SPECIAL MULTIPLIERS OF kth-ORDER LINEAR RECURRENCES MODULO p^r

Lawrence Somer

Department of Mathematics, Catholic University of America, Washington, DC 20064 USA e-mail: somer@cua.edu (Submitted January 2005-Final Revision March 2006)

ABSTRACT

The author has previously generalized the concept of a multiplier of a second-order linear recurrence modulo p^r , where p is an odd prime and r is a positive integer, to that of a special multiplier of a second-order linear recurrence modulo p^r . In this paper, we will extend these results to show that infinitely many kth-order linear recurrences have special multipliers modulo p^r , where $k \ge 2$ and p is a prime, not necessarily odd.

1. INTRODUCTION

In [1], [2], and [8], Somer generalized the concept of a multiplier of a second-order linear recurrence modulo p^r , where p is an odd prime and $r \ge 1$, to that of a special multiplier of a second-order linear recurrence modulo p^r . Special multipliers modulo p^r were used in [1] to investigate the distribution of residues in second-order recurrences reduced modulo p^r . In this paper, we will extend these results to show that infinitely many kth-order linear recurrences satisfying certain conditions have special multipliers modulo p^r , where $k \ge 2$ and p is a prime, not necessarily odd. Throughout this paper, p will denote a rational prime.

2. PRELIMINARIES

Let $k \ge 2$ and let $w(a_1, a_2, \ldots, a_k) = (w)$ be a kth-order linear recurrence satisfying the recursion relation

$$w_{n+k} = a_1 w_{n+k-1} - a_2 w_{n+k-2} + \dots + (-1)^{k+1} a_k w_n,$$
(2.1)

where the parameters a_1, \ldots, a_k and initial terms w_0, \ldots, w_{k-1} are all rational integers. We will assume throughout this paper that $w(a_1, \ldots, a_k)$ is a *regular* recurrence, that is, $w(a_1, \ldots, a_k)$ satisfies no linear recursion relation of order less than k. We will distinguish one particular recurrence, the unit sequence satisfying the recursion relation (2.1) and having initial terms $u_0 = u_1 = \cdots = u_{k-2} = 0, \ u_{k-1} = 1.$

Associated with $w(a_1, \ldots, a_k)$ is the characteristic polynomial

$$f(x) = x^{k} - a_{1}x^{k-1} + \dots + (-1)^{k}a_{k} = \prod_{i=1}^{t} (x - \alpha_{i})^{m_{1}}, \qquad (2.2)$$

where the distinct characteristic roots α_i appear with multiplicity m_i for i = 1, 2, ..., t. We let D be the discriminant of f(x). We further let $\mathcal{K} = \mathbb{Q}(\alpha_1, \ldots, \alpha_t)$ be the Galois field associated with f(x), i.e., the splitting field of the characteristic roots of f(x), and let Rbe the ring of integers of \mathcal{K} . Note that $\alpha \in R$ for $1 \leq i \leq t$. In this paper, we will also be considering recurrences $w'(a_1, \dots, a_k)$ satisfying the recursion relation (2.1), but having initial terms w'_0, \dots, w'_{k-1} in R and not necessarily just in Z. We also let

$$\hat{f}(x) = \prod_{i=1}^{t} (x - \alpha_i)$$
 (2.3)

be the square-free kernel of f(x). Then the coefficients of $\hat{f}(x)$ are rational integers. We let the discriminant of $\hat{f}(x)$ be denoted by \hat{D} . If t = 1, we let $\hat{D} = 1$. We let (p) denote the principal ideal in R generated by p.

We will assume throughout this article that $a_k \neq 0$ and $gcd(a_k, p^r) = 1$. Then it is known (see [3, pp. 344-345]) that $w(a_1, \ldots, a_k)$ is purely periodic modulo p^r . The period $\lambda(p^r)$ of (w)modulo p^r is the least positive integer λ such that

$$w_{n+\lambda} \equiv w_n \pmod{p^r}$$

for all n. Any positive integer m such that $w_{n+m} \equiv w_n \pmod{p^r}$ for all n is called a general period of (w) modulo p^r . Clearly, if m is a general period of (w) modulo p^r , then $\lambda(p^r)|m$.

