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ABSTRACT

Heron’s method is used to approximate
√

5 in order to find successive rational approxi-
mations of the Golden Ratio, and a characterization is given for when the results always will
be ratios of successive Fibonacci numbers.

1. INTRODUCTION

Throughout history, mathematicians have sought rational approximations of irrational
numbers. Today, many of these approximations can be found with quickly converging infinite
series; but, historically, many estimates necessarily relied first on algebraic approximations of
square roots. Using a 96-sided polygon, Archimedes found the equivalent of

π ≈ 48

√√√√
2−

√
2 +

√
2 +

√
2 +

√
3.

Then by estimating the radicals, he found that π ≈ 211875/67441 [2]. Digit seekers continued
with Archimedes’ method through the 17th century with Ludolph van Ceulen ultimately find-
ing π to 35 decimal places by using polygons with 262 sides. Even Newton’s approximation of
π, which used his integral calculus, still relied on the generalized binomial theorem to approx-
imate square roots with an infinite series [2]. When approximating the Golden Ratio though,
no such problems arise because we may simply take the ratio of any two successive Fibonacci
numbers Fn+1/Fn to obtain a rational approximation.

But suppose we were to seek a rational approximation of Φ = (1 +
√

5)/2 that first relied
on an historical method of approximating

√
5. Would we obtain a recognizable pattern of

fractions? In this article, we shall use Heron’s method of approximating
√

5 to find successive
rational approximations of Φ, and give a characterization of when the iterations always will
yield ratios of successive Fibonacci numbers.

2. HERON’S METHOD

In the first century A.D., Heron of Alexandria described a method for approximating√
a, although the process may have been known much earlier. He simply let a0 be an initial

estimate of
√

a. Then for n ≥ 0, he let

an+1 =
an + a/an

2
to obtain better estimates. By approximating

√
5 in this manner, we can approximate Φ by

Φn = (1 + an)/2. With some careful choices of a0, the resulting fractions will always be ratios
of successive Fibonacci numbers.
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For instance, using a0 = 2 as the first estimate of
√

5, the initial approximation of Φ is
given by

Φ0 =
1 + a0

2
=

3
2

=
F4

F3
.

The first iteration of Heron’s method with a0 = 2 yields a1 = 9/4, and then

Φ1 =
1 + 9/4

2
=

13
8

=
F7

F6
.

Continuing, we observe that

Φ2 =
F13

F12
, Φ3 =

F25

F24
, Φ4 =

F49

F48
, Φ5 =

F97

F96
, . . .

We are then led to conjecture:
Proposition: Let a0 = 2 be an initial estimate of

√
5. For n ≥ 0, let an+1 = (an + 5/an)/2

be successive estimates of
√

5 and let Φn = (1 + an)/2 be the nth iterative approximation
of the Golden Ratio Φ = (1 +

√
5)/2. Then Φn is the ratio of successive Fibonacci numbers.

Specifically, Φn = F3·2n+1/F3·2n .

3. OTHER PATTERNS

Interestingly enough, other initial estimates of
√

5 give similar results:
Let a0 = 3. Then for n ≥ 0,

Φn =
F2·2n+1

F2·2n

. (1)

Let a0 = 5/2. Then for n ≥ 1,

Φn =
F3·2n+1

F3·2n

. (2)

Let a0 = 7/3. Then for n ≥ 0,

Φn =
F4·2n+1

F4·2n

. (3)

Let a0 = 15/7. Then for n ≥ 1,

Φn =
F4·2n+1

F4·2n

. (4)

Let a0 = 11/5. Then for n ≥ 0,

Φn =
F5·2n+1

F5·2n

. (5)

The proofs of these results and of the Proposition can be handled individually by induction;
however, we shall give a single inductive argument that handles many cases. We do note though
that we may not always obtain such results as the pattern seems to fail with a0 = 8/3, 11/4,
and 12/5. So we ask the question: “What conditions on a reduced fraction a0 = c/d will
result in Fibonacci fractions when applying Heron’s method on

√
5 to obtain an+1 and letting

Φn = (1 + an)/2? Moreover, what is the resulting form?”
Our characterization is stated next:

Theorem: Let a0 = c/d be an initial estimate of
√

5 with gcd(c, d) = 1. Let an+1 =
(an +5/an)/2 and Φn = (1+ an)/2. Then Φn = Fk2n+1/Fk2n for all n ≥ 0 if and only if c and
d satisfy either
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(i) d = Fk is an odd Fibonacci number and c = 2Fk+1 − d, or
(ii) Fk is an even Fibonacci number, d = Fk/2, and c = Fk+1 − d.

To prove the theorem, we will need the following two Fibonacci identities credited to
Lucas in 1876:

Fm (Fm+1 + Fm−1) = F2m (6)
(Fm+1)

2 + (Fm)2 = F2m+1. (7)

Proofs of these and many other identities can be found in [1].
Proof of Theorem: Suppose first that either Condition (i) or Condition (ii) is satisfied

and suppose j divides both c and d. In Case (i), j must be odd because d = Fk is odd. But
then j divides c+d = 2Fk+1, so j must divide Fk+1. Because the successive Fibonacci numbers
Fk and Fk+1 are relatively prime, j = 1 and thus gcd(c, d) = 1. In Case (ii), if j divides both
c and d, then j divides c + d = Fk+1 and j divides 2d = Fk. Again, we have that j = 1 and
gcd(c, d) = 1.

