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Abstract. We prove that a homogeneous linear recurrence with positive coefficients can
generate a disjoint covering of N.

1. Introduction

In [2], a linear recurrence is said to generate a disjoint covering of N = {1, 2, . . .} if there
exists a family of recurring sequences such that each n ∈ N occurs in exactly one sequence
of this family. In [3], Simpson proved that an arithmetic progression with positive terms can
generate a disjoint covering of N. In [1], Ando and Hilano proved that a linear recurrence,
whose characteristic equation has a Pisot number root, can generate a disjoint covering of N.
In [2], Burke and Bergum proved that a linear recurrence, whose characteristic equation has
a prime root, can generate a disjoint covering of N. In [4], Zöllner proved that the Fibonacci
recurrence can generate a disjoint covering of N.

The result of this article is that a homogeneous linear recurrence with positive coefficients
can generate a disjoint covering of N.

2. Disjoint Covering of N with Sequences Verifying a Homogeneous Linear
Recurrence

Consider the homogeneous linear recurrence of order m,m ≥ 2,

xn = a1xn−1 + a2xn−2 + · · ·+ amxn−m, (1)

where a1, am ∈ N and ai ∈ N∪{0} for 1 < i ≤ m−1. In the case m = 1 we have a geometric
progression and the result is trivial.

Given y1, . . . , ym ∈ R, we denote by S(y1, y2, . . . , ym) the sequence {xn} such that

xn = yn, for n = 1, 2, . . . , m,

xn = a1xn−1 + a2xn−2 + · · ·+ amxn−m, for n > m.

The elements x1, x2, . . . , xm are called initial elements of the sequence S(x1, x2, . . . , xm).
In the sequel we will consider only sequences with elements in N.

In the following two lemmas we give some properties of the sequences defined above.

Lemma 1. If xi ∈ N, i = 1, 2, . . . , m, such that x1 < x2 < · · · < xm, then S(x1, x2, . . . , xm)
is an increasing sequence and if xs+1, xt+1 with s < t are not initial elements, then

xt+1 − xs+1 > xt − xs.
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Proof. For n > m, xn > a1xn−1 ≥ xn−1. For m < s < t, xt+1 − xs+1 > a1(xt − xs) ≥
xt − xs ¤
Lemma 2. Let S1 = {xn} = S(x1, x2, . . . , xm) and S2 = {yn} = S(y1, y2, . . . , ym) be two
sequences satisfying

1. x1 < x2 < · · · < xm

2. There exists j ≥ 1 such that xj+n−1 < yn < xj+n, n = 1, 2, . . . , m.

Then the following statements are true.

(a) For all n ∈ N we have

xj+n−1 < yn < xj+n. (2)

(b) If xs+1 and yt+1 are not initial elements (that is, s, t ≥ m) then

xs < yt implies yt+1 − xs+1 > yt − xs

and yt < xs implies xs+1 − yt+1 > xs − yt

Proof.

(a) For n > m inequalities (2) can be easily established by an induction argument, using
the recurrence relation (1).

(b) For n = t, inequalities (2) becomes

xj+t−1 < yt < xj+t. (3)

If xs < yt, then from (3) we deduce that xs ≤ xj+t−1. From Lemma 1 and from (2) we obtain

xs−i ≤ xj+t−1−i < yt−i,

for each i = 0, 1, . . . , m− 1. Then

yt+1 − xs+1 = a1(yt − xs) + a2(yt−1 − xs−1) + · · ·+ am(yt+1−m − xs+1−m)

> a1(yt − xs) ≥ yt − xs.

If yt < xs, then from (3) we deduce that xs ≥ xj+t and further xs−i ≥ xj−i+t > yt−i for
each i = 0, 1, . . . , m− 1. Thus, xs+1 − yt+1 > a1(xs − yt) ≥ xs − yt.

The main result is the next theorem. ¤
Theorem 3. If m ≥ 2, a1, am ∈ N and ai ∈ N ∪ {0} for 1 < i ≤ m− 1, then the recurrence
relation (1) can generate a family of sequences {Sk}k∈N, which is a disjoint covering of N.

Proof. We will construct the family {Sk} by induction.

S1 = {x1
n} = S(1, 2, . . . ,m),

S2 = {x2
n} = S(x2

1, x
2
2, . . . , x

2
m),
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where x2
1, x

2
2, . . . , x

2
m are defined as follows. The number x2

1 is the smallest natural number
not in S1. Hence, there exists i such that x1

i = x2
1 − 1 ∈ S1. Then x2

2 = x1
i+1 + 1, x2

3 =
x1

i+2 + 1, . . . , x2
m = x1

i+m−1 + 1.
From the choice of x2

1 we deduce that 1, 2, . . . , x1
i ∈ S1, x1

i + 1 /∈ S1, and i ≥ m.
We will prove that

x1
i+n−1 < x2

n < x1
i+n, for n = 1, 2, . . . , m. (4)

Since x2
n = x1

i+n−1 + 1, in order to prove (4), it is enough to show that

x1
i+n > x1

i+n−1 + 1, for n = 1, 2, . . . , m. (5)

We prove (5) by induction. For n = 1, since x1
i + 1 /∈ S1 we have x1

i+1 > x1
i + 1. We suppose

that, for some r, 1 ≤ r < m, we have x1
i+r > x1

i+r−1 + 1. Since i ≥ m, x1
i+r is not an initial

element of S1 and applying Lemma 1 we conclude that

x1
i+r+1 − x1

i+r > x1
i+r − x1

i+r−1 > 1.

