QUADRATIC RESIDUES IN FIBONACCI SEQUENCES

ALEXANDRU GICA

Abstract

In this paper we find all the prime numbers p for which there exists a Fibonacci sequence modulo $p,\left(a_{n}\right)_{n>0}$, such that this sequence modulo p is the set of the quadratic residues modulo p.

1. Introduction

Let us first consider the sequence $1,4,5,9,3$. These are the quadratic residues modulo 11 and we observe that each number of this sequence is the sum, modulo 11 , of the previous two (and $9+3 \equiv 1(\bmod 11), 3+1 \equiv 4(\bmod 11))$. Similarly, if we consider the sequence $1,5,6,11,17,9,7,16,4$, these are the quadratic residues modulo 19 and each number of this sequence is the sum, modulo 19 , of the previous two (and $16+4 \equiv 1(\bmod 19), 4+1 \equiv 5$ $(\bmod 19))$. We are asking which are the numbers which have the same property as 11 and 19. Therefore we consider the following.

Problem. Which are the prime numbers $p>2$ such that there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{2}$ and

$$
\left\{\overline{a_{n}} \mid n \in \mathbb{N}^{*}\right\}=\left\{b^{2} \mid b \in \mathbb{F}_{p}^{*}\right\} ?
$$

In the above formula, \mathbb{F}_{p}^{*} is the multiplicative group of the field of the residues modulo p and $\overline{a_{n}}$ means the class of a_{n} modulo p. If p is a prime number, $p \equiv 1,4(\bmod 5)$, then the Legendre symbol $\left(\frac{5}{p}\right)$ is 1 and so there exists a positive integer $m \leq \frac{p-1}{2}$ such that $5 \equiv m^{2}$ $(\bmod p)$. We will denote this number m by $\sqrt{5}$.

We will prove the following result.
Theorem 1.1. If $p>2$ is a prime number, there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv$ $a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{2}$ and $\left\{\overline{a_{n}} \left\lvert\, 1 \leq n \leq \frac{p-1}{2}\right.\right\}=\left\{b^{2} \mid b \in \mathbb{F}_{p}^{*}\right\}$ if and only if
i) $p \equiv 1,4(\bmod 5)$ and
ii) ord $\alpha=\frac{p-1}{2}$ or ord $\beta=\frac{p-1}{2}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

As above, $\sqrt{5}$ means the unique positive integer $m \leq \frac{p-1}{2}$ such that $5 \equiv m^{2}(\bmod p)$. The orders ord α and ord β are considered in the multiplicative group \mathbb{F}_{p}^{*}.

If $p \equiv 1,4(\bmod 5)$ and $\operatorname{ord} \alpha=\frac{p-1}{2}$ or ord $\beta=\frac{p-1}{2}$, then it is easy to check the statement of the theorem since $\alpha^{2} \equiv \alpha+1(\bmod p), \beta^{2} \equiv \beta+1(\bmod p)$. If ord $\alpha=\frac{p-1}{2}$, then the sequence $\left(a_{n}\right)_{n>0}$ is $a_{n}=\alpha^{n}$. Since $\alpha^{2} \equiv \alpha+1(\bmod p)$, we have $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$.

QUADRATIC RESIDUES IN FIBONACCI SEQUENCES

Since ord $\alpha=\frac{p-1}{2}$, then we have from Euler's Criterion that $1 \equiv \alpha^{\frac{p-1}{2}} \equiv\left(\frac{\alpha}{p}\right)(\bmod p)$ and $\left(\frac{\alpha}{p}\right)=1$; this means that all the powers of α are quadratic residues modulo p.
This ends the proof. If ord $\beta=\frac{p-1}{2}$, then the sequence $\left(a_{n}\right)_{n>0}$ is $a_{n}=\beta^{n}$ and we check in the same way as above the statement of the theorem. Therefore we have to prove only one implication. In the sequel we suppose that $p>2$ is a prime such that there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{2}$ and $\left\{\overline{a_{n}} \mid n \in \mathbb{N}^{*}\right\}=\left\{b^{2} \mid b \in \mathbb{F}_{p}^{*}\right\}$. From the last condition we deduce that p does not divide a_{n} for any positive integer n. Replacing the sequence $\left(a_{n}\right)_{n>0}$ with the sequence $\left(b_{n}=\frac{a_{n}}{a_{1}}\right)_{n>0}$ which has the same properties as the initial one, we can suppose that $a_{1}=1$ and $a_{2}=x \not \equiv 1(\bmod p)$.

