FIBONACCI FRACTIONS FROM HERON'S SQUARE ROOT APPROXIMATION OF THE GOLDEN RATIO

David K. Neal
Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101
e-mail: david.neal@wku.edu
(Submitted May 2006-Final Revision October 2006)

Abstract

Heron's method is used to approximate $\sqrt{5}$ in order to find successive rational approximations of the Golden Ratio, and a characterization is given for when the results always will be ratios of successive Fibonacci numbers.

1. INTRODUCTION

Throughout history, mathematicians have sought rational approximations of irrational numbers. Today, many of these approximations can be found with quickly converging infinite series; but, historically, many estimates necessarily relied first on algebraic approximations of square roots. Using a 96 -sided polygon, Archimedes found the equivalent of

$$
\pi \approx 48 \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}
$$

Then by estimating the radicals, he found that $\pi \approx 211875 / 67441$ [2]. Digit seekers continued with Archimedes' method through the 17 th century with Ludolph van Ceulen ultimately finding π to 35 decimal places by using polygons with 2^{62} sides. Even Newton's approximation of π, which used his integral calculus, still relied on the generalized binomial theorem to approximate square roots with an infinite series [2]. When approximating the Golden Ratio though, no such problems arise because we may simply take the ratio of any two successive Fibonacci numbers F_{n+1} / F_{n} to obtain a rational approximation.

But suppose we were to seek a rational approximation of $\Phi=(1+\sqrt{5}) / 2$ that first relied on an historical method of approximating $\sqrt{5}$. Would we obtain a recognizable pattern of fractions? In this article, we shall use Heron's method of approximating $\sqrt{5}$ to find successive rational approximations of Φ, and give a characterization of when the iterations always will yield ratios of successive Fibonacci numbers.

2. HERON'S METHOD

In the first century A.D., Heron of Alexandria described a method for approximating \sqrt{a}, although the process may have been known much earlier. He simply let a_{0} be an initial estimate of \sqrt{a}. Then for $n \geq 0$, he let

$$
a_{n+1}=\frac{a_{n}+a / a_{n}}{2}
$$

to obtain better estimates. By approximating $\sqrt{5}$ in this manner, we can approximate Φ by $\Phi_{n}=\left(1+a_{n}\right) / 2$. With some careful choices of a_{0}, the resulting fractions will always be ratios of successive Fibonacci numbers.

For instance, using $a_{0}=2$ as the first estimate of $\sqrt{5}$, the initial approximation of Φ is given by

$$
\Phi_{0}=\frac{1+a_{0}}{2}=\frac{3}{2}=\frac{F_{4}}{F_{3}} .
$$

The first iteration of Heron's method with $a_{0}=2$ yields $a_{1}=9 / 4$, and then

$$
\Phi_{1}=\frac{1+9 / 4}{2}=\frac{13}{8}=\frac{F_{7}}{F_{6}} .
$$

Continuing, we observe that

$$
\Phi_{2}=\frac{F_{13}}{F_{12}}, \Phi_{3}=\frac{F_{25}}{F_{24}}, \Phi_{4}=\frac{F_{49}}{F_{48}}, \Phi_{5}=\frac{F_{97}}{F_{96}}, \ldots
$$

We are then led to conjecture:
Proposition: Let $a_{0}=2$ be an initial estimate of $\sqrt{5}$. For $n \geq 0$, let $a_{n+1}=\left(a_{n}+5 / a_{n}\right) / 2$ be successive estimates of $\sqrt{5}$ and let $\Phi_{n}=\left(1+a_{n}\right) / 2$ be the nth iterative approximation of the Golden Ratio $\Phi=(1+\sqrt{5}) / 2$. Then Φ_{n} is the ratio of successive Fibonacci numbers. Specifically, $\Phi_{n}=F_{3 \cdot 2^{n}+1} / F_{3 \cdot 2^{n}}$.

3. OTHER PATTERNS

Interestingly enough, other initial estimates of $\sqrt{5}$ give similar results:
Let $a_{0}=3$. Then for $n \geq 0$,

$$
\begin{equation*}
\Phi_{n}=\frac{F_{2 \cdot 2^{n}+1}}{F_{2 \cdot 2^{n}}} . \tag{1}
\end{equation*}
$$

Let $a_{0}=5 / 2$. Then for $n \geq 1$,

$$
\begin{equation*}
\Phi_{n}=\frac{F_{3 \cdot 2^{n}+1}}{F_{3 \cdot 2^{n}}} \tag{2}
\end{equation*}
$$

Let $a_{0}=7 / 3$. Then for $n \geq 0$,

$$
\begin{equation*}
\Phi_{n}=\frac{F_{4 \cdot 2^{n}+1}}{F_{4 \cdot 2^{n}}} \tag{3}
\end{equation*}
$$

