

$$
\begin{equation*}
P \mid b!\alpha_{1} \alpha_{2} \ldots \alpha_{t} \prod_{1 \leq i<j<t}\left(\alpha_{i}-\alpha_{j}\right) . \tag{4.2}
\end{equation*}
$$

(b) There exist polynomials F_{i} of degree less than $m_{i}(1 \leq i \leq t)$ with coefficients which are well-defined elements of the quotient ring $R /\left(p^{r}\right)$ such that

$$
\begin{equation*}
w_{n} \equiv \sum_{i=1}^{t} F_{i}(n) \alpha_{i}^{n}\left(\bmod \left(p^{r}\right)\right) . \tag{4.3}
\end{equation*}
$$

(c) Let f_{i} be a polynomial with coefficients in \mathcal{K} of degree less than $m_{i}(i=1,2, \ldots, t)$. Let $\left\{w_{n}^{\prime}\right\}_{n=0}^{\infty}$ be a sequence defined by

$$
\begin{equation*}
w_{n}^{\prime}=\sum_{i=1}^{t} f_{i}(n) \alpha_{i}^{n} \tag{4.4}
\end{equation*}
$$

Then (w^{\prime}) satisfies the same recursion relation (2.1) as $w\left(a_{1}, \ldots, a_{k}\right)$.
Proof: (a) The unique expression of (w) as given in (4.1) is proved in [5, Theorem C.1(a), pp. 33-34]. The expression of the coefficients of $f_{i}(n)$ as a fraction in \mathcal{K} of the form r_{1} / r_{2}, where $r_{1}, r_{2} \in R$, is determined by means of a partial fraction decomposition and by making use of the binomial theorem for negative integral exponents. By examining this proof, one sees that the only prime ideals in R which can possibly divide the denominators of the coefficients of f_{i} for $1 \leq i \leq t$ are those dividing

$$
\begin{equation*}
b!\alpha_{1} \alpha_{2} \cdots \alpha_{t} \prod_{1 \leq i<j<t}\left(\alpha_{i}-\alpha_{j}\right) . \tag{4.5}
\end{equation*}
$$

(b) By part (a), there exist polynomials $f_{i}(1 \leq i \leq t)$ such that

$$
\begin{equation*}
w_{n}=\sum_{i=1}^{t} f_{i}(n) \alpha_{i}^{n} \tag{4.6}
\end{equation*}
$$

where $\operatorname{deg}\left(f_{i}(n)\right)<m_{i}$ and the coefficients of f_{i} can be expressed in the form r_{1} / r_{2}, where $r_{1}, r_{2} \in R$ and the only prime ideals dividing r_{2} are those dividing

$$
b!\alpha_{1} \alpha_{2} \cdots \alpha_{t} \prod_{1 \leq i<j<t}\left(\alpha_{i}-\alpha_{j}\right) .
$$

Since $p>b, p \nmid a_{k}=\alpha_{1}^{m_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{t}^{m_{t}}$, and $p \nmid \hat{D}=\prod_{1 \leq i<j<t}\left(\alpha_{i}-\alpha_{j}\right)^{2}, r_{2}^{-1}$ exists in the quotient ring $R /\left(p^{r}\right)$. Reducing equation (4.6) modulo (p^{r}), the assertion is proved.
(c) This is proved in Theorem C.1(b) on pages 33-34 of [5].

Remark 4.2: We note that in the proof of Lemma 4.1, we do not necessarily assume unique factorization in R, but we make use of the unique factorization of ideals in R as a product of prime ideals.

