ON HIGHER ORDER LUCAS-BERNOULLI NUMBERS

KYLE KEEPERS AND PAUL THOMAS YOUNG

ABSTRACT. In this note we consider higher order Bernoulli numbers associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences $\{U_n\}$. We first give an explicit formula for these numbers which implies new identities involving the usual higher order Bernoulli numbers and the Lucas sequences $\{U_n\}$ and $\{V_n\}$. We then give an analogue of the Kummer congruences for these sequences which for each prime pdepends only on U_p .

1. INTRODUCTION

Let P and Q be integers and consider a Lucas sequence $\{U_n\}$ defined by

$$U_n = PU_{n-1} - QU_{n-2}$$
 $(n > 1), U_0 = 0, U_1 = 1.$ (1.1)

Define a power series $\lambda \in \mathbb{Q}[[t]]$ by

$$\lambda(t) = \sum_{n=1}^{\infty} U_n \frac{t^n}{n}.$$
(1.2)

Let ε denote the formal compositional inverse of λ in $\mathbb{Q}[[t]]$, and define the *Lucas-Bernoulli* numbers $\hat{B}_n^{(w)}$ of order w by the generating function

$$\left(\frac{t}{\varepsilon(t)}\right)^w = \sum_{n=0}^{\infty} \hat{B}_n^{(w)} \frac{t^n}{n!}.$$
(1.3)

If one takes P = -1 and Q = 0 then $U_n = (-1)^{n+1}$ for n > 0, $\lambda(t) = \log(1+t)$, $\varepsilon(t) = e^t - 1$, and the numbers $\hat{B}_n^{(w)}$ are the (usual) Bernoulli numbers of order w, denoted simply by $B_n^{(w)}$. The first part of this note centers around an explicit formula for the numbers $\hat{B}_n^{(w)}$ in terms of $B_n^{(w)}$. This formula implies new identities among the sequences $B_n^{(w)}$, U_n , and the companion sequence V_n . In the second part, we prove an analogue of the Kummer congruences for the sequences $\hat{B}_n^{(w)}$. This is an extension of congruences which were proved in the case P = -1, Q = 0 in [4] and in the case w = 1 in [5].

The power series λ in (1.2) is the formal logarithm of a rational formal group law over \mathbb{Z} (cf. [5], Section 5). In general if one takes λ to be the logarithm of an arbitrary formal group law in characteristic zero then the numbers $\hat{B}_n^{(w)}$ defined by (1.3) are the *w*th order Bernoulli numbers associated to that formal group law according to the definition in [3]. The Kummer congruences we present in Section 3 for $\hat{B}_n^{(w)}$ depend on the same special element U_p as do those proved in ([5], Theorem 3.2) for $\hat{B}_n^{(1)}$ and have the same modulus as those proved in ([4], Theorem 5.4) for the numbers $\hat{B}_n^{(w)} = B_n^{(w)}$ obtained in (1.3) from the choice P = -1, Q = 0; in this case the associated formal group law is the multiplicative group law F(X, Y) = X + Y + XY. As discussed in ([5], Section 5) in the case w = 1, we interpret the strength of our congruences in Section 3 as an expression of the fact that the associated formal group laws are defined over \mathbb{Z} , rather than just over \mathbb{Q} .

ON HIGHER ORDER LUCAS-BERNOULLI NUMBERS

2. Identities for Higher Order Lucas-Bernoulli Numbers

Given integers P and Q we define the Lucas sequence $\{U_n\}$ as in (1.1) and its companion sequence $\{V_n\}$ by

$$V_n = PV_{n-1} - QV_{n-2}$$
 $(n > 1), \quad V_0 = 2, \quad V_1 = P.$ (2.1)