2. First step: Proving that $p \equiv 1,4(\bmod 5)$.

We will now show the first statement of the theorem.
Proof. Obviously, the prime $p=5$ does not have the properties stated in the theorem. Let us suppose now that $\left(\frac{5}{p}\right)=-1$. We have

$$
\begin{equation*}
a_{n+2}=F_{n}+x F_{n+1}, \tag{2.1}
\end{equation*}
$$

for all positive integers n, where F_{n} is the Fibonacci sequence. We know that $\left(a_{n}\right)_{n>0}$ modulo p is periodic with period $\frac{p-1}{2}$. Hence,

$$
\begin{equation*}
x=a_{2} \equiv a_{p+1}=F_{p-1}+x F_{p} \quad(\bmod p), \quad 1+x=a_{3} \equiv a_{p+2}=F_{p}+x F_{p+1} \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

We have the well-known Catalan's formula (see [1], p. 157)

$$
\begin{equation*}
2^{n-1} F_{n}=C_{n}^{1}+C_{n}^{3} 5+C_{n}^{5} 5^{2}+\cdots \tag{2.3}
\end{equation*}
$$

where the C_{n}^{k} are the binomial coefficients $\binom{n}{k}$. If we put in the last equality $n=p$, then we have

$$
\begin{equation*}
2^{p-1} F_{p}=C_{p}^{1}+C_{p}^{3} 5+C_{p}^{5} 5^{2}+\cdots+C_{p}^{p} 5^{\frac{p-1}{2}} \tag{2.4}
\end{equation*}
$$

Since $2^{p-1} \equiv 1(\bmod p)$ and the binomial coefficients C_{p}^{j} are multiples of p for any $j=$ $\overline{1, p-1}$, from the equation (2.4) it follows that $F_{p} \equiv 5^{\frac{p-1}{2}} \equiv\left(\frac{5}{p}\right)=-1(\bmod p)$. If we put in equation (2.3) $n=p+1$, we obtain

$$
\begin{equation*}
2^{p} F_{p+1}=C_{p+1}^{1}+C_{p+1}^{3} 5+C_{p+1}^{5} 5^{2}+\cdots+C_{p+1}^{p} 5^{\frac{p-1}{2}} \tag{2.5}
\end{equation*}
$$

Since p divides C_{p+1}^{j} for any $2 \leq j \leq p-1$ and $2^{p} \equiv 2(\bmod p)$ then $2 F_{p+1} \equiv 1+5^{\frac{p-1}{2}} \equiv$ $1+\left(\frac{5}{p}\right)=0(\bmod p)$. We obtain

$$
F_{p} \equiv-1 \quad(\bmod p), F_{p+1} \equiv 0 \quad(\bmod p), F_{p-1}=F_{p+1}-F_{p} \equiv 1 \quad(\bmod p)
$$

Replacing these values in formula (2.2), it follows that $1+x=a_{3} \equiv a_{p+2}=F_{p}+x F_{p+1} \equiv-1$ $(\bmod p)$, so that

$$
x \equiv-2 \quad(\bmod p)
$$

and $x=a_{2}=a_{p+1}=F_{p-1}+x F_{p} \equiv 1-x(\bmod p), 2 x \equiv 1(\bmod p)$. Combining this last congruence with $x \equiv-2(\bmod p)$, it follows that $2(-2) \equiv 1(\bmod p), p=5$, which is a contradiction. We proved that $p \equiv 1,4(\bmod 5)$.

