SOME CONGRUENCES INVOLVING EULER NUMBERS

YUAN HE AND QUNYING LIAO

ABSTRACT. In this paper, we obtain some explicit congruences for Euler numbers modulo an odd prime power in an elementary way.

1. INTRODUCTION

The classical *Bernoulli polynomials* $B_n(x)$ and *Euler polynomials* $E_n(x)$ are usually defined by the exponential generating functions:

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \quad \text{and} \quad \frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

The rational numbers $B_n = B_n(0)$ and integers $E_n = 2^n E_n(1/2)$ are called *Bernoulli numbers* and *Euler numbers*, respectively. Here are some well-known identities of $B_n(x)$ and $E_n(x)$ (see [11]):

$$B_n(1-x) = (-1)^n B_n(x), \quad B_n(x+y) = \sum_{k=0}^n \binom{n}{k} B_{n-k}(y) x^k, \tag{1.1}$$

$$E_n(1-x) = (-1)^n E_n(x), \quad E_n(x+y) = \sum_{k=0}^n \binom{n}{k} E_{n-k}(y) x^k.$$
(1.2)

In particular,

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k, \quad E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}, \tag{1.3}$$

and

$$B_n(x+1) - B_n(x) = nx^{n-1}, \quad E_n(x+1) + E_n(x) = 2x^n.$$
 (1.4)

Meanwhile, there exists a close connection between Bernoulli polynomials and Euler polynomials that can be expressed in the following way:

$$E_n(x) = \frac{2^{n+1}}{n+1} \left(B_{n+1}\left(\frac{x+1}{2}\right) - B_{n+1}\left(\frac{x}{2}\right) \right).$$
(1.5)

Bernoulli and Euler numbers and polynomials are of particular importance in number theory because they have connections with *p*-adic analysis and ideal class groups of cyclotomic fields (for example [9], p. 100–109 and [13], p. 29–86). It is also very fascinating and quite useful to investigate arithmetic properties of these numbers and polynomials. For the work in this area the interested readers may consult [2]. Here we give two classical results (see [4], p. 233–240 or [12]).

AUGUST 2008/2009

Research supported by Natural Science Foundation of China (10671137) and Science Research Fund of Doctoral Program of the Ministry of Education of China (20060636001).

Kummer's congruences. Let p be an odd prime and n a positive integer. Then (1) $E_{(p-1)+2n} \equiv E_{2n} \pmod{p}$.

(2) If $p-1 \nmid 2n$ then

$$\frac{B_{(p-1)+2n}}{(p-1)+2n} \equiv \frac{B_{2n}}{2n} \pmod{p}.$$

von Standt-Clausen Theorem. If n is a positive integer, then

$$B_{2n} + \sum_{p-1|2n} \frac{1}{p}$$
 is an integer,

where the sum is over all primes p such that $p-1 \mid 2n$.

Recently, some researchers considered the congruences for Euler numbers, and obtained some beautiful results. For example, let p be an odd prime, Zhang [15] showed that

$$E_{p-1} \equiv 1 + (-1)^{(p+1)/2} \pmod{p}.$$
(1.6)

In 2002, Wagstaff [12] gave a more general result: let p be an odd prime and a a positive integer, then $E_n \equiv 0$ or 2 (mod p^{a+1}) according to $p \equiv 1$ or 3 (mod 4) where n is a positive integer such that $(p-1)p^a \mid n$. Wagstaff's proof depends on the result of Johnson [6]: $e_p(p^m/m!) > (p-2)m/(p-1)$ where p is a prime, m is a positive integer, and $e_p(n) = r$ means $p^r \mid n$ but $p^{r+1} \nmid n$. In 2004, Chen [1] derived that

$$E_{k\phi(p^a)+2n} \equiv \left(1 - (-1)^{(p-1)/2} p^{2n}\right) E_{2n} \pmod{p^a},\tag{1.7}$$

where k is a positive integer, n is a non-negative integer, p^a is an odd prime power with $a \ge 1$, and $\phi(n)$ is the Euler function. In 2008, Jakubec [5] established a beautiful connection between Euler numbers and Fermat quotients, where the Euler numbers satisfy that for any prime p with $p \equiv 1 \pmod{4}$,

$$E_{p-1} \equiv 0 \pmod{p}$$
 and $2E_{p-1} \equiv E_{2p-2} \pmod{p^2}$. (1.8)

