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ABSTRACT

A cyclic quintic field possessing infinitely many normal integral bases is exhibited. The
bases provided are parametrized by Fibonacci numbers.

1. INTRODUCTION AND MAIN THEOREM

Let K be a finite normal extension of the rational field Q. A normal integral basis of K
is an integral basis for K all of whose elements are conjugate over Q. Now suppose that K is
cyclic of degree d > 2 over QQ. Then K possesses a normal integral basis if and only if K is
tamely ramified [3, Corollary, p. 422] or equivalently K has a squarefree conductor [3, p. 175].
If K is a tamely ramified cyclic extension of Q, it follows from results of Newman and Taussky
[4], as well as Thompson [7], that K has a unique (up to order and change of sign) normal
integral basis if and only if d = 2,3,4 or 6. Thus if K is a tamely ramified, cyclic, quintic
extension of Q then K has at least two normal integral bases. In this paper we exhibit such a
field K that possesses infinitely many normal integral bases. Indeed we exhibit infinitely many
normal integral bases parametrized by Fibonacci numbers.

We let

f(z) =2+ 2* — 42> —32% + 3z + 1.

It is known that f(x) is irreducible [5, p. 548 (with n = —1)]. Let 6 € C be a root of f(x).
Set K = Q(0). Then K is a cyclic extension of degree 5 over Q [5, p. 548 (with n = —1)]. The
discriminant of K is 11* and its conductor is 11 [2, Théoréme 1, p. 76 (with t = —1)]. Thus
K is the unique quintic subfield of the cyclotomic field of 11th roots of unity.

By a result of Gadal and Pohst [1, Lemma 2, p. 1690 (with n = —1)] an integral basis for
K is {1,9,92,93,w}, where w = 1+ 20 — 36%2 — 03 + 6*. Thus {1,0,«92,93,6’4} is an integral
basis for K. The roots of f(x) in cyclic order are

6, 0(0) =2 —46% 4+ 6%, o%(0) = —1 420 + 36% — 6> — 6*,
o3(0) = -2+ 62, o*(0) = =30 + 63, (1.1)

see for example [6, Proposition, p. 217 (with n = —1)].
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We prove the following result, where F,, (n € Z) denotes the n-th Fibonacci number and
L, (n € Z) denotes the n-th Lucas number.

Theorem: Let K be the cyclic quintic field given by K = Q(6), where §° + §* — 462 — 362 +
30+ 1=0. Let 0 € Gal(K/Q) ~ Z/5Z be given by

o(0) =2 — 46% + 6*.

Set
1 n 1 n
Oy = 1—0(25F2n + (—1) Lgn — 2) + 5(—5F2n + <—1) Lgn)e
— 455,07 + Fon,0® + Fy,0*, neN. (1.2)
Then v, (n € N) is an integer of K and
{an,0(an),0%(an), 0 (o), 0 (an)}, neEN, (1.3)

is a normal integral basis for K. Moreover the bases (1.3) are distinct in the sense that if, for
some ni,na € N, j1,72 € {0,1,2,3,4}, and € = £1, we have

ot (an,) = e’ (any)

then
j1 = Jj2, M1 =mng, and € = +1.

2. PROOF OF THEOREM
The congruences
L, =F, (mod 2), Lg,=(—1)"2(mod 5), n €N,

follow immediately from the easily proved relations L2 — 5F2 = (—1)"4 and Lo, — 5F? =
(—1)™2. Hence, for n € N, we have

25F, + (—1)" Loy, — 2= Fy, — Ly, = 0(mod 2),
25F5, + (—1)"Lo, —2= (—1)"La, — 2= 0(mod 5),
—5F%, + (—1)"Lan = Fy, — Loy, = 0(mod 2).