In [3, pp. 345-355], R. D. Carmichael generalized the concept of the period $\lambda(p^r)$ of (w) modulo p^r to that of the *restricted period* $h(p^r)$ of (w) modulo p^r . He defined $h(p^r)$ to be the least positive integer h such that for some integer M, coprime to p, and for all n

$$w_{n+h} \equiv M w_n \pmod{p^r}$$

The integer $M = M(p^r)$, defined up to congruence modulo p^r , is called the multiplier of (w) modulo p^r . Any positive integer c such that $w_{n+c} \equiv Gw_n \pmod{p^r}$ for some integer G and all n is called a *general restricted period* of (w) modulo p^r , and G is called a *general multiplier* of (w) modulo p^r . If c is a general restricted period of (w) modulo p^r , then $h(p^r)|c$. It was shown in [3, pp. 345-355] that $h(p^r)|\lambda(p^r)$ and that $E(p^r) = \lambda(p^r)/h(p^r)$ is the multiplicative order in $(\mathbb{Z}/p\mathbb{Z})^*$ of the multiplier $M(p^r)$. Moreover, if $h = h(p^r)$ and $M = M(p^r)$, then, for all n,

$$w_{n+ih} \equiv M^i w_n \pmod{p^r}.$$
(2.4)

Thus, every general multiplier G satisfies $G \equiv M^i \pmod{p^r}$ for some *i*, and the general multipliers of (w) modulo p^r form a cyclic group of order $E(p^r)$ in $(\mathbb{Z}/p\mathbb{Z})^*$.

Given the prime p, we define the positive integer e(p) = e as follows. If p is an odd prime, we define e to be the largest integer, if it exists, such that $h(p^e) = h(p)$. If p = 2, we let e be the largest integer, if it exists, such that $h(2^2) = h(2^e)$. If e does not exist, we write informally that $e = \infty$. We will give conditions shortly that show that it is usual that $e < \infty$.

As was pointed out in [1], restricted periods and multipliers may be viewed from another perspective. If $h = h(p^r)$ and $M = M(p^r)$, then for every *n* the sequence (w^*) defined by $w_m^* = w_{n+mh}$ satisfies the first-order recursion relation $w_{m+1}^* \equiv Mw_m^* \pmod{p^r}$. Thus, the restricted period modulo p^r can be characterized as the smallest positive integer *h* such that for all *n*, the subsequence $\{w_{n+mh}\}_{m=0}^{\infty}$ satisfies the same first-order recursion relation modulo p^r .

It may occur, however, that for a fixed n, there exists a nonnegative integer g < hsuch that the subsequence defined by $w_m^* = w_{n+mg}$ satisfies a first-order recursion relation $w_{m+1}^* \equiv M^* w_m^* \pmod{p^r}$. We will be interested in this phenomenon when $g = h(p^c)$ for some positive integer c < r and $h(p^c) < h(p^r)$, where $h(p^c)$ and $h(p^r)$ are restricted periods of (w). (In this case, g becomes a restricted period when (w) is reduced modulo p^c .) Since $h(p) = h(p^2) = \cdots = h(p^e)$ when p is an odd prime and $h(p^2) = h(p^3) = \cdots = h(p^e)$ when p = 2, we will assume that r > e. This motivates the following definition.

Definition 2.1: Let $w(a_1, \ldots, a_k)$ be a kth-order recurrence and p be a prime. For fixed integers $n \ge 0$, r > e, and c such that $e \le c < r$, we call $h(p^c) = h'$ a general special restricted period of (w) with respect to w_n modulo p^r if $h(p^c) < h(p^r)$ and the sequence $w_m^* = w_{n+mh'}$ satisfies a first-order recursion relation $w_{m+1}^* \equiv M^* w_m^* \pmod{p^r}$ for some rational integer M^* . The integer $M^* = M^*(n, h(p^c), p^r)$ (defined up to congruence modulo p^r) is called a general special multiplier of (w) with respect to w_n modulo p^r . If c is the least positive integer greater than or equal to e such that $h(p^c)$ is a general special restricted period of (w) with respect to w_n modulo p^r , then $h(p^c)$ is called the principal special restricted period of (w) with respect to w_n modulo p^r .

We note that if $e \leq c < r$, $h' = h(p^c)$, and $w_n \not\equiv 0 \pmod{p}$, then $M^*(n, h(p^c), p^r) \equiv w_{n+h'} w_n^{-1} \pmod{p^r}$.

Example 2.2: Consider the Fibonacci sequence u(1, -1). Here $h(3^4) = 108$ and $M(3^4) \equiv 80$ (mod 3^4). Let $h^* = h(3^2) = 12$ and h' = h(3) = 4. We note that if $u_i^* = u_{1+h^*i} = u_{1+12i}$, then $u_{i+1}^* \equiv 71u_i^* \pmod{3^4}$, while if $u_i' = u_{1+h'i} = u_{1+4i}$, then (u_i') does not satisfy a first-order recursion relation modulo 2^4 . Hence, $h(3^2) = 12$ is the principal special restricted period of u(1, -1) with respect to u_1 modulo 3^4 , while

$$M^*(1, h(3^2), 3^4) = M^*(1, 12, 81) \equiv 71 \pmod{3^4}$$

is the principal special multiplier of (u) with respect to $u_1 \pmod{3^4}$.