THE FIBONACCI QUARTERLY

3. The case $p \equiv 3(\bmod 4)$.

We will prove the second statement of the theorem in the case when $p \equiv 3(\bmod 4)$.
Proof. We have the classical Binet's formula (see [1], p. 155)

$$
\begin{equation*}
F_{n} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{n}-\left(-\frac{1}{\alpha}\right)^{n}\right) \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

Putting in the above formula $n=\frac{p+1}{2}$ and taking into account the fact that $\frac{p+1}{2}$ is an even number and that $\alpha^{p-1} \equiv 1(\bmod p)$ we obtain

$$
\begin{equation*}
F_{\frac{p+1}{2}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p+1}{2}}-\frac{1}{\alpha^{\frac{p+1}{2}}}\right) \equiv \frac{1}{\sqrt{5}} \frac{\alpha^{2}-1}{\alpha^{\frac{p+1}{2}}} \equiv \frac{1}{\sqrt{5}} \frac{\alpha}{\alpha^{\frac{p+1}{2}}} \equiv \frac{1}{\sqrt{5}} \frac{1}{\alpha^{\frac{p-1}{2}}} \quad(\bmod p) . \tag{3.2}
\end{equation*}
$$

Putting in formula (3.1) $n=\frac{p-1}{2}$ and taking into account the fact that $\frac{p-1}{2}$ is an odd number and that $\alpha^{p-1} \equiv 1(\bmod p)$ we obtain

$$
\begin{equation*}
F_{\frac{p-1}{2}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2}}+\frac{1}{\alpha^{\frac{p-1}{2}}}\right) \equiv \frac{1}{\sqrt{5}} \frac{2}{\alpha^{\frac{p-1}{2}}} \quad(\bmod p) \tag{3.3}
\end{equation*}
$$

Since the sequence $\left(a_{n}\right)_{n>0}$ modulo p has period $\frac{p-1}{2}$ we have

$$
\begin{equation*}
x=a_{2} \equiv a_{\frac{p+3}{2}}=F_{\frac{p-1}{2}}+x F_{\frac{p+1}{2}} \quad(\bmod p), x\left(1-F_{\frac{p+1}{2}}\right) \equiv F_{\frac{p-1}{2}} \quad(\bmod p) . \tag{3.4}
\end{equation*}
$$

Case 1. $\alpha^{\frac{p-1}{2}} \equiv 1(\bmod p)$. In this case, from formulas (3.2) and (3.3) it follows that $F_{\frac{p+1}{2}} \equiv \frac{1}{\sqrt{5}}(\bmod p)$ and $F_{\frac{p-1}{2}} \equiv \frac{2}{\sqrt{5}}(\bmod p)$. Putting these values in formula (3.4) we obtain $x\left(1-\frac{1}{\sqrt{5}}\right) \equiv \frac{2}{\sqrt{5}}(\bmod p)$ and

$$
x \equiv \frac{2}{\sqrt{5}-1} \equiv \frac{\sqrt{5}+1}{2}=\alpha \quad(\bmod p) .
$$

Therefore, $a_{2}=x, a_{3}=1+x \equiv 1+\alpha \equiv \alpha^{2}(\bmod p)$ and by induction we infer that $a_{n} \equiv \alpha^{n}$ $(\bmod p)$ for any positive integer n. From the condition of the hypothesis it follows now immediately that ord $\alpha=\frac{p-1}{2}$.