Hence, (4) and (5) hold.
From Lemma 2 it follows that

x1
i+n−1 < x2

n < x1
i+n, for all n ∈ N,

and, in the case when x1
s+1, x

2
t+1 are not initial elements, we have

x1
s < x2

t implies x2
t+1 − x1

s+1 > x2
t − x1

s and

x1
s > x2

t implies x1
s+1 − x2

t+1 > x1
s − x2

t .

Now we suppose that, for some k ≥ 2, we have constructed a family of sequences Sj =

{xj
n} = S(xj

1, x
j
2, . . . , x

j
m), j = 1, 2, . . . , k, satisfying the following properties.

P1) For each j, 2 ≤ j ≤ k, xj
1 is the smallest natural number not yet covered by the

sequences S1, S2, . . . , Sj−1 and if xi
s = xj

1− 1, with some i = 1, 2, . . . , j− 1 and s ∈ N,
then

xj
2 = x1

s+1 + 1, xj
3 = x1

s+2 + 1, . . . , xj
m = x1

s+m−1 + 1.

P2) For any j1, j2, 1 ≤ j1 < j2 ≤ k, the sequences Sj1 and Sj2 are disjoint and there
exists r ≥ 1 such that

xj1
r < xj2

1 < xj1
r+1 < xj2

2 < · · · < xj1
r+n−1 < xj2

n < xj1
r+n < · · · .

This means that, for any two sequences Sj1 and Sj2 , with Sj2 having the greatest first
element, all other elements of Sj2 are individually separated by individual elements
of Sj1 .

For constructing the sequence Sk+1 we need to consider the set Zk ⊂ N as the set covered
by the sequences Sj, j = 1, 2, . . . , k and the function F : Zk → Zk defined as F (xj

s) = xj
s+1,

for xj
s ∈ Zk. We denote by Fn the composed function Fn = F (Fn−1), n > 1, where F1 = F

and F0(x) = x for x ∈ Zk. We say that x ∈ Zk is an initial element if x is an initial element
of the sequence Sj which contains x.

Next we show two properties of the set Zk and of the function F .
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P3) If x ∈ Zk, x > 1 and if x − 1 /∈ Zk, then x is not an initial element. Indeed,
if we suppose that x is an initial element then there exists j, 1 ≤ j ≤ k such that
x ∈ {xj

1, x
j
2, . . . , x

j
m}. If j > 1, then from P1 we deduce that xj

1−1, xj
2−1, . . . , xj

m−1 ∈
Zk, which contradicts the hypothesis. If j = 1, then x ∈ {2, 3, . . . ,m} and again
x− 1 ∈ Zk.

P4) If x, y ∈ Zk with x < y, then F (x) < F (y) and if, in addition, x and y are not initial
elements, then

F (y)− F (x) > y − x.

Indeed, if there exists j, 1 ≤ j ≤ k such that x, y ∈ Sj, then Property P4) results
from Lemma 1. If x ∈ Sj1 and y ∈ Sj2 with j1 6= j2, then hypotheses 1 and 2 of
Lemma 2 are satisfied, hence, P4) results from the conclusions of this lemma.

We now construct the sequence Sk+1 = {xk+1
n } = S(xk+1

1 , xk+1
2 , . . . , xk+1

m ) as follows:

xk+1
1 is the smallest natural number not in Zk

xk+1
2 = F (xk+1

1 − 1) + 1,

xk+1
3 = F2(x

k+1
1 − 1) + 1,

. . .

xk+1
m = Fm−1(x

k+1
1 − 1) + 1.

We will show that the family of sequences Sj, j = 1, 2, . . . , k + 1, satisfies Properties P1)
and P2).

Obviously, xk+1
1 is the smallest natural number not covered by the sequences S1, S2, . . . , Sk.

Let xi
s = xk+1

1 − 1 ∈ Zk with 1 ≤ i ≤ k and s ∈ N. Then, from the definition of F and Fn

we deduce that

xk+1
2 = xi

s+1 + 1, xk+1
3 = xi

s+2 + 1, . . . , xk+1
m = xi

s+m−1 + 1,

and therefore P1) is verified.
Let us denote by E the set E = {xi

s − k + 1, xi
s − k + 2, . . . , xi

s}. From the choice of xk+1
1

it follows that E ⊂ Zk and the first element of each sequence Sj, j = 1, 2, . . . , k is less than
xk+1

1 .
We claim that each sequence Sj, j = 1, 2, . . . , k, contains exactly one element from E.