In this paper, using an elementary way, we obtain some explicit congruences for Euler numbers modulo an odd prime power. From now on we always let $\{x\}$ be the fractional part of x. For a given prime p, \mathbb{Z}_p denotes the set of rational p-integers (those rational numbers whose denominators are not divisible by p). If $x_1, x_2 \in \mathbb{Z}_p$ and $x_1 - x_2 \in p^n \mathbb{Z}_p$, then we say that x_1 is congruent to x_2 modulo p^n and denote this relation by $x_1 \equiv x_2 \pmod{p^n}$. A good introduction to p-adic numbers can be found in [8].

2. Several Lemmas

We begin with a useful identity involving Bernoulli polynomials.

Lemma 2.1. Let n and m be positive integers, then for any integers r and k with $k \ge 0$ we have

$$\sum_{\substack{x=0\\m|x-r}}^{n-1} x^k = \frac{m^k}{k+1} \left(B_{k+1} \left(\frac{n}{m} + \left\{ \frac{r-n}{m} \right\} \right) - B_{k+1} \left(\left\{ \frac{r}{m} \right\} \right) \right).$$

VOLUME 46/47, NUMBER 3

Proof. It is easy to see that

$$B_{k+1}\left(\frac{n}{m} + \left\{\frac{r-n}{m}\right\}\right) - B_{k+1}\left(\left\{\frac{r}{m}\right\}\right)$$

$$= \sum_{x=0}^{n-1} \left(B_{k+1}\left(\frac{x+1}{m} + \left\{\frac{r-x-1}{m}\right\}\right) - B_{k+1}\left(\frac{x}{m} + \left\{\frac{r-x}{m}\right\}\right)\right)$$

$$= \begin{cases}\sum_{x=0}^{n-1} \left(B_{k+1}\left(\frac{x}{m} + \left\{\frac{r-x}{m}\right\}\right) - B_{k+1}\left(\frac{x}{m} + \left\{\frac{r-x}{m}\right\}\right)\right) = 0, \text{ if } m \nmid x - r;$$

$$\sum_{x=0}^{n-1} \left(B_{k+1}\left(\frac{x}{m} + 1\right) - B_{k+1}\left(\frac{x}{m}\right)\right), \text{ if } m \mid x - r.$$
(1.4) we can easily deduce the result of Lemma 2.1.

Thus, by (1.4) we can easily deduce the result of Lemma 2.1.

The case m = 1 in Lemma 2.1 is a well-known fact (see [4], p. 231). The consideration to establish the relation in Lemma 2.1 stems from Lemma 3.1 of Sun [10]. Here, we only consider a special case.

Lemma 2.2. Let p be a prime and m a positive integer. Then

(1) $p^m/(m+1)$ is a p-integer, and if $m \ge 2$ then $p^m/(m+1) \in p\mathbb{Z}_p$.

(2) pB_m is a p-integer. In particular, if $p-1 \nmid m$ then B_m/m is a p-integer.

Proof. See [4], p. 235–238.

Lemma 2.3. Let p be an odd prime, a and k be positive integers. Assume that $x_1, x_2 \in \mathbb{Z}_p$ and $x_1 \equiv x_2 \pmod{p^a}$. If $p - 1 \nmid k$ then we have

$$\frac{B_{k+1}(x_1)}{k+1} \equiv \frac{B_{k+1}(x_2)}{k+1} \pmod{p^a}.$$

Proof. By (1.1), we have

$$\frac{B_{k+1}(x_1) - B_{k+1}(x_2)}{k+1} = \sum_{r=1}^{k+1} \binom{k}{r-1} B_{k+1-r}(x_2) \frac{(x_1 - x_2)^r}{r}$$

$$= \sum_{r=1}^{k+1} \binom{k}{r-1} p^{ar-r} p B_{k+1-r}(x_2) \left(\frac{x_1 - x_2}{p^a}\right)^r \frac{p^{r-1}}{r}$$

$$= \frac{p^a k B_k(x_2)}{k} \left(\frac{x_1 - x_2}{p^a}\right)$$

$$+ \sum_{r=2}^{k+1} \binom{k}{r-1} p^{ar-r} p B_{k+1-r}(x_2) \left(\frac{x_1 - x_2}{p^a}\right)^r \frac{p^{r-1}}{r}.$$
(2.1)

