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Abstract. In this paper, we prove some formulas for π that are expressed in terms of the
powers of the reciprocal of the Golden Ratio φ. These formulas depend on Machin-type
identities like the following:

π = 12 arctan
(

1
φ3

)
+ 4 arctan

(
1
φ5

)
.

1. Introduction

In a recent paper [18], we proved several formulas of π which are expressed in terms of the
reciprocal of the Golden Ratio φ; for example

π =
5
√

2 + φ

2 φ

∞∑
n=0

(
1

2φ

)5n (
1

5n + 1
+

1

2φ2(5n + 2)
− 1

22φ3(5n + 3)
− 1

23φ3(5n + 4)

)
(1.1)

These formulas were inspired by the work of Bailey, Borwein and Plouffe (BBP) [6], who
proved a family of amazing formulas for π with the aid of the powerful PSLQ algorithm [19].
As an example, they proved that

π =
∞∑

n=0

1

16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
. (1.2)

For an introduction and generalizations of (1.2), see, e.g., [1, 2, 7]; see also the lucid
account in Hijab’s book [20]. For a compendium of currently known results of BBP-type
formulas, see Bailey’s A Compendium of BBP-Type Formulas for Mathematical Constants,
which is available at http://crd.lbl.gov/∼dhbailey.

In this paper, we prove several formulas for π that share similarities with (1.1). they
express π in terms of the reciprocal of the Golden Ratio φ:

π

4
=

∞∑

k=0

(−1)k

2k + 1

(
1

φ

)2k+1

+
∞∑

k=0

(−1)k

2k + 1

(
1

φ3

)2k+1

, (1.3)

= 2
∞∑

k=0

(−1)k

2k + 1

(
1

φ2

)2k+1

+
∞∑

k=0

(−1)k

2k + 1

(
1

φ6

)2k+1

, (1.4)

= 3
∞∑

k=0

(−1)k

2k + 1

(
1

φ3

)2k+1

+
∞∑

k=0

(−1)k

2k + 1

(
1

φ5

)2k+1

. (1.5)

The derivations of these formulas (cf. the next section) are analogous to the formula
discovered by Machin (1680-1752).
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Machin’s discovery starts with the following observation:

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
. (1.6)

By applying to (1.6) the power series of arctan x, i.e.,

arctan x =
∞∑

k=0

(−1)k x2k+1

2k + 1
, (1.7)

we have the Machin’s formula for π:

π

4
=

∞∑

k=0

(−1)k

2k + 1

(
1

5

)2k+1

−
∞∑

k=0

(−1)k

2k + 1

(
1

239

)2k+1

. (1.8)

Machin’s discovery plays a key role in computing the digits of π, see [17]. See also [8, 13].
For generalizations of Machin’s formula, see [15, 17]. See also Weisstein’s article [23].

It should be noted that there are Machin-Type formulas that are closely related to the
Fibonacci numbers. For example, we have

π

4
=

∞∑

k=1

arctan

(
1

F2k+1

)
.

Compare Chapter 42 of Koshy’s book [21]. See also Ron Knott’s award-winning website at

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html.

We also remark that in an interesting paper [14], Jon Borwein, David Borwein and William
Galway explored a class of Machin-type BBP formulas.

Next, we will turn to the proof of (1.3)-(1.5).

2. Proofs of the Main Formulas

To prove (1.3)-(1.5), all we need to do is to establish the following identities:

π

4
= arctan

(
1

φ

)
+ arctan

(
1

φ3

)
, (2.1)

= 2 arctan

(
1

φ2

)
+ arctan

(
1

φ6

)
, (2.2)

= 3 arctan

(
1

φ3

)
+ arctan

(
1

φ5

)
. (2.3)

By using (1.7), it follows at once that (2.1) leads to (1.3), (2.2) to (1.4) and (2.3) to (1.5).
We will say a few words on how these identities were discovered in the next section.

First, we recall two identities that will be useful in our proof. For n ≥ 2

φn = Fnφ + Fn−1 (2.4)

and for n ≥ 1,

φ−n = (−1)n−1Fnφ + (−1)nFn+1. (2.5)

Here, Fn is the nth Fibonacci number. For proofs, see p. 78 of [21] or p. 138 in [12]. The
latter is based on a probabilistic approach; see also [9, 10, 11].
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Let us define γ = arctan (1/φ3) . In order to prove (2.3), we need to show that

tan
(π

4
− 3γ

)
=

1

φ5
. (2.6)

First, we claim that

tan(2γ) =
1

2
. (2.7)

Indeed, we have

tan 2γ =
2 tan γ

1− tan2 γ
=

2φ−3

1− φ−6

=
2

φ3 − φ−3

=
2

F3φ + F2 − (F3φ− F4)
=

1

2
.