In either case, we have

a0 =
c

d
=

2Fk+1

Fk
− 1

and

Φ0 =
1 + a0

2
=

1
2

+
1
2

(
2Fk+1

Fk
− 1

)
=

Fk+1

Fk
=

Fk20+1

Fk20
.

Next, assume that the result holds for some specific n ≥ 0. Then for this n we have

Φn =
1 + an

2
=

Fk2n+1

Fk2n

which gives

an =
2Fk2n+1

Fk2n

− 1 =
2Fk2n+1 − Fk2n

Fk2n

=
Fk2n+1 + (Fk2n+1 − Fk2n)

Fk2n

=
Fk2n+1 + Fk2n−1

Fk2n

and

an+1 =
an + 5/an

2
=

a2
n + 5
2an

=
(Fk2n+1 + Fk2n−1)

2 + 5 (Fk2n)2

2Fk2n (Fk2n+1 + Fk2n−1)
.

Applying the identities in Equations (6) and (7) with m = k2n, we have

Φn+1 =
1 + an+1

2
=

1
2

+
(Fk2n+1 + Fk2n−1)

2 + 5 (Fk2n)2

4Fk2n (Fk2n+1 + Fk2n−1)

=
2Fk2n (Fk2n+1 + Fk2n−1)
4Fk2n (Fk2n+1 + Fk2n−1)

+
(Fk2n+1 + Fk2n−1)

2 + 5 (Fk2n)2

4Fk2n (Fk2n+1 + Fk2n−1)

=
((Fk2n+1 + Fk2n−1) + Fk2n)2 + 4 (Fk2n)2

4F2·k2n

=
(2Fk2n+1)

2 + 4 (Fk2n)2

4Fk2n+1

=
(Fk2n+1)

2 + (Fk2n)2

Fk2n+1
=

Fk2n+1+1

Fk2n+1
.
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By induction, the result holds for all n ≥ 0 if either Condition (i) or (ii) is satisfied.
On the other hand, suppose that for some integer k ≥ 1 we have Φn = Fk2n+1/Fk2n for

all n ≥ 0 when using a reduced fraction a0 = c/d. Then for n = 0 we have
Fk+1

Fk
= Φ0 =

1 + a0

2
=

c + d

2 d
. (8)

Now we simply consider all cases for the parity of c and d. If c and d are both odd, then
c + d is even and we can simplify the fraction in (8) to

Fk+1

Fk
=

(c + d)/2
d

. (9)

Suppose now that j divides both d and (c + d)/2. Then j will also divide 2(c + d)/2− d = c.
Because gcd(c, d) = 1, we have that j = 1. So both sides of Equation (9) are reduced fractions;
hence, d = Fk, an odd Fibonacci number, and (c + d)/2 = Fk+1, which gives c = 2Fk+1 − d.
So Condition (i) must hold.

If one of c or d is even and the other is odd, then c+d is odd and we again have Equation
(8). But suppose j divides both c + d and 2 d. Then j must be odd because c + d is odd.
Hence, j must divide d. But then j will divide (c+ d)− d = c; so again j = 1 and (c+ d)/2d is
completely reduced. Thus, Fk = 2d is an even Fibonacci number, d = Fk/2, and c = Fk+1−d,
which is Condition (ii), and which completes the proof.

With our original Proposition, we have Condition (ii) with k = 3 where d = F3/2 = 1, and
c = F4−d = 2. For a0 = 7/3, we have Condition (i) with d = F4 = 3 and c = 2F5−d = 7. We
also could use something incredulous like a0 = 64079/28657 to obtain Φn = F23·2n+1/F23·2n

for all n ≥ 0.
We now see why the pattern fails, at least for Φ0, when using a0 = 8/3, 11/4, or 12/5

as neither Condition (i) nor Condition (ii) of the Theorem is satisfied. But with a0 = 5/2
and a0 = 15/7, we do establish a pattern for n ≥ 1. For it is always the case that Φ1 =
(c2 + 2cd + 5d2)/(4cd). With c = 15 and d = 7, Φ1 reduces to 34/21 = F4·21+1/F4·21 . By
the inductive argument in the proof of our theorem, a pattern holds for n ≥ 1. However, a
characterization of c and d that initiates the pattern for n ≥ 1 is left as an open problem.

A similar iterative approach of approximating Φ was discovered in 1999 by J. W. Roche.
When using Newton’s Method of approximating the positive root of the function f(x) =
x2 − x − 1 with initial seed x1 = 2 = F21+1/F21 , all successive approximations are ratios of
Fibonacci numbers of the form xn = F2n+1/F2n . A quick proof by induction can be found in
[3].
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