We further observe that if $h'' = h(3^3) = 36$ and $u''_i = u_{1+h''i} = u_{1+36i}$, then $u_{i+1}'' \equiv 53$ (mod 3⁴). Thus, $h(3^3) = 36$ is a nonprincipal general special restricted period of (u) with respect to $u_1 \pmod{3^4}$ and

$$M^*(1, h(3^3), 3^4) = M^*(1, 36, 81) \equiv 53 \pmod{3^4}$$

is a nonprincipal general special multiplier of (u) with respect to $u_1 \pmod{3^4}$. Since $h(3^3) = 3 \cdot h(3^2)$, it follows from (2.4) that

$$M^*(1, h(3^3), 3^4) \equiv 53 \equiv [M^*(1, h(3^2), 3^4)]^3 \equiv 71^3 \pmod{3^4}.$$

Before presenting our main theorem, we will need some results and definitions concerning regular and *p*-regular recurrences. Given the recurrence $w(a_1, \ldots, a_k)$, we define the *k*th-order determinant

$$A_{n}(w) = \begin{vmatrix} w_{n} & w_{n+1} & \dots & w_{n+k-1} \\ w_{n+1} & w_{n+2} & \dots & w_{n+k} \\ \dots & \dots & \dots & \dots \\ w_{n+k-1} & w_{n+k} & \dots & w_{n+2k-2} \end{vmatrix}.$$
 (2.5)

It is known that $w(a_1, \ldots, a_k)$ is regular if and only if $A_0(w) \neq 0$. By Heymann's theorem [4, Chapter 12.12],

$$A_n(w) = a_k^n A_0(w). (2.6)$$

Given the prime p, the recurrence (w) is called *p*-regular if

$$gcd(A_0(w), p) = 1.$$
 (2.7)

We note that $w(a_1, \ldots, a_k)$ is *p*-regular if and only if (w), when reduced modulo p, does not satisfy a recursion relation of order less than k. Notice that by (2.6), if $w(a_1, \ldots, a_k)$ is *p*regular, then $A_n(w) \neq 0 \pmod{p}$ for all $n \geq 0$. We observe that $A_0(u) = (-1)^{k(k-1)/2}$, and thus, $u(a_1, \ldots, a_k)$ is *p*-regular for all primes p. If $w'(a_1, \ldots, a_k)$ is a recurrence satisfying (2.1) with initial terms w'_0, \ldots, w'_{k-1} in R such that $gcd((A_0(w')), (p)) = (1)$, we say that (w') is (p)-regular, where $(A_0(w'))$ and (p) are principal ideals in R.

Let $w(a_1, \ldots, a_k)$ be *p*-regular and $w'(a_1, \ldots, a_k)$ be any other recurrence satisfying (2.1) with initial terms $w'_0, w'_1, \ldots, w'_{k-1}$ in R and not necessarily (*p*)-regular. Then (2.7) together with Cramer's rule imply the existence of algebraic integers $c_0, c_1, \ldots, c_{k-1}$ in R (which are all in \mathbb{Z} if w'_0, \ldots, w'_{k-1} are all in \mathbb{Z}) such that

It now follows by the recursion relation defining both $w(a_1, \ldots, a_k)$ and $w'(a_1, \ldots, a_k)$ that for all n,

$$w'_n \equiv c_0 w_n + c_1 w_{n+1} + \dots + c_{k-1} w_{n+k-1} \pmod{(p^r)}.$$

Therefore, $w'(a_1, \ldots, a_k)$ has the period, restricted period, and multiplier modulo p^r of the *p*-regular recurrence $w(a_1, \ldots, a_k)$ as a general period, general restricted period, and general multiplier modulo (p^r) , respectively. Moreover, it follows that all *p*-regular recurrences have the same period, restricted period, and multiplier modulo p^r . Further, all *p*-regular recurrences therefore have the same value for e(p).

We say that the recurrence $w(a_1, \ldots, a_k)$ is degenerate if α_i/α_j is a root of unity for some pair of distinct characteristic roots α_i and α_j , where $1 \leq i < j \leq t$. Let p be an odd prime. Since $u(a_1, \ldots, a_k)$ is p-regular for all odd primes p, it follows that if $w(a_1, \ldots, a_k)$ is any pregular recurrence, then $e(p) = \infty$ if and only if $u_{h(p)+i} = 0$ for $i = 0, 1, \ldots, k-2$. By Corollary C.1 on page 38 of [5], this occurs only if $w(a_1, \ldots, a_k)$ is a degenerate sequence. (Note that $u(a_1, \ldots, a_k)$ is also then degenerate.)

The following theorem determines the value of $h(p^r)$ for *p*-regular recurrences $w(a_1, \ldots, a_k)$ in terms of $h(p^e)$ when $r \ge e$.

Theorem 2.3: Let $w(a_1, \ldots, a_k)$ be a p-regular recurrence for which $e(p) < \infty$. Suppose that $r \ge e$. Then $h(p^r) = p^{r-e}h(p^e)$.