Then $r(t) = 1 - Pt + Qt^2$ is the characteristic polynomial of the recurrence for either $\{U_n\}$ or $\{V_n\}$, with discriminant $D = P^2 - 4Q$. If r(t) factors as $r(t) = (1 - \alpha t)(1 - \beta t)$ then $\alpha = (P + \sqrt{D})/2$ and $\beta = (P - \sqrt{D})/2$, so that $\alpha - \beta = \sqrt{D}$, and for all n we have

$$V_n = \alpha^n + \beta^n, \qquad U_n = \frac{1}{\sqrt{D}} (\alpha^n - \beta^n), \qquad (2.2)$$

unless D = 0, in which case $U_n = n\alpha^{n-1}$. It follows from (2.2) that

$$\alpha^n = \frac{V_n + U_n \sqrt{D}}{2} \tag{2.3}$$

for all n. For any given Lucas sequence $\{U_n\}$ as in (1.1) we define the numbers $\hat{B}_n^{(w)}$ for $n \ge 0$ by (1.3), and we define $\hat{B}_n^{(w)} = 0$ for n < 0.

Theorem 1. Let $\hat{B}_n^{(w)}$ denote the numbers defined in (1.3). Then for all $m \ge 0$,

$$\frac{\hat{B}_{m}^{(w)}}{m!} = \sum_{k=0}^{m} {\binom{w}{k}} \alpha^{k} \sqrt{D}^{m-k} \frac{B_{m-k}^{(w-k)}}{(m-k)!}.$$

If D = 0 this reduces to

$$\frac{\hat{B}_m^{(w)}}{m!} = \binom{w}{m} \alpha^m.$$

Proof. From ([5], equation (3.4)) we have

$$\frac{t}{\varepsilon(t)} = \alpha t + \frac{\sqrt{D}t}{e^{\sqrt{D}t} - 1}$$
(2.4)

so that

$$\left(\frac{t}{\varepsilon(t)}\right)^{w} = \sum_{k=0}^{\infty} {\binom{w}{k}} (\alpha t)^{k} \left(\frac{\sqrt{D}t}{e^{\sqrt{D}t} - 1}\right)^{w-k}.$$
(2.5)

The P = -1, Q = 0 case of (1.3) reads

$$\left(\frac{t}{e^t - 1}\right)^w = \sum_{n=0}^{\infty} B_n^{(w)} \frac{t^n}{n!},$$
(2.6)

so from (1.3) and (2.5) we obtain

$$\sum_{m=0}^{\infty} \hat{B}_{m}^{(w)} \frac{t^{m}}{m!} = \sum_{k=0}^{\infty} {\binom{w}{k}} (\alpha t)^{k} \sum_{s=0}^{\infty} B_{s}^{(w-k)} \frac{(\sqrt{D}t)^{s}}{s!}$$
(2.7)

and equating coefficients of t^m gives the statement of the theorem; the summation runs from k = 0 to m since $B_{m-k}^{(w-k)} = 0$ in the case k > m. In the case D = 0 (2.4) becomes

$$\frac{t}{\varepsilon(t)} = \alpha t + 1 \tag{2.8}$$

FEBRUARY 2008/2009

27

THE FIBONACCI QUARTERLY

and therefore (2.7) becomes

$$\sum_{m=0}^{\infty} \hat{B}_{m}^{(w)} \frac{t^{m}}{m!} = \sum_{k=0}^{\infty} {w \choose k} (\alpha t)^{k},$$
(2.9)

so that $\hat{B}_m^{(w)}/m! = {\binom{w}{m}} \alpha^m$ when D = 0, completing the proof.

We define

$$\lambda(k) = \begin{cases} V_k, & \text{if } k \text{ is even,} \\ U_k, & \text{if } k \text{ is odd,} \end{cases} \qquad \eta(k) = \begin{cases} U_k, & \text{if } k \text{ is even,} \\ V_k, & \text{if } k \text{ is odd,} \end{cases}$$
(2.10)

and restate Theorem 1 as follows.