For any non-negative integer m, by (1.1) and Lemma 2.2 we obtain that

$$pB_m(x_2) = \sum_{r=0}^m \binom{m}{r} pB_{m-r}x_2^r \in \mathbb{Z}_p.$$

It follows that $(B_{k+1}(x_1) - B_{k+1}(x_2))/(k+1) \in \mathbb{Z}_p$. Assume that n is a positive integer such that $n \equiv x_2 \pmod{p}$, then by the fact $\sum_{r=0}^{n-1} r^{k-1} = (B_k(n) - B_k)/k$ we have

$$\frac{B_k(x_2) - B_k}{k} = \frac{B_k(x_2) - B_k(n)}{k} + \frac{B_k(n) - B_k}{k} \in \mathbb{Z}_p.$$

AUGUST 2008/2009

227

So if $p-1 \nmid k$, then by Lemma 2.2 we obtain that $B_k(x_2)/k \in \mathbb{Z}_p$. It follows from (2.1) that if $p-1 \nmid k$ then

$$\frac{B_{k+1}(x_1) - B_{k+1}(x_2)}{k+1} \in p^a \mathbb{Z}_p.$$

This completes the proof of Lemma 2.3.

Lemma 2.4. Let p be an odd prime, a and k be positive integers. Let m, t be integers with $m \ge 1$ and $p \nmid m$. If $p - 1 \nmid k$ then we have

$$\sum_{\substack{r \text{ integer}\\ \frac{(t-1)p^a}{m} < r \leqslant \frac{tp^a}{m}}} r^k \equiv \frac{(-1)^k}{k+1} \left(B_{k+1}\left(\left\{\frac{(t-1)p^a}{m}\right\}\right) - B_{k+1}\left(\left\{\frac{tp^a}{m}\right\}\right)\right) \pmod{p^a}.$$

Proof. Observe that

$$\sum_{\substack{x=0\\m|x-tp^a}}^{p^a-1} x^k = \sum_{\substack{r \text{ integer}\\0\leqslant tp^a - rm < p^a}} (tp^a - rm)^k = \sum_{\substack{r \text{ integer}\\\frac{(t-1)p^a}{m} < r \leqslant \frac{tp^a}{m}}} (tp^a - rm)^k$$
$$\equiv (-m)^k \sum_{\substack{r \text{ integer}\\\frac{(t-1)p^a}{m} < r \leqslant \frac{tp^a}{m}}} r^k \pmod{p^a}.$$

Taking $r = tp^a$ and $n = p^a$ in Lemma 2.1, the result follows from Lemma 2.3.

Lemma 2.5. Let m be an odd integer with $m \ge 1$. Then for any non-negative integer n we have

$$E_n \equiv \sum_{l=0}^{m-1} (-1)^l (2l+1)^n \pmod{m}.$$

Proof. Substituting m + 1/2 for x in (1.3) we have

$$2^{n}E_{n}\left(m+\frac{1}{2}\right) = 2^{n}\sum_{k=0}^{n} \binom{n}{k} \frac{E_{k}}{2^{k}} m^{n-k} \equiv E_{n} \pmod{m}.$$
 (2.2)

Note that

$$E_n\left(\frac{1}{2}\right) + E_n\left(m + \frac{1}{2}\right) = \sum_{l=0}^{m-1} \left((-1)^l E_n\left(l + \frac{1}{2}\right) - (-1)^{l+1} E_n\left(l + 1 + \frac{1}{2}\right)\right).$$

It follows from (1.4) that

$$E_n\left(\frac{1}{2}\right) + E_n\left(m + \frac{1}{2}\right) = 2\sum_{l=0}^{m-1} (-1)^l \left(l + \frac{1}{2}\right)^n.$$

By the fact $E_n = 2^n E_n(1/2)$, we obtain that

$$E_n + 2^n E_n \left(m + \frac{1}{2} \right) = 2 \sum_{l=0}^{m-1} (-1)^l (2l+1)^n.$$
(2.3)

VOLUME 46/47, NUMBER 3

228

Combining (2.2) and (2.3), we have

$$E_n \equiv \sum_{l=0}^{m-1} (-1)^l (2l+1)^n \pmod{m}$$

Thus, the proof of Lemma 2.5 is completed.