Case 2. $\alpha^{\frac{p-1}{2}} \equiv-1(\bmod p)$. In this case, from formulas (3.2) and (3.3) it follows that $F_{\frac{p+1}{2}} \equiv-\frac{1}{\sqrt{5}}(\bmod p)$ and $F_{\frac{p-1}{2}} \equiv-\frac{2}{\sqrt{5}}(\bmod p)$. Putting these values in formula (3.4) we obtain $x\left(1+\frac{1}{\sqrt{5}}\right) \equiv-\frac{2}{\sqrt{5}}(\bmod p)$ and

$$
x \equiv-\frac{2}{\sqrt{5}+1} \equiv \frac{-\sqrt{5}+1}{2}=\beta \quad(\bmod p) .
$$

Therefore, $a_{2}=x, a_{3}=1+x \equiv 1+\beta \equiv \beta^{2}(\bmod p)$ and by induction we infer that $a_{n} \equiv \beta^{n}(\bmod p)$ for any positive integer n. From the condition of the hypothesis it follows immediately that ord $\beta=\frac{p-1}{2}$.

4. The case $p \equiv 1(\bmod 4)$.

We will show first that $\left(\frac{\alpha}{p}\right)=1$ in this case.

QUADRATIC RESIDUES IN FIBONACCI SEQUENCES

Proof. From formula (3.1) it follows that

$$
\begin{equation*}
F_{\frac{p-1}{2}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2}}-\frac{1}{\alpha^{\frac{p-1}{2}}}\right) \equiv 0 \quad(\bmod p) \tag{4.1}
\end{equation*}
$$

and from formula (3.4) we infer that $F_{\frac{p+1}{2}} \equiv 1(\bmod p)$. Let us suppose that $\left(\frac{\alpha}{p}\right)=-1$. From formula (3.1) it follows that

$$
\begin{equation*}
F_{\frac{p+1}{2}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p+1}{2}}+\frac{1}{\alpha^{\frac{p+1}{2}}}\right) \equiv-\frac{1}{\sqrt{5}} \frac{\alpha^{2}+1}{\alpha} \equiv-\frac{1}{\sqrt{5}} \frac{\alpha \sqrt{5}}{\alpha} \equiv-1 \quad(\bmod p) . \tag{4.2}
\end{equation*}
$$

In the above proof we used $\alpha^{2}+1 \equiv \alpha \sqrt{5}(\bmod p)$. Formula (4.2) does not fit with what we obtained above: $F_{\frac{p+1}{2}} \equiv 1(\bmod p)$. Therefore we have proved that $\left(\frac{\alpha}{p}\right)=1$ in this case.

We will show that $\operatorname{ord} \alpha=\frac{p-1}{2}$ or $\operatorname{ord} \beta=\frac{p-1}{2}$. Let us denote $d=\operatorname{ord} \alpha$ in \mathbb{F}_{p}^{*}. Since $\left(\frac{\alpha}{p}\right)=1$, we infer from Euler's Criterion that $\alpha^{\frac{p-1}{2}} \equiv 1(\bmod p)$ and therefore d divides $\frac{p-1}{2}$. We have $\frac{p-1}{2}=k d$, where $k \in \mathbb{N}^{*}$. If $k=1$, we have proved the theorem. Let us suppose now that $k \geq 2$. From formula (3.1) it follows that $F_{n+2 d} \equiv F_{n}(\bmod p)$ for any positive integer n and that $a_{n+2 d} \equiv a_{n}(\bmod p)$ for any positive integer n. Since the period of $\left(a_{n}\right)_{n>0}$ modulo p is $\frac{p-1}{2}$, it follows that $2 d \geq \frac{p-1}{2}=k d, 2 \geq k \geq 2, k=2, d=\frac{p-1}{4}$. Let us show now that in this case $d=\frac{p-1}{4}$ is odd. Indeed, if d would be even, then from formula (3.1) it would follow that $F_{n+d} \equiv F_{n}(\bmod p)$ for any positive integer n and that $a_{n+d} \equiv a_{n}(\bmod p)$ for any positive integer n. It would result that the period of $\left(a_{n}\right)_{n>0}$ modulo p would be smaller than $d=\frac{p-1}{4}$ which is false since the period of $\left(a_{n}\right)_{n>0}$ modulo p is $\frac{p-1}{2}$. Then d is odd. We will show now that $\operatorname{ord} \beta=\frac{p-1}{2}$. Let us denote $d_{1}=\operatorname{ord} \beta$ in \mathbb{F}_{p}^{*}. We have