Let $a_{0}=15 / 7$. Then for $n \geq 1$,

$$
\begin{equation*}
\Phi_{n}=\frac{F_{4 \cdot 2^{n}+1}}{F_{4 \cdot 2^{n}}} \tag{4}
\end{equation*}
$$

Let $a_{0}=11 / 5$. Then for $n \geq 0$,

$$
\begin{equation*}
\Phi_{n}=\frac{F_{5 \cdot 2^{n}+1}}{F_{5 \cdot 2^{n}}} \tag{5}
\end{equation*}
$$

The proofs of these results and of the Proposition can be handled individually by induction; however, we shall give a single inductive argument that handles many cases. We do note though that we may not always obtain such results as the pattern seems to fail with $a_{0}=8 / 3,11 / 4$, and $12 / 5$. So we ask the question: "What conditions on a reduced fraction $a_{0}=c / d$ will result in Fibonacci fractions when applying Heron's method on $\sqrt{5}$ to obtain a_{n+1} and letting $\Phi_{n}=\left(1+a_{n}\right) / 2$? Moreover, what is the resulting form?"

Our characterization is stated next:
Theorem: Let $a_{0}=c / d$ be an initial estimate of $\sqrt{5}$ with $\operatorname{gcd}(c, d)=1$. Let $a_{n+1}=$ $\left(a_{n}+5 / a_{n}\right) / 2$ and $\Phi_{n}=\left(1+a_{n}\right) / 2$. Then $\Phi_{n}=F_{k 2^{n}+1} / F_{k 2^{n}}$ for all $n \geq 0$ if and only if c and d satisfy either
(i) $d=F_{k}$ is an odd Fibonacci number and $c=2 F_{k+1}-d$, or
(ii) F_{k} is an even Fibonacci number, $d=F_{k} / 2$, and $c=F_{k+1}-d$.

To prove the theorem, we will need the following two Fibonacci identities credited to Lucas in 1876:

$$
\begin{align*}
& F_{m}\left(F_{m+1}+F_{m-1}\right)=F_{2 m} \tag{6}\\
& \left(F_{m+1}\right)^{2}+\left(F_{m}\right)^{2}=F_{2 m+1} . \tag{7}
\end{align*}
$$

Proofs of these and many other identities can be found in [1].
Proof of Theorem: Suppose first that either Condition (i) or Condition (ii) is satisfied and suppose j divides both c and d. In Case (i), j must be odd because $d=F_{k}$ is odd. But then j divides $c+d=2 F_{k+1}$, so j must divide F_{k+1}. Because the successive Fibonacci numbers F_{k} and F_{k+1} are relatively prime, $j=1$ and thus $\operatorname{gcd}(c, d)=1$. In Case (ii), if j divides both c and d, then j divides $c+d=F_{k+1}$ and j divides $2 d=F_{k}$. Again, we have that $j=1$ and $\operatorname{gcd}(c, d)=1$.

In either case, we have

$$
a_{0}=\frac{c}{d}=\frac{2 F_{k+1}}{F_{k}}-1
$$

and

$$
\Phi_{0}=\frac{1+a_{0}}{2}=\frac{1}{2}+\frac{1}{2}\left(\frac{2 F_{k+1}}{F_{k}}-1\right)=\frac{F_{k+1}}{F_{k}}=\frac{F_{k 2^{0}+1}}{F_{k 2^{0}}} .
$$

Next, assume that the result holds for some specific $n \geq 0$. Then for this n we have

$$
\Phi_{n}=\frac{1+a_{n}}{2}=\frac{F_{k 2^{n}+1}}{F_{k 2^{n}}}
$$

which gives

$$
\begin{aligned}
a_{n} & =\frac{2 F_{k 2^{n}+1}}{F_{k 2^{n}}}-1=\frac{2 F_{k 2^{n}+1}-F_{k 2^{n}}}{F_{k 2^{n}}} \\
& =\frac{F_{k 2^{n}+1}+\left(F_{k 2^{n}+1}-F_{k 2^{n}}\right)}{F_{k 2^{n}}}=\frac{F_{k 2^{n}+1}+F_{k 2^{n}-1}}{F_{k 2^{n}}}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}+5 / a_{n}}{2}=\frac{a_{n}^{2}+5}{2 a_{n}} \\
& =\frac{\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)^{2}+5\left(F_{k 2^{n}}\right)^{2}}{2 F_{k 2^{n}}\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)} .
\end{aligned}
$$