Note that we have used (2.4) and (2.5) for φ±3 to derive the third equality.
Next, we show that in a similar manner

tan(3γ) =
3 + 2φ

1 + 4φ
. (2.8)

Indeed, by using (2.7) for tan 2γ we have

tan 3γ =
tan γ + tan 2γ

1− tan γ tan 2γ
=

2 + φ3

2φ3 − 1
=

3 + 2φ

1 + 4φ
.

Note that we have used (2.4) and (2.5) to obtain the last equality.
With (2.8), we can establish (2.6):

tan
(π

4
− 3γ

)
=

1− tan 3γ

1 + tan 3γ
=

φ− 1

3φ + 2
=

φ−1

φ4
=

1

φ5
.

In the third equality, we have used φ−1 = φ−1 (i.e., n = 1 in (2.5)) to rewrite the numerator,
and 3φ + 2 = φ4 (i.e., n = 4 in (2.4)) to rewrite the denominator. This establishes (2.3) and
implies (1.5).

The proofs of the other two equations, namely, (2.1) and (2.2), follow the same pattern
and we briefly comment on these proofs.

For (2.1), let us define α = arctan (1/φ) . Then,

tan
(π

4
− α

)
=

1− tan α

1 + tan α
=

φ− 1

φ + 1
=

φ−1

φ2
=

1

φ3
.

Note that we have used the fact that φ− 1 = φ−1 (i.e., n = 1 in (2.5)) and φ2 = φ + 1 (i.e.,
n = 2 in (2.4)). This proves (2.1).

For (2.2), let us define β = arctan (1/φ2) . Then, we have

tan 2β =
2 tan β

1− tan2 β
=

2

φ2 − φ−2
=

2

2φ− 1
.

Note that we have used (2.4) and (2.5) to obtain the last line. Finally,

tan
(π

4
− 2β

)
=

1− tan 2β

1 + tan 2β
=

2φ− 3

2φ + 1
=

φ−3

φ3
=

1

φ6
.

This proves (2.2). 2
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As a by-product, we note that (2.7) implies the following identity

arctan

(
1

φ3

)
=

1

2
arctan

(
1

2

)
.

3. Looking Back and Ahead

Originally, identities (2.1) to (2.3) were discovered in a series of numerical experiments
using Mathematica. The following is an account of how we discovered (2.2).

Motivated by Machin formula (1.6), we first set out to look for an identity of the following
form:

π

4
= A arctan

(
1

φ2

)
+ B arctan

(
1

φk

)
. (3.1)

Our goal was to determine constants A, B and k.
Next, we treated the first term in (3.1) as a first order approximation of π/4:

π

4
' A arctan

(
1

φ2

)
.

We compared this approximation with the following numerical result

π

4
' 2.15 arctan

(
1

φ2

)
.

This motivated us to set A = 2 in (3.1):

π

4
= 2 arctan

(
1

φ2

)
+ B arctan

(
1

φk

)
. (3.2)

We then looked for B and k that would make (3.2) an identity. We performed a series of
numerical experiments for this purpose. Precisely, we used Mathematica to compute, for a
range of k, the following ratio which represents B (cf. (3.2)):

π
4
− 2 arctan

(
1
φ2

)

arctan
(

1
φk

) .

Gladly, we found that at k = 6 (a relatively small k!), Mathematica computed the ratio to
be

1.000000000000000000000000000000

(where we requested the software to give the first 30 decimal places). This suggested that
we should try to prove or disprove the identity

π

4
?
= 2 arctan

(
1

φ2

)
+ arctan

(
1

φ6

)
. (3.3)

With joy and gratitude, we found that (3.3) turned out to be an exact identity.
One can generalize the present work by considering recursions with three or more terms.

See [23].
We believe that more sophisticated numerical experiments, along the overall theme sug-

gested in [15, 16], may point to more discoveries of this type of identities. See also [3, 4, 5].
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Notes Added. Benoit Cloitre, using integer relation methods [15], discovered empirically
a beautiful formula that is a higher-order identity of (2.1)-(2.3):

π2

50
=

∞∑

k=0

{
φ2

(5k + 1)2
− φ

(5k + 2)2
− φ2

(5k + 3)2
+

φ5

(5k + 4)2
+

2φ2

(5k + 5)2

}
φ−5k. (3.4)

This is also one of the SIAM Problems (Problem 06-003, A Golden Example, cf. http://
www.siam.org/journals/categories/06-003.php) proposed and solved elegantly by Jonathan
Borwein and Marc Chamberland. It is likely that similar methods can be applied to give a
new proof of (2.1)-(2.3). I would like to thank the referee and Benoit Cloitre who brought
to my attention such a wonderful identity.
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