Proof: This is proved in Theorem 1.5.18 on pages 24-25 of [6]. \Box

3. THE MAIN THEOREM

Theorem 3.1: Let $k \ge 2$ and let $w(a_1, \ldots, a_k)$ be a nondegenerate regular recurrence with $a_k \ne 0$, initial terms w_0, \ldots, w_{k-1} all in \mathbb{Z} , and distinct characteristic roots $\alpha_1, \ldots, \alpha_t$. Let the multiplicity of α_i be m_i $(1 \le i \le t)$ and suppose that $m_1 \le 2$ and $m_2 = m_3 = \cdots = m_t = 1$.

Let p be a rational prime such that $p \mid a_k A_0(w)$. If $k \geq 3$, suppose further that $p \mid \hat{D}$. Then (w) is p-regular, purely periodic modulo p^r , and $e(p) < \infty$. Suppose that r > e. Let $r^* = \max(\lceil r/2 \rceil, e)$. Suppose that n is a fixed nonnegative integer such that $w_n \not\equiv 0 \pmod{p}$.

Then $h(p^{r}) = h^*$ is a general special restricted period of (w) with respect to w_n modulo p^r and

$$M^*(n, h(p^{r^*}), p^r) \equiv w_{n+h^*} w_n^{-1} \pmod{p^r}$$

is a general special multiplier of (w) with respect to w_n modulo p^r .

Moreover, if k = 2, then $h(p^{r^*})$ is the principal special restricted period of (w) with respect to w_n modulo p^r and $M^*(n, h(p^{r^*}), p^r)$ is the principal multiplier of (w) with respect to w_n modulo p^r .

Example 3.2: When $k \ge 3$ and r > e, we shall see below that while Theorem 3.1 guarantees that if $w(a_1, \ldots, a_k)$ is a p-regular recurrence and $w_n \not\equiv 0 \pmod{p}$, then $h(p^{r^*})$ is a general special restricted period of (w) with respect to w_n modulo p^r , it sometimes happens that $h(p^{r^*})$ might not be the principal restricted period. We will also present an example in which $h(p^{r^*})$ is the principal restricted period of (w) with respect to w_n modulo p^r .

For both examples, we consider the 5-regular unit sequence u(4, 1, -6) modulo 5^3 . Then e(5) = 1 and $r^* = 2$. We note that u(4, 1, -6) has the characteristic polynomial

$$f(x) = x^3 - 4x^2 + x + 6 = (x+1)(x-2)(x-3)$$

and that $D = \hat{D} = 144$. By Theorem 3.1, $h(5^{r^*}) = h(5^2) = 20$ is a general restricted period of (u) with respect to $u_2 \equiv 1$ modulo 5^3 and

$$M^*(2, h(5^2), 5^3) = M^*(2, 20, 125) \equiv u_{22}u_2^{-1} \equiv 51(1^{-1}) \equiv 51 \pmod{125}$$

is a general special multiplier of (u) with respect to u_2 modulo 5^3 . However, by inspection, one sees that h(5) = 4 is the principal special restricted period with respect to u_2 modulo 5^3 and

$$M^*(3, h(5^2), 5^3) = M^*(3, 20, 125) \equiv u_{23}u_3^{-1} \equiv 4(4^{-1}) \equiv 1 \pmod{125}$$

is the principal special multiplier of (u) with respect to u_3 modulo 5^3 .

From looking at numerous examples, it appears that for $k \ge 3$, $h(p^{r^*})$ is usually the principal special restricted period of $w(a_1, \ldots, a_k)$ with respect to w_n modulo p^r , but we have no proof of this.

4. NECESSARY LEMMAS

Before proving Theorem 3.1, we will need the following lemmas.

Lemma 4.1: Let $w(a_1, \ldots, a_k)$ be a regular recurrence with $a_k \neq 0$ and distinct characteristic roots α_i with multiplicity m_i $(1 \leq i \leq t)$. Let

$$b = \max_{1 \le i \le t} (m_i - 1).$$

Let p be a rational prime such that p > b and $p \not| a_k D$.