3. Statement of Results

Since Euler numbers with odd subscripts vanish, $E_{2n+1} = 0$ for all non-negative integer n, it suffices to consider the case E_{2n} . For convenience, in this section we always let $\phi(n)$ be the Euler function, and define the Legendre symbol $\left(\frac{m}{p}\right)$, where p is an odd prime and m is any integer, by

$$\left(\frac{m}{p}\right) = \begin{cases} 1, & \text{if } m \text{ is a quadratic residue modulo } p, \\ -1, & \text{if } m \text{ is a quadratic non-residue modulo } p, \\ 0, & \text{if } p \mid m. \end{cases}$$

Theorem 3.1. Let p be an odd prime with $p \equiv 1 \pmod{4}$ and a a positive integer. Then we have

$$E_{\phi(p^a)/2} \equiv 4 \sum_{r=1}^{\frac{p-1}{4}} \left(\frac{r}{p}\right) \equiv \sum_{l=0}^{p-1} (-1)^l \left(\frac{2l+1}{p}\right) \pmod{p^a}.$$

Proof. Since Bernoulli numbers with odd subscripts vanish, $B_{2n+1} = 0$ for any positive integer n, then taking m = 4, t = 1 and $k = \phi(p^a)/2$ in Lemma 2.4 we have

$$\sum_{r=1}^{\frac{p^a-1}{4}} r^{\frac{\phi(p^a)}{2}} \equiv \frac{-1}{\phi(p^a)/2 + 1} B_{\phi(p^a)/2 + 1} \left(\frac{1}{4}\right) \pmod{p^a}.$$

By (1.5) and (1.1), we obtain

$$E_{2n} = 2^{2n} E_{2n} \left(\frac{1}{2}\right) = -\frac{2^{4n+2}}{2n+1} B_{2n+1} \left(\frac{1}{4}\right).$$

It follows from Fermat's Little Theorem that

$$E_{\phi(p^a)/2} \equiv 4 \sum_{r=1}^{\frac{p^a-1}{4}} r^{\frac{\phi(p^a)}{2}} \pmod{p^a}.$$

"a 1

By the Euler criterion (see [3], Theorem 83), there exists an integer s such that for any integer r,

$$r^{\frac{p-1}{2}} = sp + \left(\frac{r}{p}\right). \tag{3.1}$$

Thus,

$$r^{\frac{\phi(p^a)}{2}} = \left(sp + \left(\frac{r}{p}\right)\right)^{p^{a-1}} \equiv \left(\frac{r}{p}\right)^{p^{a-1}} \equiv \left(\frac{r}{p}\right) \pmod{p^a}.$$
(3.2)

Hence,

$$E_{\phi(p^a)/2} \equiv 4 \sum_{r=1}^{\frac{p^a-1}{4}} \left(\frac{r}{p}\right) \pmod{p^a}.$$
 (3.3)

AUGUST 2008/2009

On the other hand, taking $n = \phi(p^a)/2$ and $m = p^a$ in Lemma 2.5, then by (3.2) we have

$$E_{\phi(p^a)/2} \equiv \sum_{l=0}^{p^a-1} (-1)^l \left(\frac{2l+1}{p}\right) \pmod{p^a}.$$

By the properties of residue system, it is clear that

$$\sum_{l=0}^{p^{a}-1} \left(\frac{2l+1}{p}\right) = p^{a-1} \sum_{l=0}^{p-1} \left(\frac{2l+1}{p}\right) = 0$$

Thus,

$$E_{\phi(p^a)/2} \equiv \sum_{l=0}^{p^a-1} \left((-1)^l - 1 \right) \left(\frac{2l+1}{p} \right) = -2 \sum_{l=1}^{\frac{p^a-1}{2}} \left(\frac{4l-1}{p} \right) \pmod{p^a}.$$
(3.4)

