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ABSTRACT

A cyclic quintic field possessing infinitely many normal integral bases is exhibited. The
bases provided are parametrized by Fibonacci numbers.

1. INTRODUCTION AND MAIN THEOREM

Let K be a finite normal extension of the rational field Q. A normal integral basis of K
is an integral basis for K all of whose elements are conjugate over Q. Now suppose that K is
cyclic of degree d ≥ 2 over Q. Then K possesses a normal integral basis if and only if K is
tamely ramified [3, Corollary, p. 422] or equivalently K has a squarefree conductor [3, p. 175].
If K is a tamely ramified cyclic extension of Q, it follows from results of Newman and Taussky
[4], as well as Thompson [7], that K has a unique (up to order and change of sign) normal
integral basis if and only if d = 2, 3, 4 or 6. Thus if K is a tamely ramified, cyclic, quintic
extension of Q then K has at least two normal integral bases. In this paper we exhibit such a
field K that possesses infinitely many normal integral bases. Indeed we exhibit infinitely many
normal integral bases parametrized by Fibonacci numbers.

We let
f(x) = x5 + x4 − 4x3 − 3x2 + 3x + 1.

It is known that f(x) is irreducible [5, p. 548 (with n = −1)]. Let θ ∈ C be a root of f(x).
Set K = Q(θ). Then K is a cyclic extension of degree 5 over Q [5, p. 548 (with n = −1)]. The
discriminant of K is 114 and its conductor is 11 [2, Théorème 1, p. 76 (with t = −1)]. Thus
K is the unique quintic subfield of the cyclotomic field of 11th roots of unity.

By a result of Gaál and Pohst [1, Lemma 2, p. 1690 (with n = −1)] an integral basis for
K is

{
1, θ, θ2, θ3, ω

}
, where ω = 1 + 2θ − 3θ2 − θ3 + θ4. Thus

{
1, θ, θ2, θ3, θ4

}
is an integral

basis for K. The roots of f(x) in cyclic order are

θ, σ(θ) = 2− 4θ2 + θ4, σ2(θ) = −1 + 2θ + 3θ2 − θ3 − θ4,

σ3(θ) = −2 + θ2, σ4(θ) = −3θ + θ3, (1.1)

see for example [6, Proposition, p. 217 (with n = −1)].
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We prove the following result, where Fn (n ∈ Z) denotes the n-th Fibonacci number and
Ln (n ∈ Z) denotes the n-th Lucas number.
Theorem: Let K be the cyclic quintic field given by K = Q(θ), where θ5 + θ4 − 4θ3 − 3θ2 +
3θ + 1 = 0. Let σ ∈ Gal(K/Q) ' Z/5Z be given by

σ(θ) = 2− 4θ2 + θ4.

Set

αn =
1
10

(25F2n + (−1)nL2n − 2) +
1
2
(−5F2n + (−1)nL2n)θ

− 4F2nθ2 + F2nθ3 + F2nθ4, n ∈ N. (1.2)

Then αn (n ∈ N) is an integer of K and{
αn, σ(αn), σ2(αn), σ3(αn), σ4(αn)

}
, n ∈ N, (1.3)

is a normal integral basis for K. Moreover the bases (1.3) are distinct in the sense that if, for
some n1, n2 ∈ N, j1, j2 ∈ {0, 1, 2, 3, 4}, and ε = ±1, we have

σj1(αn1) = εσj2(αn2)

then
j1 = j2, n1 = n2, and ε = +1.

2. PROOF OF THEOREM

The congruences

Ln ≡ Fn (mod 2), L2n ≡ (−1)n2 (mod 5), n ∈ N,

follow immediately from the easily proved relations L2
n − 5F 2

n = (−1)n4 and L2n − 5F 2
n =

(−1)n2. Hence, for n ∈ N, we have

25F2n + (−1)nL2n − 2 ≡ F2n − L2n ≡ 0 (mod 2),
25F2n + (−1)nL2n − 2 ≡ (−1)nL2n − 2 ≡ 0 (mod 5),
−5F2n + (−1)nL2n ≡ F2n − L2n ≡ 0 (mod 2).