(a) There exist uniquely determined polynomials $f_i \in \mathcal{K}[x]$ of degree less than m_i (i = 1, 2, ..., t) such that

$$w_n = \sum_{i=1}^t f_i(n) \alpha_i^n.$$
 (4.1)

Moreover, each of the coefficients of $f_i(n)$ can be expressed as a fraction r_1/r_2 , where $r_1, r_2 \in R$, and the prime ideal P divides r_2 only if

$$P \mid b! \alpha_1 \alpha_2 \dots \alpha_t \prod_{1 \le i < j < t} (\alpha_i - \alpha_j).$$

$$(4.2)$$

(b) There exist polynomials F_i of degree less than m_i $(1 \le i \le t)$ with coefficients which are well-defined elements of the quotient ring $R/(p^r)$ such that

$$w_n \equiv \sum_{i=1}^t F_i(n)\alpha_i^n \pmod{(p^r)}.$$
(4.3)

(c) Let f_i be a polynomial with coefficients in \mathcal{K} of degree less than m_i (i = 1, 2, ..., t). Let $\{w'_n\}_{n=0}^{\infty}$ be a sequence defined by

$$w'_{n} = \sum_{i=1}^{t} f_{i}(n)\alpha_{i}^{n}.$$
(4.4)

Then (w') satisfies the same recursion relation (2.1) as $w(a_1, \ldots, a_k)$.

Proof: (a) The unique expression of (w) as given in (4.1) is proved in [5, Theorem C.1(a), pp. 33-34]. The expression of the coefficients of $f_i(n)$ as a fraction in \mathcal{K} of the form r_1/r_2 , where $r_1, r_2 \in R$, is determined by means of a partial fraction decomposition and by making use of the binomial theorem for negative integral exponents. By examining this proof, one sees that the only prime ideals in R which can possibly divide the denominators of the coefficients of f_i for $1 \leq i \leq t$ are those dividing

$$b!\alpha_1\alpha_2\cdots\alpha_t \prod_{1\leq i< j< t} (\alpha_i - \alpha_j).$$
(4.5)

(b) By part (a), there exist polynomials f_i $(1 \le i \le t)$ such that

$$w_n = \sum_{i=1}^t f_i(n)\alpha_i^n,\tag{4.6}$$

where $deg(f_i(n)) < m_i$ and the coefficients of f_i can be expressed in the form r_1/r_2 , where $r_1, r_2 \in R$ and the only prime ideals dividing r_2 are those dividing

$$b! \alpha_1 \alpha_2 \cdots \alpha_t \prod_{1 \le i < j < t} (\alpha_i - \alpha_j).$$

Since p > b, $p \not| a_k = \alpha_1^{m_1} \alpha_2^{m_2} \cdots \alpha_t^{m_t}$, and $p \not| \hat{D} = \prod_{1 \le i < j < t} (\alpha_i - \alpha_j)^2$, r_2^{-1} exists in the quotient ring $R/(p^r)$. Reducing equation (4.6) modulo (p^r) , the assertion is proved.

(c) This is proved in Theorem C.1(b) on pages 33-34 of [5].

Remark 4.2: We note that in the proof of Lemma 4.1, we do not necessarily assume unique factorization in R, but we make use of the unique factorization of ideals in R as a product of prime ideals.

In part (b) of Lemma 4.1, we talk about the coefficients of $F_i(n)$ in (4.3) being well-defined in the quotient ring $R/(p^r)$. We give an example in which the coefficients of $F_i(n)$ are not well-defined in $R/(p^r)$, and, in fact, w_n reduced modulo (p^r) cannot be expressed in the form given in congruence (4.3). Consider the Fibonacci sequence u(1, -1) modulo (p^r) , where p = 5and r = 2. Then $\alpha_1 = (1 + \sqrt{5})/2$, $\alpha_2 = (1 - \sqrt{5})/2$, and $\alpha_1 - \alpha_2 = \sqrt{5}$. By the Binet formula,

$$u_n = \frac{1}{\sqrt{5}} \alpha_1^n - \frac{1}{\sqrt{5}} \alpha_2^n \tag{4.7}$$

if $\alpha_1 \neq \alpha_2$ and

$$u_n = n\alpha^{n-1} \tag{4.8}$$

if $\alpha_1 = \alpha_2$. Note that

$$gcd((\alpha_1 - \alpha_2), (5^2)) = gcd((\sqrt{5}, (5^2)) = (\sqrt{5}) \neq (1).$$
(4.9)

However, $\sqrt{5}^{-1}$ is not well-defined modulo (5²). Thus, (4.7) cannot hold as a congruence modulo (5²), and by inspection, (4.8) is not satisfied for all n as a congruence modulo (5²). In particular, we obtain

$$u_2 \equiv 2\alpha^1 \equiv 1 + \sqrt{5} \equiv 1 \pmod{(25)}.$$

This implies that $\sqrt{5} \equiv 0 \pmod{(25)}$, which is a contradiction. We note on the other hand that although $gcd((\alpha_1 - \alpha_2), (5)) = (\sqrt{5}) \neq (1)$, we can express u_n modulo (5) by means of the congruence

$$u_n \equiv n\alpha^{n-1} \equiv n[(1+\sqrt{5})2^{-1}]^{n-1} \equiv n[(1+0)2^{-1}]^{n-1} \equiv n3^{n-1} \equiv 3^{-1}n3^n \pmod{(5)}.$$