Indeed, if we suppose that there exists a sequence Sj1 , for some j1, 1 ≤ j1 ≤ k, containing
two elements such that

xi
s − k + 1 ≤ xj1

r < xj1
r+1 ≤ xi

s,

then there exists a sequence Sj2 , for some j2, 1 ≤ j2 ≤ k such that Sj2∩E = ∅. Let xj2
t be the

largest elements of Sj2 such that xj2
t < xi

s−k+1. Then xj2
t+1 > xi

s and xj2
t < xj1

r < xj1
r+1 < xj2

t+1,
a fact which contradicts P2).

Further, from P2) we obtain
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xi
s − k + 1 < xi

s − k + 2 < · · · < xi
s

< F (xi
s − k + 1) < F (xi

s − k + 2) < · · · < F (xi
s)

< F2(x
i
s − k + 1) < · · · < F2(x

i
s) < F3(x

i
s − k + 1) < · · ·

< Fn(xi
s − k + 1) < · · · < Fn(xi

s) < Fn+1(x
i
s − k + 1) < · · · . (6)

Hence,

Zk = {1, 2, . . . , xi
s} ∪

( ∞⋃
n=1

Fn(E)

)
.

Let us remark that all natural numbers less than xk+1
1 belong to Zk.

Now we show that

Fp(x
i
s) < xk+1

p+1 < Fp+1(x
i
s − k + 1), for all p = 0, 1, . . . ,m− 1, (7)

where F0(x
i
s) = xi

s. Since xk+1
p+1 = xi

s+p + 1 = Fp(x
i
s) + 1, in order to prove (7), it is enough

to show that

Fp+1(x
i
s − k + 1)− Fp(x

i
s) > 1, for all p = 0, 1, . . . , m− 1. (8)

From xk+1
1 = xi

s + 1 /∈ Zk, and since each sequence Sj, j = 1, 2, . . . , k contains exactly one
element from E, we deduce that F (xi

s − k + 1) > xk+1
1 and F (xi

s − k + 1)− 1 6∈ Zk. Hence,
(8) holds for p = 0 and F (xi

s − k + 1) is not an initial element in Zk. We will proceed by
induction. We suppose that the inequality (8) holds for some p = 0, 1, . . . , m−2. Then from
(6) we obtain Fp+1(x

i
s − k + 1) is not an initial element. We need to consider two cases.

A. Fp(x
i
s) is not an initial element. From P4) it follows that

Fp+2(x
i
s − k + 1)− Fp+1(x

i
s) > Fp+1(x

i
s − k + 1)− Fp(x

i
s) > 1.

Hence, the inequalities in (7) hold for p + 1 and therefore, by induction, they hold
for all 0 ≤ p ≤ m− 1.

B. Fp(x
i
s) is an initial element in Zk. Let q, 0 ≤ q ≤ k − 2, be such that Fp(x

i
s − t) is

an initial element for t = 0, . . . , q and Fp(x
i
s − q − 1) is not an initial element. Then

from P1) we get

Fp+1(x
i
s) = Fp+1(x

i
s − 1) + 1 = Fp+1(x

i
s − 2) + 2 = · · · = Fp+1(x

i
s − q − 1) + q + 1.

Similarly, since Fp(x
i
s − t) are initial elements in Zk for all t = 0, . . . , q, we have

Fp(x
i
s) = Fp(x

i
s − q − 1) + q + 1.

From Property P4) we deduce that

Fp+2(x
i
s − k + 1)− Fp+1(x

i
s)

= Fp+2(x
i
s − k + 1)− Fp+1(x

i
s − q − 1)− q − 1

> Fp+1(x
i
s − k + 1)− Fp(x

i
s − q − 1)− q − 1

= Fp+1(x
i
s − k + 1)− Fp(x

i
s) > 1.
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Hence, (8) holds for p+1 and again, by induction, it holds for all p = 0, 1, . . . , m−1.
From Lemma 2(a) we conclude that

Fp(x
i
s) < xk+1

p+1 < Fp+1(x
i
s − k + 1) for each p ≥ 0.

Hence, the family of sequences Sj, j = 1, 2, . . . , k + 1, verify the properties P1) and
P2). Moreover, we have xk+1

1 > xk
1 for each k ∈ N and, since all natural numbers

less than xk+1
1 belong to Zk, we conclude that the family of sequences Sk, k ∈ N is a

disjoint covering of N.

¤
For the case m ≥ 2 and a1 = 0 we do not yet have an answer.

References

[1] S. Ando, T. Hilano, Disjoint Covering of the Set Natural Numbers Consisting by a Recurrence Whose
Characteristic Equation has a Pisot Number Root, The Fibonacci Quarterly, 33.4 (1995), 363–367.

[2] J. R. Burke, G. E. Bergum, Covering the Integers with Linear Recurrences, A. N. Philippou et al. (eds).
Applications of Fibonacci Numbers, 2 (1988), 143–147.

[3] R. J. Simpson, Exact Covering of the Integers by Arithmetic Progressions, Discrete Mathematics, 59
(1986), 181–190.
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