In part (b) of Lemma 4.1, we talk about the coefficients of $F_{i}(n)$ in (4.3) being well-defined in the quotient ring $R /\left(p^{r}\right)$. We give an example in which the coefficients of $F_{i}(n)$ are not well-defined in $R /\left(p^{r}\right)$, and, in fact, w_{n} reduced modulo (p^{r}) cannot be expressed in the form given in congruence (4.3). Consider the Fibonacci sequence $u(1,-1)$ modulo (p^{r}), where $p=5$ and $r=2$. Then $\alpha_{1}=(1+\sqrt{5}) / 2, \alpha_{2}=(1-\sqrt{5}) / 2$, and $\alpha_{1}-\alpha_{2}=\sqrt{5}$. By the Binet formula,

$$
\begin{equation*}
u_{n}=\frac{1}{\sqrt{5}} \alpha_{1}^{n}-\frac{1}{\sqrt{5}} \alpha_{2}^{n} \tag{4.7}
\end{equation*}
$$

if $\alpha_{1} \neq \alpha_{2}$ and

$$
\begin{equation*}
u_{n}=n \alpha^{n-1} \tag{4.8}
\end{equation*}
$$

if $\alpha_{1}=\alpha_{2}$. Note that

$$
\begin{equation*}
\operatorname{gcd}\left(\left(\alpha_{1}-\alpha_{2}\right),\left(5^{2}\right)\right)=\operatorname{gcd}\left(\left(\sqrt{5},\left(5^{2}\right)\right)=(\sqrt{5}) \neq(1) .\right. \tag{4.9}
\end{equation*}
$$

However, $\sqrt{5}^{-1}$ is not well-defined modulo (52). Thus, (4.7) cannot hold as a congruence modulo (5^{2}), and by inspection, (4.8) is not satisfied for all n as a congruence modulo (5^{2}). In particular, we obtain

$$
u_{2} \equiv 2 \alpha^{1} \equiv 1+\sqrt{5} \equiv 1(\bmod (25)) .
$$

This implies that $\sqrt{5} \equiv 0(\bmod (25))$, which is a contradiction. We note on the other hand that although $\operatorname{gcd}\left(\left(\alpha_{1}-\alpha_{2}\right),(5)\right)=(\sqrt{5}) \neq(1)$, we can express u_{n} modulo (5) by means of the congruence

$$
u_{n} \equiv n \alpha^{n-1} \equiv n\left[(1+\sqrt{5}) 2^{-1}\right]^{n-1} \equiv n\left[(1+0) 2^{-1}\right]^{n-1} \equiv n 3^{n-1} \equiv 3^{-1} n 3^{n}(\bmod (5)) .
$$

Lemma 4.3: Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a regular recurrence with $a_{k} \neq 0$ and distinct characteristic roots $\alpha_{i}(i=1,2, \ldots, t)$ with multiplicity m_{i} as given in (2.2). Suppose that

$$
\begin{equation*}
w_{n}=\sum_{i=1}^{t} f_{i}(n) \alpha_{i}^{n} \tag{4.10}
\end{equation*}
$$

for some polynomials f_{i}, each of degree less than m_{i}, with coefficients in \mathcal{K}. Let

$$
b=\max _{1 \leq i \leq t}\left(m_{i}-1\right) .
$$

Define (w^{\prime}) by

$$
\begin{equation*}
w_{m}^{\prime}=w_{n+c m}, \tag{4.11}
\end{equation*}
$$

where n is a fixed nonzero integer and c is a fixed positive integer. Then (w^{\prime}) satisfies the k th-order recursion relation given by

$$
\begin{equation*}
w_{m+k}^{\prime}=a_{1}^{(c)} w_{m+k-1}^{\prime}-a_{2}^{(c)} w_{m+k-2}^{\prime}+\cdots+(-1)^{k+1} a_{k}^{(c)} w_{m}^{\prime}, \tag{4.12}
\end{equation*}
$$

where the parameters $a_{1}^{(c)}, a_{2}^{(c)}, \ldots, a_{t}^{(c)}$ are all rational integers. The characteristic polynomial of $\left(w^{\prime}\right)$ is given by

$$
\begin{equation*}
g(x)=x^{k}-a_{1}^{(c)} x^{k-1}+\cdots+(-1)^{k} a_{k}^{(c)}=\prod_{i=1}^{t}\left(x-\alpha_{i}^{c}\right)^{m_{i}}, \tag{4.13}
\end{equation*}
$$