Lemma 4.3: Let $w(a_1, \ldots, a_k)$ be a regular recurrence with $a_k \neq 0$ and distinct characteristic roots α_i $(i = 1, 2, \ldots, t)$ with multiplicity m_i as given in (2.2). Suppose that

$$w_n = \sum_{i=1}^t f_i(n)\alpha_i^n \tag{4.10}$$

for some polynomials f_i , each of degree less than m_i , with coefficients in \mathcal{K} . Let

$$b = \max_{1 \le i \le t} (m_i - 1).$$

Define (w') by

$$w'_m = w_{n+cm},\tag{4.11}$$

where n is a fixed nonzero integer and c is a fixed positive integer. Then (w') satisfies the kth-order recursion relation given by

$$w'_{m+k} = a_1^{(c)} w'_{m+k-1} - a_2^{(c)} w'_{m+k-2} + \dots + (-1)^{k+1} a_k^{(c)} w'_m,$$
(4.12)

where the parameters $a_1^{(c)}, a_2^{(c)}, \ldots, a_t^{(c)}$ are all rational integers. The characteristic polynomial of (w') is given by

$$g(x) = x^{k} - a_{1}^{(c)} x^{k-1} + \dots + (-1)^{k} a_{k}^{(c)} = \prod_{i=1}^{t} (x - \alpha_{i}^{c})^{m_{i}}, \qquad (4.13)$$

where the α_i 's and m_i 's are as given in (2.2). Moreover,

$$w'_{m} = \sum_{i=1}^{t} [\alpha_{i}^{n} f_{i}(n+cm)] (\alpha_{i}^{c})^{m} = \sum_{i=1}^{t} g_{i}(m) (\alpha_{i}^{c})^{m}, \qquad (4.14)$$

where the polynomials f_i are as given in (4.10). Then $deg(g_i) = deg(f_i) < m_i$ $(1 \le i \le t)$. Moreover, the coefficients of g_i can all be expressed in the form s_1/s_2 , where $s_1, s_2 \in R$ and a prime ideal P divides s_2 only if

$$P \mid b! \alpha_1 \alpha_2 \cdots \alpha_t \prod_{1 \le i < j \le t} (\alpha_i - \alpha_j).$$
(4.15)

Proof: All the assertions except the last one are proved in [7]. The assertion given in (4.15) follows from (4.14) and Lemma 4.1 (a).

Lemma 4.4: Let $w(a_1, \ldots, a_k)$ be a p-regular recurrence such that $p \not| a_k$ and with distinct characteristic roots $\alpha_1, \ldots, \alpha_t$. Let r^* be defined as in Theorem 3.1. Let $h^* = h(p^{r^*})$ and M^* be an integer such that $M^* \equiv M(p^{r^*}) \pmod{p^r}$. Then

$$\alpha_i^{h^*} \equiv M^* \pmod{(p^{r^*})}$$

for $1 \leq i \leq t$.

Proof: First note that for $1 \le i \le t$, the sequence $\{\alpha_i^n\}_{n=0}^{\infty}$ with terms in R satisfies the same recursion relation (2.1) as $w(a_1, \ldots, a_k)$, though it also satisfies the first-order relation

$$\alpha_i^{n+1} = \alpha_i \alpha_i^n$$

with parameter α_i in R. Thus, by our earlier discussion, $\{\alpha_i^n\}$ has $h(p^{r^*})$ as a general restricted period modulo (p^{r^*}) and M^* as a general multiplier modulo (p^{r^*}) . Hence,

$$\alpha_i^{h^*} \equiv M^* \alpha_i^0 \equiv M^* \pmod{(p^{r^*})}$$

for $1 \leq i \leq t$. \Box

5. PROOF OF THE MAIN THEOREM

Proof of Theorem 3.1: Since $p \not| A_0(w)$, we see that (w) is *p*-regular. Moreover, (w) is purely periodic modulo p^r , as $p \not| a_k$. The fact that (w) is nondegenerate guarantees that $e(p) < \infty$. We note that $r^* < r$, since r > e. Also, $h^* = h(p^{r^*}) < h(p^r)$ by Theorem 2.3. The result for the case in which k = 2 and p is an odd prime was proved in Theorem 3.5 of [1]. The proof of Theorem 3.5 of [1] carries over completely to the case in which k = 2 and p = 2 upon making use of Theorem 2.3 of this paper.

Now assume that $k \geq 3$. Let M^* be a rational integer such that $M^* \equiv w_{n+h^*}w_n^{-1} \pmod{p^r}$. By (2.2) and the hypotheses of Theorem 3.1, $w(a_1, \ldots, a_k)$ has characteristic polynomial

$$f(x) = \prod_{i=1}^{t} (x - \alpha_i)^{m_i},$$
(5.1)

where $m_1 = 1$ or 2 and $m_2 = m_3 = \cdots = m_t = 1$. By Lemma 4.1 (a), there exist polynomials f_i $(i = 1, 2, \ldots, t)$ with coefficients in \mathcal{K} such that

$$w_n = \sum_{i=1}^t f_i(n)\alpha_i^n,\tag{5.2}$$

where $deg(f_1) < m_1 \leq 2$ and $deg(f_i) = 0$ for $2 \leq i \leq t$.