Corollary. Let $\hat{B}_n^{(w)}$ denote the numbers defined in (1.3). If $D \neq 0$, then for all $m \geq 0$,

$$\frac{\hat{B}_{m}^{(w)}}{m!} = \frac{1}{2} D^{m/2} \sum_{k=0}^{m} {w \choose k} \lambda(k) D^{-[k/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!} + \frac{1}{2} D^{(m+1)/2} \sum_{k=0}^{m} {w \choose k} \eta(k) D^{-[(k+1)/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!}$$

Proof. Substitute (2.3) into Theorem 1 to obtain

$$\frac{\hat{B}_m^{(w)}}{m!} = \sum_{k=0}^m \binom{w}{k} \left(\frac{V_k \sqrt{D}^{m-k} + U_k \sqrt{D}^{m+1-k}}{2} \right) \frac{B_{m-k}^{(w-k)}}{(m-k)!}.$$
(2.11)

Collecting the terms in (2.11) whose power of \sqrt{D} has the same parity as m, and those of opposite parity, gives the statement of the corollary.

Remarks. In this theorem and corollary the order w may be taken to lie in any commutative ring with unity. However, if w is taken to be a rational number then each sum in this corollary consists of rational terms. If in addition P, Q are chosen so that the discriminant D is not a square we may then obtain identities for these sums by virtue of the fact that $\hat{B}_m^{(w)}$ is rational. In particular, if m is even then

$$\sum_{k=0}^{m} {\binom{w}{k}} \eta(k) D^{-[(k+1)/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!} = 0$$
(2.12)

and

$$\frac{\hat{B}_m^{(w)}}{m!} = \frac{1}{2} D^{m/2} \sum_{k=0}^m \binom{w}{k} \lambda(k) D^{-[k/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!}.$$
(2.13)

Conversely if m is odd then

$$\sum_{k=0}^{m} {\binom{w}{k}} \lambda(k) D^{-[k/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!} = 0$$
(2.14)

and

$$\frac{\hat{B}_m^{(w)}}{m!} = \frac{1}{2} D^{(m+1)/2} \sum_{k=0}^m \binom{w}{k} \eta(k) D^{-[(k+1)/2]} \frac{B_{m-k}^{(w-k)}}{(m-k)!}.$$
(2.15)

VOLUME 46/47, NUMBER 1

28

The identities (2.12) and (2.14) seem to be new identities for the usual higher order Bernoulli numbers.

3. Congruences for Higher Order Lucas-Bernoulli Numbers

For the remainder of this paper we regard the order w as a positive integer. Let p denote an odd prime, \mathbb{Z}_p the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers, and $\mathbb{Z}_{(p)}$ the ring of rational numbers with denominator relatively prime to p, so that $\mathbb{Z}_{(p)} = \mathbb{Z}_p \bigcap \mathbb{Q}$. We denote by "ord" the additive valuation on \mathbb{Q}_p defined so that $\operatorname{ord} x = k$ if $p^{-k}x$ is a unit in \mathbb{Z}_p . The Pochhammer symbol (or rising factorial) is defined by $(m+1)_w = (m+w)!/m!$. For a sequence $\{a_m\}$ and a nonnegative integer c, we define the action of the forward difference operator Δ_c with increment c by

$$\Delta_c a_m = a_{m+c} - a_m. \tag{3.1}$$

The powers Δ_c^k of Δ_c are defined by Δ_c^0 = identity and $\Delta_c^k = \Delta_c \circ \Delta_c^{k-1}$ for positive integers k, so that

$$\Delta_c^k a_m = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} a_{m+jc}$$
(3.2)

for all nonnegative integers k. We will have need of the identity

$$\Delta_{c}^{k}\{X_{m}Y_{m}\} = \sum_{i=0}^{k} \binom{k}{i} \Delta_{c}^{i}\{X_{m}\} \Delta_{c}^{k-i}\{Y_{m+ic}\}, \qquad (3.3)$$

which was observed in ([4], equation (5.38)).