Applying the identities in Equations (6) and (7) with $m=k 2^{n}$, we have

$$
\begin{aligned}
\Phi_{n+1} & =\frac{1+a_{n+1}}{2}=\frac{1}{2}+\frac{\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)^{2}+5\left(F_{k 2^{n}}\right)^{2}}{4 F_{k 2^{n}}\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)} \\
& =\frac{2 F_{k 2^{n}}\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)}{4 F_{k 2^{n}}\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)}+\frac{\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)^{2}+5\left(F_{k 2^{n}}\right)^{2}}{4 F_{k 2^{n}}\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)} \\
& =\frac{\left(\left(F_{k 2^{n}+1}+F_{k 2^{n}-1}\right)+F_{k 2^{n}}\right)^{2}+4\left(F_{k 2^{n}}\right)^{2}}{4 F_{2 \cdot k 2^{n}}}=\frac{\left(2 F_{k 2^{n}+1}\right)^{2}+4\left(F_{k 2^{n}}\right)^{2}}{4 F_{k 2^{n+1}}} \\
& =\frac{\left(F_{k 2^{n}+1}\right)^{2}+\left(F_{k 2^{n}}\right)^{2}}{F_{k 2^{n+1}}}=\frac{F_{k 2^{n+1}+1}}{F_{k 2^{n+1}}} .
\end{aligned}
$$

By induction, the result holds for all $n \geq 0$ if either Condition (i) or (ii) is satisfied.
On the other hand, suppose that for some integer $k \geq 1$ we have $\Phi_{n}=F_{k 2^{n}+1} / F_{k 2^{n}}$ for all $n \geq 0$ when using a reduced fraction $a_{0}=c / d$. Then for $n=0$ we have

$$
\begin{equation*}
\frac{F_{k+1}}{F_{k}}=\Phi_{0}=\frac{1+a_{0}}{2}=\frac{c+d}{2 d} . \tag{8}
\end{equation*}
$$

Now we simply consider all cases for the parity of c and d. If c and d are both odd, then $c+d$ is even and we can simplify the fraction in (8) to

$$
\begin{equation*}
\frac{F_{k+1}}{F_{k}}=\frac{(c+d) / 2}{d} . \tag{9}
\end{equation*}
$$

Suppose now that j divides both d and $(c+d) / 2$. Then j will also divide $2(c+d) / 2-d=c$. Because $\operatorname{gcd}(c, d)=1$, we have that $j=1$. So both sides of Equation (9) are reduced fractions; hence, $d=F_{k}$, an odd Fibonacci number, and $(c+d) / 2=F_{k+1}$, which gives $c=2 F_{k+1}-d$. So Condition (i) must hold.

If one of c or d is even and the other is odd, then $c+d$ is odd and we again have Equation (8). But suppose j divides both $c+d$ and $2 d$. Then j must be odd because $c+d$ is odd. Hence, j must divide d. But then j will divide $(c+d)-d=c$; so again $j=1$ and $(c+d) / 2 d$ is completely reduced. Thus, $F_{k}=2 d$ is an even Fibonacci number, $d=F_{k} / 2$, and $c=F_{k+1}-d$, which is Condition (ii), and which completes the proof.

With our original Proposition, we have Condition (ii) with $k=3$ where $d=F_{3} / 2=1$, and $c=F_{4}-d=2$. For $a_{0}=7 / 3$, we have Condition (i) with $d=F_{4}=3$ and $c=2 F_{5}-d=7$. We also could use something incredulous like $a_{0}=64079 / 28657$ to obtain $\Phi_{n}=F_{23 \cdot 2^{n}+1} / F_{23 \cdot 2^{n}}$ for all $n \geq 0$.

We now see why the pattern fails, at least for Φ_{0}, when using $a_{0}=8 / 3,11 / 4$, or $12 / 5$ as neither Condition (i) nor Condition (ii) of the Theorem is satisfied. But with $a_{0}=5 / 2$ and $a_{0}=15 / 7$, we do establish a pattern for $n \geq 1$. For it is always the case that $\Phi_{1}=$ $\left(c^{2}+2 c d+5 d^{2}\right) /(4 c d)$. With $c=15$ and $d=7, \Phi_{1}$ reduces to $34 / 21=F_{4 \cdot 2^{1}+1} / F_{4 \cdot 2^{1}}$. By the inductive argument in the proof of our theorem, a pattern holds for $n \geq 1$. However, a characterization of c and d that initiates the pattern for $n \geq 1$ is left as an open problem.

A similar iterative approach of approximating Φ was discovered in 1999 by J. W. Roche. When using Newton's Method of approximating the positive root of the function $f(x)=$ $x^{2}-x-1$ with initial seed $x_{1}=2=F_{2^{1}+1} / F_{2^{1}}$, all successive approximations are ratios of Fibonacci numbers of the form $x_{n}=F_{2^{n}+1} / F_{2^{n}}$. A quick proof by induction can be found in [3].

REFERENCES

[1] A. T. Benjamin and J. J. Quinn. Proofs That Really Count, Mathematical Association of America, Washington, D.C., 2003.
[2] W. Dunham. Journey through Genius, John Wiley and Sons, Inc., New York, NY, 1990.
[3] T. Koshy. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Inc., New York, NY, 2001.

AMS Classification Numbers: 11B39, 11B25