Let $\{w_m^*\}_{m=0}^{\infty}$ be the sequence defined by

$$w_m^* = w_{n+mh^*}.$$
 (5.3)

By Lemma 4.3, (w^*) satisfies the kth-order recursion relation

$$w_{m+k}^* = a_1^{(h^*)} w_{m+k-1}^* - a_2^{(h^*)} w_{m+k-2}^* + \dots + (-1)^{k+1} a_k^{(h^*)} w_m^*$$
(5.4)

with characteristic polynomial

$$G(x) = \prod_{i=1}^{t} (x - \alpha_i^{h^*})^{m_i},$$
(5.5)

where the parameters $a_i^{(h^*)}$ are rational integers for $1 \le i \le t$ and the multiplicities m_i are the same as the multiplicities given in (5.1). Moreover, by (4.14),

$$w_m^* = \sum_{i=1}^t g_i(m) (\alpha_i^{h^*})^m,$$
(5.6)

where the polynomial g_i $(1 \leq i \leq t)$ has coefficients in \mathcal{K} and has the same degree as the polynomial f_i given in (5.2). Since $w(a_1, \ldots, a_k)$ is nondegenerate, the characteristic roots $\alpha_i^{h^*}$ are distinct for $1 \leq i \leq t$. If $deg(g_1) = 0$, let $g_1(x) = c_1$, where $c_1 \in \mathcal{K}$. We let $g_i(x) = c_i$ $(2 \leq i \leq t)$, where $c_i \in \mathcal{K}$. Noting that $p \not| a_k \hat{D}$ and that $m_i \leq 2$ for $1 \leq i \leq t$, it follows from Lemma 4.1 (b) and Lemma 4.3 that the coefficients of f_i and g_i are both well-defined modulo (p^r) . Hence, we see that

$$w_m^* \equiv \sum_{i=1}^t g_i(m) (\alpha_i^{h^*})^m \; (\text{mod}(p^r)), \tag{5.7}$$

where the coefficients of $g_i(m)$ can be taken to be elements of R. We note that the characteristic roots $\alpha_i^{h^*}$ $(1 \le i \le t)$ of G(x) are not necessarily distinct modulo (p^r) .

Let H(x) be the polynomial defined by

$$H(x) = (x - \alpha_1^{h^*})^2 \text{ if } m_1 = 2$$
(5.8)

and

$$H(x) = (x - M^*)^2$$
 if $m_1 = 1.$ (5.9)

Note that if $m_1 = 2$, then $\alpha_1^{h^*} \in \mathbb{Z}$, since each of the parameters $a_1^{(h^*)}, a_2^{(h^*)}, \ldots, a_k^{(h^*)}$ is in \mathbb{Z} . (This observation is not absolutely necessary for our proof, but we use it for convenience.) Let $w'(a'_1, a'_2)$ be a *p*-regular second-order linear recurrence having H(x) as its characteristic polynomial. Then (w') satisfies the recurrence relation

$$w_{i+2}' = 2\alpha_1^{h^*} w_{i+1}' - \alpha_1^{2h^*} w_i'$$
(5.10)

if $m_1 = 2$ and

$$w'_{i+2} = 2M^* w'_{i+1} - (M^*)^2 w'_i$$
(5.11)

if $m_1 = 1$. Note that, in particular, the second-order unit sequence $u(a'_1, a'_2)$ is p-regular.

Our proof will proceed by first showing that the sequence $\{(M^*)^i\}_{i=0}^{\infty}$ satisfies the same second-order recursion relation modulo (p^r) as (w') does. We will next show that the kth-order recurrence (w^*) also satisfies this same second-order recursion relation modulo (p^r) . We will be interested in particular in the sequence $\{(M^*)^i w_0^*\}_{i=1}^{\infty}$. This sequence satisfies the same second-order recursion relation as $\{(M^*)^i\}_{i=1}^{\infty}$ modulo (p^r) , since multiples of a recurrence modulo (p^r) satisfy that same recursion relation $(\text{mod } (p^r))$. Using (5.3) and the definition of M^* at the beginning of Section 5, we see that

$$w_0^* = w_n \text{ and } w_1^* \equiv M^* w_0^* \pmod{p^r}.$$
 (5.12)

Since the terms of (w^*) are all in \mathbb{Z} , it follows that

$$w_m^* \equiv (M^*)^m w_0^* \pmod{p^r}$$
(5.13)

for all nonnegative integers m. This will imply that M^* is a general special multiplier of $w(a_1, \ldots, a_k)$ with respect to w_n modulo p^r .