where the α_{i} 's and m_{i} 's are as given in (2.2). Moreover,

$$
\begin{equation*}
w_{m}^{\prime}=\sum_{i=1}^{t}\left[\alpha_{i}^{n} f_{i}(n+c m)\right]\left(\alpha_{i}^{c}\right)^{m}=\sum_{i=1}^{t} g_{i}(m)\left(\alpha_{i}^{c}\right)^{m} \tag{4.14}
\end{equation*}
$$

where the polynomials f_{i} are as given in (4.10). Then $\operatorname{deg}\left(g_{i}\right)=\operatorname{deg}\left(f_{i}\right)<m_{i}(1 \leq i \leq t)$. Moreover, the coefficients of g_{i} can all be expressed in the form s_{1} / s_{2}, where $s_{1}, s_{2} \in R$ and a prime ideal P divides s_{2} only if

$$
\begin{equation*}
P \mid b!\alpha_{1} \alpha_{2} \cdots \alpha_{t} \prod_{1 \leq i<j \leq t}\left(\alpha_{i}-\alpha_{j}\right) . \tag{4.15}
\end{equation*}
$$

Proof: All the assertions except the last one are proved in [7]. The assertion given in (4.15) follows from (4.14) and Lemma 4.1 (a).

Lemma 4.4: Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a p-regular recurrence such that $p \backslash a_{k}$ and with distinct characteristic roots $\alpha_{1}, \ldots, \alpha_{t}$. Let r^{*} be defined as in Theorem 3.1. Let $h^{*}=h\left(p^{r^{*}}\right)$ and M^{*} be an integer such that $M^{*} \equiv M\left(p^{r^{*}}\right)\left(\bmod \left(p^{r}\right)\right)$. Then

$$
\alpha_{i}^{h^{*}} \equiv M^{*}\left(\bmod \left(p^{r^{*}}\right)\right)
$$

for $1 \leq i \leq t$.
Proof: First note that for $1 \leq i \leq t$, the sequence $\left\{\alpha_{i}^{n}\right\}_{n=0}^{\infty}$ with terms in R satisfies the same recursion relation (2.1) as $w\left(a_{1}, \ldots, a_{k}\right)$, though it also satisfies the first-order relation

$$
\alpha_{i}^{n+1}=\alpha_{i} \alpha_{i}^{n}
$$

with parameter α_{i} in R. Thus, by our earlier discussion, $\left\{\alpha_{i}^{n}\right\}$ has $h\left(p^{r^{*}}\right)$ as a general restricted period modulo ($p^{r^{*}}$) and M^{*} as a general multiplier modulo ($p^{r^{*}}$). Hence,

$$
\alpha_{i}^{h^{*}} \equiv M^{*} \alpha_{i}^{0} \equiv M^{*}\left(\bmod \left(p^{r^{*}}\right)\right)
$$

for $1 \leq i \leq t$.

5. PROOF OF THE MAIN THEOREM

Proof of Theorem 3.1: Since $p \not \backslash A_{0}(w)$, we see that (w) is p-regular. Moreover, (w) is purely periodic modulo p^{r}, as $p \nmid a_{k}$. The fact that (w) is nondegenerate guarantees that $e(p)<\infty$. We note that $r^{*}<r$, since $r>e$. Also, $h^{*}=h\left(p^{r^{*}}\right)<h\left(p^{r}\right)$ by Theorem 2.3. The result for the case in which $k=2$ and p is an odd prime was proved in Theorem 3.5 of [1]. The proof of Theorem 3.5 of [1] carries over completely to the case in which $k=2$ and $p=2$ upon making use of Theorem 2.3 of this paper.