Note that

$$\sum_{l=1}^{\frac{p^{a}-1}{2}} \left(\frac{4l-1}{p}\right) = \sum_{l=1}^{\frac{p^{a}-p}{2}} \left(\frac{4l-1}{p}\right) + \sum_{l=\frac{p^{a}-p}{2}+1}^{\frac{p^{a}-1}{2}} \left(\frac{4l-1}{p}\right)$$
$$= \sum_{l=1}^{\frac{p-1}{2}} \left(\frac{4((p^{a}-p)/2+l)-1}{p}\right) = \sum_{l=1}^{\frac{p-1}{2}} \left(\frac{4l-1}{p}\right) = -\frac{1}{2} \sum_{l=0}^{p-1} (-1)^{l} \left(\frac{2l+1}{p}\right),$$

and

$$\sum_{r=1}^{\frac{p^{a}-1}{4}} \left(\frac{r}{p}\right) = \sum_{r=1}^{\frac{p^{a}-p}{4}} \left(\frac{r}{p}\right) + \sum_{r=\frac{p^{a}-p}{4}+1}^{\frac{p^{a}-1}{4}} \left(\frac{r}{p}\right) = \sum_{r=1}^{\frac{p-1}{4}} \left(\frac{(p^{a}-p)/4 + r}{p}\right) = \sum_{r=1}^{\frac{p-1}{4}} \left(\frac{r}{p}\right).$$

The desired result follows immediately from (3.3) and (3.4).

Remark 3.1. For a discriminant d let h(d) be the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$ (\mathbb{Q} is the set of rational numbers). If p is a prime of the form 4m + 1, Yuan [14], Lemma 2.3, showed that

$$2h(-4p) \equiv \sum_{l=0}^{p-1} (-1)^l \left(\frac{2l+1}{p}\right) \not\equiv 0 \pmod{p}.$$

So from Theorem 3.1, we can obtain that $E_{\phi(p^a)/2} \not\equiv 0 \pmod{p^a}$. This gives a different proof of a general conjecture on Euler numbers from Zhang and Xu [16]. Moreover, we also ignore the identity involving Euler numbers (see [7], Lemma 1) which is the key to prove the conjecture by Yuan, Zhang and Xu, respectively.

Remark 3.2. In [11], Raabe proved a useful theorem that $\sum_{r=0}^{m-1} B_n((x+r)/m) = m^{1-n}B_n(x)$ for any positive integer m. Taking x = 0, 1/2 and m = 2 in Raabe's Theorem, it follows from (1.1) that $B_{2n}(3/4) = B_{2n}(1/4) = (1-2^{2n-1})B_{2n}/2^{4n-1}$. If p is a prime such that $p \equiv 3$ (mod 4), then in a similar consideration to (3.3) we have

$$\sum_{r=1}^{\frac{p^{a}-3}{4}} \left(\frac{r}{p}\right) \equiv \frac{-2B_{\phi(p^{a})/2+1}}{\phi(p^{a})+2} \left(1 - \frac{\left(1 - 2\frac{\phi(p^{a})}{2}\right)}{2^{\phi(p^{a})+1}}\right) \pmod{p^{a}}.$$

VOLUME 46/47, NUMBER 3

In particular, if a = 1 then by Fermat's Little Theorem we have

$$\sum_{r=1}^{\frac{p-3}{4}} {\binom{r}{p}} \equiv \left(-1 - {\binom{2}{p}}\right) B_{(p+1)/2} \pmod{p}.$$

In the same way, we can obtain the Corollary of [4], p. 238,

$$\sum_{r=1}^{\frac{p-1}{2}} \left(\frac{r}{p}\right) \equiv -2\left(2 - \left(\frac{2}{p}\right)\right) B_{(p+1)/2} \pmod{p}.$$

Theorem 3.2. Let n be a positive integer and p an odd prime. Then

 $E_{(p-1)+2n} \equiv E_{2n} \pmod{p}.$

Proof. By Lemma 2.5, we have

$$E_{2n} \equiv \sum_{l=0}^{p-1} (-1)^l (2l+1)^{2n} \pmod{p},$$

and

$$E_{(p-1)+2n} \equiv \sum_{l=0}^{p-1} (-1)^l (2l+1)^{(p-1)+2n} \pmod{p}.$$

It follows from Fermat's Little Theorem that

$$E_{(p-1)+2n} \equiv \sum_{l=0}^{p-1} (-1)^l (2l+1)^{2n} \equiv E_{2n} \pmod{p}.$$

This completes the proof of Theorem 3.2.