$$
\begin{equation*}
\beta^{\frac{p-1}{2}}=\left(-\frac{1}{\alpha}\right)^{\frac{p-1}{2}}=\frac{1}{\alpha^{\frac{p-1}{2}}} \equiv 1 \quad(\bmod p) \tag{4.3}
\end{equation*}
$$

and therefore d_{1} divides $\frac{p-1}{2}$. We have

$$
1 \equiv \beta^{2 d_{1}}=\left(-\frac{1}{\alpha}\right)^{2 d_{1}}=\frac{1}{\alpha^{2 d_{1}}} \quad(\bmod p)
$$

and therefore, $\alpha^{2 d_{1}} \equiv 1(\bmod p)$ and $\frac{p-1}{4}=d=$ ord α divides $2 d_{1}$. Since d is odd, it follows that d divides d_{1} and from (4.3) it follows that d_{1} divides $\frac{p-1}{2}$. We infer that $d_{1}=\frac{p-1}{4}$ or $d_{1}=\frac{p-1}{2}$. If $d_{1}=\frac{p-1}{4}$, then (since $d=d_{1}$ is odd)

$$
1 \equiv \beta^{d_{1}}=\left(-\frac{1}{\alpha}\right)^{d_{1}}=-\frac{1}{\alpha^{d}} \equiv-1 \quad(\bmod p)
$$

which is a contradiction. Therefore, $d_{1}=\frac{p-1}{2}=\operatorname{ord} \beta$ and we finished the proof of the theorem.

Remark. The first prime number $p \equiv 1,4(\bmod 5)$ which does not have the property stated in Theorem 1.1 is $p=41$. In this case $\sqrt{5}$ is 13 since $13^{2} \equiv 5(\bmod 41)$. Hence, $\alpha=\frac{1+\sqrt{5}}{2}=$ 7 and $\beta=\frac{1-\sqrt{5}}{2}=-6$. We have $\alpha^{20} \equiv\left(\frac{7}{41}\right)=-1(\bmod 41), \beta^{20} \equiv\left(\frac{-6}{41}\right)=-1(\bmod 41)$ and α and β do not have order 20.

THE FIBONACCI QUARTERLY

5. Another result and a Conjecture.

Following the same path as above we can prove the following result.
Theorem 5.1. If $p>2$ is a prime number, there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv$ $a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $p-1$ and $\left\{\overline{a_{n}} \mid 1 \leq n \leq p-1\right\}=\mathbb{F}_{p}^{*}$ if and only if
i) $p \equiv 1,4(\bmod 5)$ and
ii) ord $\alpha=p-1$ or ord $\beta=p-1$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. As above, $\sqrt{5}$ means the unique positive integer $m \leq \frac{p-1}{2}$ such that $5 \equiv m^{2}(\bmod p)$.

The above two results suggest to study the following.
Conjecture. If $p>2$ is a prime number and k is a divisor of $p-1$, there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{k}$ and $\left\{\overline{a_{n}} \left\lvert\, 1 \leq n \leq \frac{p-1}{k}\right.\right\}=\left\{b^{k} \mid b \in \mathbb{F}_{p}^{*}\right\}$ if and only if
i) $p \equiv 1,4(\bmod 5)$ and
ii) ord $\alpha=\frac{p-1}{k}$ or ord $\beta=\frac{p-1}{k}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. As above, $\sqrt{5}$ means the unique positive integer $m \leq \frac{p-1}{2}$ such that $5 \equiv m^{2}(\bmod p)$.

References

[1] A. Gica and L. Panaitopol, O Introducere in Aritmetică şi Teoria Numerelor, Bucharest University Press, Bucharest, 2001.

MSC2000: 11A15, 11B39
Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest 1, Str. Academiei 14, RO-010014, Romania

E-mail address: alexgica@yahoo.com