Now assume that $k \geq 3$. Let M^{*} be a rational integer such that $M^{*} \equiv$ $w_{n+h^{*}} w_{n}^{-1}\left(\bmod p^{r}\right)$. By (2.2) and the hypotheses of Theorem 3.1, $w\left(a_{1}, \ldots, a_{k}\right)$ has characteristic polynomial

$$
\begin{equation*}
f(x)=\prod_{i=1}^{t}\left(x-\alpha_{i}\right)^{m_{i}} \tag{5.1}
\end{equation*}
$$

where $m_{1}=1$ or 2 and $m_{2}=m_{3}=\cdots=m_{t}=1$. By Lemma 4.1 (a), there exist polynomials $f_{i}(i=1,2, \ldots, t)$ with coefficients in \mathcal{K} such that

$$
\begin{equation*}
w_{n}=\sum_{i=1}^{t} f_{i}(n) \alpha_{i}^{n} \tag{5.2}
\end{equation*}
$$

where $\operatorname{deg}\left(f_{1}\right)<m_{1} \leq 2$ and $\operatorname{deg}\left(f_{i}\right)=0$ for $2 \leq i \leq t$.
Let $\left\{w_{m}^{*}\right\}_{m=0}^{\infty}$ be the sequence defined by

$$
\begin{equation*}
w_{m}^{*}=w_{n+m h^{*}} . \tag{5.3}
\end{equation*}
$$

By Lemma 4.3, (w^{*}) satisfies the k th-order recursion relation

$$
\begin{equation*}
w_{m+k}^{*}=a_{1}^{\left(h^{*}\right)} w_{m+k-1}^{*}-a_{2}^{\left(h^{*}\right)} w_{m+k-2}^{*}+\cdots+(-1)^{k+1} a_{k}^{\left(h^{*}\right)} w_{m}^{*} \tag{5.4}
\end{equation*}
$$

with characteristic polynomial

$$
\begin{equation*}
G(x)=\prod_{i=1}^{t}\left(x-\alpha_{i}^{h^{*}}\right)^{m_{i}} \tag{5.5}
\end{equation*}
$$

where the parameters $a_{i}^{\left(h^{*}\right)}$ are rational integers for $1 \leq i \leq t$ and the multiplicities m_{i} are the same as the multiplicities given in (5.1). Moreover, by (4.14),

$$
\begin{equation*}
w_{m}^{*}=\sum_{i=1}^{t} g_{i}(m)\left(\alpha_{i}^{h^{*}}\right)^{m} \tag{5.6}
\end{equation*}
$$

where the polynomial $g_{i}(1 \leq i \leq t)$ has coefficients in \mathcal{K} and has the same degree as the polynomial f_{i} given in (5.2). Since $w\left(a_{1}, \ldots, a_{k}\right)$ is nondegenerate, the characteristic roots $\alpha_{i}^{h^{*}}$ are distinct for $1 \leq i \leq t$. If $\operatorname{deg}\left(g_{1}\right)=0$, let $g_{1}(x)=c_{1}$, where $c_{1} \in \mathcal{K}$. We let $g_{i}(x)=c_{i}(2 \leq i \leq t)$, where $c_{i} \in \mathcal{K}$. Noting that $p \nmid a_{k} \hat{D}$ and that $m_{i} \leq 2$ for $1 \leq i \leq t$, it follows from Lemma 4.1 (b) and Lemma 4.3 that the coefficients of f_{i} and g_{i} are both well-defined modulo $\left(p^{r}\right)$. Hence, we see that

$$
\begin{equation*}
w_{m}^{*} \equiv \sum_{i=1}^{t} g_{i}(m)\left(\alpha_{i}^{h^{*}}\right)^{m}\left(\bmod \left(p^{r}\right)\right), \tag{5.7}
\end{equation*}
$$

where the coefficients of $g_{i}(m)$ can be taken to be elements of R. We note that the characteristic roots $\alpha_{i}^{h^{*}}(1 \leq i \leq t)$ of $G(x)$ are not necessarily distinct modulo $\left(p^{r}\right)$.