As in Section 5 of [4], for a given nonnegative integer m and a positive integer w we define

$$J = J(m, w) = \{ j \in \{1, 2, ..., w\} : p - 1 | m + j \};$$
(3.4)

$$M = M(m, w) = \max_{j \in J} \{1 + \operatorname{ord} (m+j)\};$$
(3.5)

$$E = E(m, w) = \sum_{j \in J \cup \{w\}} k(j, m, w),$$
(3.6)

where
$$k(j, m, w) = \begin{cases} \max\{1 + \operatorname{ord}(m+j) - \operatorname{ord} j, 0\}, & \text{if } j \in J \text{ and } j \neq w, \\ 1 + \operatorname{ord}(m+j) - \operatorname{ord} j, & \text{if } j = w \in J, \\ -\operatorname{ord} j, & \text{if } j = w \notin J. \end{cases}$$
 (3.7)

By definition we set M = 0 if J is empty. We recall that if $0 \le m \le n$ and $m \equiv n \pmod{(p-1)p^a}$ for some $a \ge M$, then E(m, w) = E(n, w). In ([4], Theorem 5.1) we observe that

ord
$$\frac{B_{m+w}^{(w)}}{(m+1)_w} \ge -E.$$
 (3.8)

We also observe from equations (5.6) and (5.16) of [4] that

$$E(m,w) \ge E(m,w-s) - \operatorname{ord} {\binom{w}{s}}$$
(3.9)

for $0 \leq s \leq w$.

FEBRUARY 2008/2009

29

THE FIBONACCI QUARTERLY

Theorem 2. Let $\hat{B}_n^{(w)}$ denote the numbers defined in (1.3). Then if p is an odd prime and c = l(p-1) where p^a divides l for some $a \ge M$, then for all $m, w, k \ge 0$, the congruence

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} U_p^{(k-j)l} \frac{\hat{B}_{m+w+jc}^{(w)}}{(m+jc+1)_w} \equiv 0 \qquad (\text{mod } p^C \mathbb{Z}_{(p)})$$

holds, where $C = \min\{m - E, k(a + 1 - M) - E\}.$

Proof. Begin by replacing m with m + w in Theorem 1 and multiplying both sides by m! to obtain

$$\frac{\hat{B}_{m+w}^{(w)}}{(m+1)_w} = \sum_{s=0}^w \binom{w}{s} \alpha^s \sqrt{D}^{m+w-s} \frac{B_{m+w-s}^{(w-s)}}{(m+1)_{w-s}}.$$
(3.10)

Taking c = l(p-1) as described, the left side of the congruence of the theorem may be expressed via (3.10) as

$$\sum_{j=0}^{k} (-1)^{k-j} {k \choose j} U_p^{(k-j)l} \frac{\hat{B}_{m+w+jc}^{(w)}}{(m+jc+1)_w}$$

$$= \sum_{s=0}^{w} {w \choose s} \alpha^s \sqrt{D}^{w-s} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} U_p^{(k-j)l} \sqrt{D}^{m+jc} \frac{B_{m+w-s+jc}^{(w-s)}}{(m+jc+1)_{w-s}}.$$
(3.11)

Suppose first that p divides D; then p also divides U_p by ([5], equation (2.4)). The p-adic ordinal of the term indexed by s and j in the sum (3.11) is therefore at least

$$\operatorname{ord}\binom{w}{s} + \frac{m+jc+w-s}{2} + (k-j)l - E(m,w-s)$$
 (3.12)

since E(m + jc, w - s) = E(m, w - s) for all j. Since c = l(p - 1) with $l \ge p^a \ge a + 1$ this ordinal is at least

$$\operatorname{ord}\binom{w}{s} + kl + \frac{jl(p-3)}{2} + \frac{m+w-s}{2} - E(m,w-s) \\ \ge k(a+1) - E(m,w) \ge C$$
(3.13)

which proves the theorem in the case where p divides D.