Thus, for n ∈ N, we can define integers rn, sn and tn by

rn =
25F2n + (−1)nL2n − 2

10
, sn =

−5F2n + (−1)nL2n

2
, tn = −F2n. (2.1)

Hence
−5rn + sn − 15tn = 1, n ∈ N, (2.2)
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and (as L2
2n − 5F 2

2n = 4)
s2

n − 5sntn + 5t2n = 1, n ∈ N. (2.3)

Now let
αn = rn + snθ + 4tnθ2 − tnθ3 − tnθ4, n ∈ N. (2.4)

Clearly αn is an integer of K. By (1.1) the conjugates of αn (n ∈ N) over Q are

σ(αn) = (rn + 2sn − 3tn)− 3tnθ + (−4sn + 9tn)θ2 + tnθ3 + (sn − 2tn)θ4,

σ2(αn) = (rn − sn + 5tn) + (2sn − 6tn)θ + (3sn − 6tn)θ2 + (−sn + 3tn)θ3

+ (−sn + 2tn)θ4,

σ3(αn) = (rn − 2sn + 9tn) + tnθ + (sn − 6tn)θ2 + tnθ4,

σ4(αn) = (rn + 4tn) + (−3sn + 8tn)θ − tnθ2 + (sn − 3tn)θ3.

Using MAPLE, together with (2.2) and (2.3), we obtain

disc({αn, σ(αn), σ2(αn), σ3(αn), σ4(αn)})
= 114(−5rn + sn − 15tn)2(s2

n − 5sntn + 5t2n)4 = 114 = disc(K),

so that for all n ∈ N {
αn, σ(αn), σ2(αn), σ3(αn), σ4(αn)

}
(2.5)

is a normal integral basis for K.
Finally we show that the infinitely many normal integral bases in (2.5) are all distinct.

Suppose that m(∈ N) and n(∈ N) are such that{
αm, σ(αm), σ2(αm), σ3(αm), σ4(αm)

}
= ±

{
αn, σ(αn), σ2(αn), σ3(αn), σ4(αn)

}
.

Then
αm = ±σj(αn) for some j ∈ {0, 1, 2, 3, 4} .

If j = 0 then αm = ±αn and so, by (2.4), we have

rm + smθ + 4tmθ2 − tmθ3 − tmθ4

= ±(rn + snθ + 4tnθ2 − tnθ3 − tnθ4).

Equating coefficients of θ3, we obtain tm = ±tn. Appealing to (2.1), we deduce F2m = ±F2n,
so that F2m = F2n and m = n.

Next we show that if j 6= 0 then tn = 0, which is impossible for n > 0 as tn = −F2n.
If j = 1 then αm = ±σ(αn) and we have

rm + smθ + 4tmθ2 − tmθ3 − tmθ4

= ±((rn + 2sn − 3tn)− 3tnθ + (−4sn + 9tn)θ2 + tnθ3 + (sn − 2tn)θ4).
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Equating coefficients of θ3, we obtain −tm = ±tn, so by (2.1) we have F2m = ∓F2n and thus
F2m = F2n and m = n. Hence

rn + snθ + 4tnθ2 − tnθ3 − tnθ4

= −(rn + 2sn − 3tn) + 3tnθ − (−4sn + 9tn)θ2 − tnθ3 − (sn − 2tn)θ4.

Equating coefficients of θ and θ2, we have sn = 3tn and 4tn = 4sn − 9tn, so tn = 0.
If j = 2 then αm = ±σ2(αn) and we have

rm + smθ + 4tmθ2 − tmθ3 − tmθ4

= ±((rn − sn + 5tn) + (2sn − 6tn)θ + (3sn − 6tn)θ2

+ (−sn + 3tn)θ3 + (−sn + 2tn)θ4).

Equating coefficients of θ3 and θ4, we obtain −sn + 3tn = ±(−tm) = −sn + 2tn so tn = 0.
If j = 3 then αm = ±σ3(αn) and we have

rm + smθ + 4tmθ2 − tmθ3 − tmθ4

= ±((rn − 2sn + 9tn) + tnθ + (sn − 6tn)θ2 + tnθ4).

Equating coefficients of θ3, we obtain tm = 0.
If j = 4 then αm = ±σ4(αn) and we have

rm + smθ + 4tmθ2 − tmθ3 − tmθ4

= ±((rn + 4tn) + (−3sn + 8tn)θ − tnθ2 + (sn − 3tn)θ3).

Equating coefficients of θ4, we obtain tm = 0.
This completes the proof.
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