Let $H(x)$ be the polynomial defined by

$$
\begin{equation*}
H(x)=\left(x-\alpha_{1}^{h^{*}}\right)^{2} \text { if } m_{1}=2 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
H(x)=\left(x-M^{*}\right)^{2} \text { if } m_{1}=1 \tag{5.9}
\end{equation*}
$$

Note that if $m_{1}=2$, then $\alpha_{1}^{h^{*}} \in \mathbb{Z}$, since each of the parameters $a_{1}^{\left(h^{*}\right)}, a_{2}^{\left(h^{*}\right)}, \ldots, a_{k}^{\left(h^{*}\right)}$ is in \mathbb{Z}. (This observation is not absolutely necessary for our proof, but we use it for convenience.) Let $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ be a p-regular second-order linear recurrence having $H(x)$ as its characteristic polynomial. Then $\left(w^{\prime}\right)$ satisfies the recurrence relation

$$
\begin{equation*}
w_{i+2}^{\prime}=2 \alpha_{1}^{h^{*}} w_{i+1}^{\prime}-\alpha_{1}^{2 h^{*}} w_{i}^{\prime} \tag{5.10}
\end{equation*}
$$

if $m_{1}=2$ and

$$
\begin{equation*}
w_{i+2}^{\prime}=2 M^{*} w_{i+1}^{\prime}-\left(M^{*}\right)^{2} w_{i}^{\prime} \tag{5.11}
\end{equation*}
$$

if $m_{1}=1$. Note that, in particular, the second-order unit sequence $u\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ is p-regular.
Our proof will proceed by first showing that the sequence $\left\{\left(M^{*}\right)^{i}\right\}_{i=0}^{\infty}$ satisfies the same second-order recursion relation modulo $\left(p^{r}\right)$ as (w^{\prime}) does. We will next show that the k th-order recurrence $\left(w^{*}\right)$ also satisfies this same second-order recursion relation modulo $\left(p^{r}\right)$. We will be interested in particular in the sequence $\left\{\left(M^{*}\right)^{i} w_{0}^{*}\right\}_{i=1}^{\infty}$. This sequence satisfies the same second-order recursion relation as $\left\{\left(M^{*}\right)^{i}\right\}_{i=1}^{\infty}$ modulo $\left(p^{r}\right)$, since multiples of a recurrence modulo $\left(p^{r}\right)$ satisfy that same recursion relation $\left(\bmod \left(p^{r}\right)\right)$. Using (5.3) and the definition of M^{*} at the beginning of Section 5, we see that

$$
\begin{equation*}
w_{0}^{*}=w_{n} \text { and } w_{1}^{*} \equiv M^{*} w_{0}^{*}\left(\bmod p^{r}\right) \tag{5.12}
\end{equation*}
$$

Since the terms of $\left(w^{*}\right)$ are all in \mathbb{Z}, it follows that

$$
\begin{equation*}
w_{m}^{*} \equiv\left(M^{*}\right)^{m} w_{0}^{*}\left(\bmod p^{r}\right) \tag{5.13}
\end{equation*}
$$

for all nonnegative integers m. This will imply that M^{*} is a general special multiplier of $w\left(a_{1}, \ldots, a_{k}\right)$ with respect to w_{n} modulo p^{r}.

To continue with our proof, we now demonstrate that

$$
\begin{equation*}
H\left(M^{*}\right) \equiv 0\left(\bmod \left(p^{r}\right)\right) . \tag{5.14}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\left(p^{r^{*}}\right)^{2} \equiv 0\left(\bmod p^{r}\right) \tag{5.15}
\end{equation*}
$$

and that

$$
\begin{equation*}
\alpha_{i}^{h^{*}} \equiv M^{*}\left(\bmod \left(p^{r^{*}}\right)\right) \tag{5.16}
\end{equation*}
$$

for $1 \leq i \leq t$ by Lemma 4.4, it follows from (5.8) and (5.9) that (5.14) holds. This implies that the sequence $\left\{\left(M^{*}\right)^{i}\right\}_{i=0}^{\infty}$ satisfies the same recursion relation modulo $\left(p^{r}\right)$ as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ does.