To continue with our proof, we now demonstrate that

$$H(M^*) \equiv 0 \pmod{(p^r)}.$$
(5.14)

Noting that

$$(p^{r^*})^2 \equiv 0 \pmod{p^r}$$
(5.15)

and that

$$\alpha_i^{h^*} \equiv M^* \pmod{(p^{r^*})} \tag{5.16}$$

for $1 \le i \le t$ by Lemma 4.4, it follows from (5.8) and (5.9) that (5.14) holds. This implies that the sequence $\{(M^*)^i\}_{i=0}^{\infty}$ satisfies the same recursion relation modulo (p^r) as $w'(a'_1, a'_2)$ does.

We now show that, for a fixed *i*, the sequence $\{c_i(\alpha_i^{h^*})^m\}_{m=0}^{\infty}$ satisfies the same secondorder recursion relation modulo (p^r) as $w'(a'_1, a'_2)$ does. We first consider the case in which $m_i = 1$. By hypothesis, this always occurs if $2 \le i \le t$. In this case, we also treat the situation in which i = 1 and $m_1 = 1$. By (5.9), (5.15), and (5.16), we see that

$$H(\alpha_i^{h^*}) \equiv 0 \pmod{(p^r)} \tag{5.17}$$

if $2 \leq i \leq t$ or both i = 1 and $m_1 = 1$. Thus, $\{(\alpha_i^{h^*})^m\}_{m=0}^{\infty}$ and hence, $\{c_i(\alpha_i^{h^*})^m\}_{m=0}^{\infty}$ both satisfy the same second-order recursion relation modulo (p^r) as $w'(a'_1, a'_2)$ when $2 \leq i \leq t$ or i = 1 and $m_1 = 1$.

Next, we consider the remaining case in which i = 1 and $m_1 = 2$. Recall that $m_1 = 1$ or 2. Then by (5.8),

$$H(\alpha_1^{h^*}) = 0. (5.18)$$

Thus, by Lemma 4.1 (c), (5.8), and (5.18), the sequence $\{g_1(m)(\alpha_1^{h^*})^m\}_{m=0}^{\infty}$ satisfies the same recursion relation as $w'(a'_1, a'_2) = w'(2\alpha_1^{h^*}, -\alpha_1^{2h^*})$ does. Reducing modulo (p^r) , we see that the sequence $\{g_1(m)(\alpha_1^{h^*})^m\}_{m=0}^{\infty}$ satisfies the same recursion relation modulo (p^r) as $w'(a'_1, a'_2)$ does.

Noting that

$$w_m^* \equiv \sum_{i=1}^t g_i(m) (\alpha_i^{h^*})^m \pmod{(p^r)}$$

and that linear combinations of linear recurrences all satisfying a particular recursion relation modulo (p^r) also satisfy that same recursion relation $(\mod (p^r))$, we see that the *k*th-order recurrence w_m^* satisfies the same second-order recursion relation modulo (p^r) as $w'(a'_1, a'_2)$ does. The result now follows from our earlier discussion. \Box

ACKNOWLEDGMENT

I wish to thank the referee for the careful reading of the paper and suggestions which improved the paper.

REFERENCES

 Walter Carlip and Lawrence Somer. "Bounds for Frequencies of Residues of Regular Second-Order Recurrences Modulo p^r." Number Theory in Progress, Vol. 2 (Zakopane -Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 691-719.

- [2] Walter Carlip and Lawrence Somer. "The Existence of Special Multipliers of Second-Order Recurrence Sequences." The Fibonacci Quarterly 41.2 (2003): 156-168.
- [3] R. D. Carmichael. "On Sequences of Integers Defined by Recurrence Relations." Quart. J. Pure Appl. Math. 48 (1920): 343-372.
- [4] L. M. Milne-Thompson. The Calculus of Finite Differences, Macmillan, New York, 1960.
- [5] T. N. Shorey and R. Tijdman. Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986.
- [6] Lawrence Somer. The Divisibility and Modular Properties of kth-Order Linear Recurrences over the Ring of Integers of an Algebraic Number Field with Respect to Prime Ideals, Ph.D. Thesis, The University of Illinois at Urbana-Champaign, 1985.
- [7] Lawrence Somer. "Solution to Problem H-377." The Fibonacci Quarterly 24.3 (1986): 284-285.
- [8] Lawrence Somer. "Special Multipliers of Lucas Sequences Modulo p^r." Applications of Fibonacci Numbers, Vol. 8, F. T. Howard (Ed.), Kluwer Academic Publishers, Dordrecht, 1999, pp. 325-336.

AMS Classification Numbers: 11B37, 11B50

$\bigstar \bigstar \bigstar$