Thus, for n € N, we can define integers r,,, s, and t, by

2B+ (()"Law =2 —5Fo £ (=1)"Lay

t, = —Fy,. 2.1
10 ’ 2 2 (2.1)

T'n

Hence
—5r, + s, — 15t, =1, n €N, (2.2)
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and (as L3, — 5F3, = 4)
s2 —Bsut, +5t2 =1, necN. (2.3)

Now let
Qp = T + $p0 + 48,0% — t,0° — t,0%, n € N. (2.4)

Clearly «, is an integer of K. By (1.1) the conjugates of a,, (n € N) over Q are

o(on) = (Tn +28n — 3tn) — 3tn0 + (—4s, + 9t,)0% + 1,0° + (55 — 2t,)60%,
0%(an) = (1 — 8p + 5tp) + (25, — 6t,,)0 + (35, — 6t,)0% + (—sp, + 3t,)0°
+ (=55 + 2t,)0%,
o3 (an) = (rn — 285 + 9t,) + 1,0 + (sn — 6t,)0% + ,,0%,
04(an) = (rn +4tn) + (—3sy, + 8tp)0 — tn0% + (Sp — 3t,)0°.

Using MAPLE, together with (2.2) and (2.3), we obtain
disc({on, o(an), 0 (an), 0% (o), 0 (an)})
= 114(=5ry, + 8, — 15t,)% (5% — Bspt, + 5t2)* = 11* = disc(K),

so that for alln € N

{an’ n (@n) 3(0571)70'4(0571)} (2.5)

is a normal integral basis for K.
Finally we show that the infinitely many normal integral bases in (2.5) are all distinct.
Suppose that m(€ N) and n(€ N) are such that

{am; U(Oém), Uz(am)a 03(am)7 04(Oém)}

=4 {an,o(an)702(an),a3(0zn), 04(an)} .

Then '
= 0’ (a,) for some j € {0,1,2,3,4}.

If j = 0 then «,, = £, and so, by (2.4), we have

T 4 Sm + 4t,,0% — t,,0° — t,,6%
= 4 (rp + 5,0 + 4t,0% — t,6% — t,0%).

Equating coefficients of 63, we obtain t,, = +t,. Appealing to (2.1), we deduce Fy,, = +Fy,,
so that Fy,,, = F5, and m = n.

Next we show that if j # 0 then ¢,, = 0, which is impossible for n > 0 as t,, = —F5,,.

If j =1 then «a,, = +0(a,) and we have

T + 80 4 4t 0% — £, 0% — t,,0*
= +((rp + 25, — 3t,) — 3,0 + (—4s, + 9,)0% + 1,0° + (s, — 2t,)0%).
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Equating coefficients of 3, we obtain —t,, = +t,, so by (2.1) we have Fy,, = FFb, and thus
F5,, = F5, and m = n. Hence

o+ $n0 + 4t,0% — t,0° — t,,0*
= —(rp + 28, — 3ty) + 3,0 — (—4s, + 9t,)0% — 1,0 — (s, — 2t,)0*.

Equating coefficients of § and 62, we have s,, = 3t,, and 4t,, = 4s,, — 9t,,, so t,, = 0.

If j = 2 then oy, = +0%(a,) and we have
T + Smf + 4,07 — t,,0° — t,,0"
= +((rn — 8n + 5tn) + (25, — 6t,,)0 + (35, — 6t,,)0*
+ (=55 + 3t,)0 + (=5, + 2t,)0%).

Equating coefficients of #% and 6*, we obtain —s,, + 3t,, = &(~t,,) = —s,, + 2t,, so t,, = 0.

If j = 3 then o, = +£03(a,,) and we have
T + S0 + 4, 0% — t,,0° — 1,0
= :l:((Tn - 2Sn + 9tn) + tne + (Sn — 6tn)92 + tn94)'

Equating coefficients of 62, we obtain t,, = 0.

If j = 4 then oy, = +0*(a,) and we have
T + Sm0 + 4t,,0% — t,,0° — t,,0*
= +((rp +4t,) + (=35, + 8t,)0 — 1,0% + (5, — 3t,)0°).

Equating coefficients of §*, we obtain ¢, = 0.

This completes the proof.
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