We now show that, for a fixed i, the sequence $\left\{c_{i}\left(\alpha_{i}^{h^{*}}\right)^{m}\right\}_{m=0}^{\infty}$ satisfies the same secondorder recursion relation modulo $\left(p^{r}\right)$ as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ does. We first consider the case in which $m_{i}=1$. By hypothesis, this always occurs if $2 \leq i \leq t$. In this case, we also treat the situation in which $i=1$ and $m_{1}=1$. By (5.9), (5.15), and (5.16), we see that

$$
\begin{equation*}
H\left(\alpha_{i}^{h^{*}}\right) \equiv 0\left(\bmod \left(p^{r}\right)\right) \tag{5.17}
\end{equation*}
$$

if $2 \leq i \leq t$ or both $i=1$ and $m_{1}=1$. Thus, $\left\{\left(\alpha_{i}^{h^{*}}\right)^{m}\right\}_{m=0}^{\infty}$ and hence, $\left\{c_{i}\left(\alpha_{i}^{h^{*}}\right)^{m}\right\}_{m=0}^{\infty}$ both satisfy the same second-order recursion relation modulo $\left(p^{r}\right)$ as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ when $2 \leq i \leq t$ or $i=1$ and $m_{1}=1$.

Next, we consider the remaining case in which $i=1$ and $m_{1}=2$. Recall that $m_{1}=1$ or 2 . Then by (5.8),

$$
\begin{equation*}
H\left(\alpha_{1}^{h^{*}}\right)=0 . \tag{5.18}
\end{equation*}
$$

Thus, by Lemma 4.1 (c), (5.8), and (5.18), the sequence $\left\{g_{1}(m)\left(\alpha_{1}^{h^{*}}\right)^{m}\right\}_{m=0}^{\infty}$ satisfies the same recursion relation as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)=w^{\prime}\left(2 \alpha_{1}^{h^{*}},-\alpha_{1}^{2 h^{*}}\right)$ does. Reducing modulo (p^{r}), we see that the sequence $\left\{g_{1}(m)\left(\alpha_{1}^{h^{*}}\right)^{m}\right\}_{m=0}^{\infty}$ satisfies the same recursion relation modulo $\left(p^{r}\right)$ as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ does.

Noting that

$$
w_{m}^{*} \equiv \sum_{i=1}^{t} g_{i}(m)\left(\alpha_{i}^{h^{*}}\right)^{m}\left(\bmod \left(p^{r}\right)\right)
$$

and that linear combinations of linear recurrences all satisfying a particular recursion relation modulo $\left(p^{r}\right)$ also satisfy that same recursion relation $\left(\bmod \left(p^{r}\right)\right)$, we see that the k th-order recurrence w_{m}^{*} satisfies the same second-order recursion relation modulo $\left(p^{r}\right)$ as $w^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ does. The result now follows from our earlier discussion.

ACKNOWLEDGMENT

I wish to thank the referee for the careful reading of the paper and suggestions which improved the paper.

REFERENCES

[1] Walter Carlip and Lawrence Somer. "Bounds for Frequencies of Residues of Regular Second-Order Recurrences Modulo p^{r}." Number Theory in Progress, Vol. 2 (Zakopane Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 691-719.
[2] Walter Carlip and Lawrence Somer. "The Existence of Special Multipliers of SecondOrder Recurrence Sequences." The Fibonacci Quarterly 41.2 (2003): 156-168.
[3] R. D. Carmichael. "On Sequences of Integers Defined by Recurrence Relations." Quart. J. Pure Appl. Math. 48 (1920): 343-372.
[4] L. M. Milne-Thompson. The Calculus of Finite Differences, Macmillan, New York, 1960.
[5] T. N. Shorey and R. Tijdman. Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986.
[6] Lawrence Somer. The Divisibility and Modular Properties of kth-Order Linear Recurrences over the Ring of Integers of an Algebraic Number Field with Respect to Prime Ideals, Ph.D. Thesis, The University of Illinois at Urbana-Champaign, 1985.
[7] Lawrence Somer. "Solution to Problem H-377." The Fibonacci Quarterly 24.3 (1986): 284-285.
[8] Lawrence Somer. "Special Multipliers of Lucas Sequences Modulo p^{r}." Applications of Fibonacci Numbers, Vol. 8, F. T. Howard (Ed.), Kluwer Academic Publishers, Dordrecht, 1999, pp. 325-336.

AMS Classification Numbers: 11B37, 11B50

※※ ※