Now suppose that p does not divide D. We use (3.2) and (3.3) to rewrite the sum in (3.11) as

$$\sum_{s=0}^{w} {w \choose s} \alpha^{s} \sqrt{D}^{w-s} U_{p}^{kl+\frac{m}{p-1}} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \left(U_{p}^{-\frac{1}{p-1}} \sqrt{D} \right)^{m+jc} \frac{B_{m+w-s+jc}^{(w-s)}}{(m+jc+1)_{w-s}}$$

$$= \sum_{s=0}^{w} {w \choose s} \alpha^{s} \sqrt{D}^{w-s} U_{p}^{kl+\frac{m}{p-1}} \Delta_{c}^{k} \left\{ \left(U_{p}^{-\frac{1}{p-1}} \sqrt{D} \right)^{m} \frac{B_{m+w-s}^{(w-s)}}{(m+1)_{w-s}} \right\}$$

$$= \sum_{s=0}^{w} {w \choose s} \alpha^{s} \sqrt{D}^{w-s} U_{p}^{kl+\frac{m}{p-1}} \sum_{i=0}^{k} {k \choose i} \Delta_{c}^{i} \left\{ \frac{B_{m+w-s}^{(w-s)}}{(m+1)_{w-s}} \right\} \Delta_{c}^{k-i} \left\{ \left(U_{p}^{-\frac{1}{p-1}} \sqrt{D} \right)^{m+ic} \right\}.$$
(3.14)

VOLUME 46/47, NUMBER 1

As in ([5], equation (3.8)) we have

$$U_{p}^{kl+m/(p-1)}\Delta_{c}^{k-i}\left\{\left(U_{p}^{-1/(p-1)}\sqrt{D}\right)^{m+ic}\right\}$$
$$=\sqrt{D}^{m+ic}U_{p}^{(k-i)l}\left(\left(\frac{D^{(p-1)/2}}{U_{p}}\right)^{l}-1\right)^{k-i}.$$
(3.15)

Since $D^{(p-1)/2} \equiv U_p \pmod{p}$ by ([5], equation (2.4)), we have $(D^{(p-1)/2}/U_p)^l \equiv 1 \pmod{p^{(a+1)}\mathbb{Z}_{(p)}}$, and therefore (3.15) is zero modulo $p^{(k-i)(a+1)}\mathbb{Z}_{(p)}$. By ([4], Theorem 5.4), we also have

$$\Delta_c^i \left\{ \frac{B_{m+w-s}^{(w-s)}}{(m+1)_{w-s}} \right\} \equiv 0 \qquad (\text{mod } p^{C_i} \mathbb{Z}_p)$$
(3.16)

where $C_i = \min\{m - E(m, w - s), i(a + 1 - M(m, w - s)) - E(m, w - s)\}$. Therefore,

$$\binom{w}{s} \Delta_c^i \left\{ \frac{B_{m+w-s}^{(w-s)}}{(m+1)_{w-s}} \right\} \equiv 0 \qquad (\text{mod } p^{C'_i} \mathbb{Z}_p)$$
(3.17)

where $C'_i = \min\{m - E(m, w), i(a + 1 - M(m, w)) - E(m, w)\}$. It follows that each term in the last sum of (3.14) is zero modulo $p^C \mathbb{Z}_p$ with C as in the statement of the theorem. This completes the proof.

References

- A. Adelberg, Universal Higher Order Bernoulli Numbers and Kummer and Related Congruences, J. Number Theory, 84 (2000), 119–135.
- [2] A. Adelberg, Universal Kummer Congruences Mod Prime Powers, J. Number Theory, 109 (2004), 362– 378.
- [3] P. Tempesta, On a Generalization of Bernoulli and Euler Polynomials, eprint arXiv: math/0601675 (2006), 28pp.
- [4] P. T. Young, Congruences for Bernoulli, Euler, and Stirling Numbers, J. Number Theory, 78 (1999), 204-227.
- [5] P. T. Young, On Lucas-Bernoulli Numbers, The Fibonacci Quarterly, 44.4 (2006), 347–357.

MSC2000: 11B68, 11B39

UTAH STATE UNIVERSITY, LOGAN, UTAH 84322-0500 *E-mail address:* kyle.keepers@aggiemail.usu.edu

DEPARTMENT OF MATHEMATICS, COLLEGE OF CHARLESTON, CHARLESTON, SC 29424 *E-mail address*: paul@math.cofc.edu