Theorem 3.3. Let p be an odd prime, a and k be positive integers. Then

$$E_{k\phi(p^{a+1})} \equiv \begin{cases} 0 \pmod{p^{a+1}}, & \text{if } p \equiv 1 \pmod{4}, \\ 2 \pmod{p^{a+1}}, & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Proof. By Lemma 2.5 and (3.1), we have

$$\begin{split} E_{k\phi(p^{a+1})} &= \sum_{l=0}^{p^{a+1}-1} (-1)^l (2l+1)^{k\phi(p^{a+1})} = \sum_{l=0}^{p^{a+1}-1} (-1)^l \left(sp + \left(\frac{2l+1}{p}\right) \right)^{2kp^a} \\ &\equiv \sum_{l=0}^{p^{a+1}-1} (-1)^l \left(\frac{2l+1}{p}\right)^2 \pmod{p^{a+1}}. \end{split}$$

AUGUST 2008/2009

231

Thus,

$$\begin{split} E_{k\phi(p^{a+1})} &\equiv \sum_{l=0}^{\frac{p-3}{2}} (-1)^l + \sum_{l=\frac{p+1}{2}}^{\frac{3p-3}{2}} (-1)^l + \sum_{l=\frac{p+1}{2}+p}^{\frac{3p-3}{2}+p} (-1)^l + \dots + \sum_{l=\frac{p+1}{2}+p(p^a-2)}^{\frac{3p-3}{2}+p(p^a-2)} (-1)^l \\ &+ \sum_{l=\frac{p+1}{2}+p(p^a-1)}^{p-1} (-1)^l = \sum_{l=0}^{\frac{p-3}{2}} (-1)^l + \sum_{l=\frac{p+1}{2}}^{\frac{3p-3}{2}} \left((-1)^l + (-1)^{p+l} + (-1)^{2p+l} \dots + (-1)^{p(p^a-2)+l} \right) + \sum_{l=\frac{p+1}{2}}^{p-1} (-1)^{p(p^a-1)+l} \\ &= \sum_{l=0}^{\frac{p-3}{2}} (-1)^l + \sum_{l=\frac{p+1}{2}}^{p-1} (-1)^l = \begin{cases} 0, & \text{if } p \equiv 1 \pmod{4}, \\ 2, & \text{if } p \equiv 3 \pmod{4}. \end{cases} \end{split}$$

This completes the proof of Theorem 3.3.

We obtain Theorems 3.4 and 3.5 using work from Jakubec [5]. Here we give two more general congruences for Euler numbers.

Theorem 3.4. Let p be an odd prime, a and k be positive integers. Then

$$E_{k\phi(p^{a})} - kp^{a-1}E_{p-1} \equiv \begin{cases} 0 \pmod{p^{a+1}}, & \text{if } p \equiv 1 \pmod{4}, \\ 2 - 2kp^{a-1} \pmod{p^{a+1}}, & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Proof. By Lemma 2.5, we have

$$E_{k\phi(p^a)} \equiv \sum_{l=0}^{p^{a+1}-1} (-1)^l (2l+1)^{k\phi(p^a)} \pmod{p^{a+1}},$$

and

$$E_{p-1} \equiv \sum_{l=0}^{p^{a+1}-1} (-1)^l (2l+1)^{p-1} \pmod{p^{a+1}}.$$

So from (3.1), we obtain

$$E_{k\phi(p^{a})} - kp^{a-1}E_{p-1}$$

$$\equiv \sum_{l=0}^{p^{a+1}-1} (-1)^{l} \left[\left(sp + \left(\frac{2l+1}{p} \right) \right)^{2kp^{a-1}} - kp^{a-1} \left(sp + \left(\frac{2l+1}{p} \right) \right)^{2} \right]$$

$$\equiv (1 - kp^{a-1}) \sum_{l=0}^{p^{a+1}-1} (-1)^{l} \left(\frac{2l+1}{p} \right)^{2} \pmod{p^{a+1}}.$$
(3.5)
3.3, we complete the proof of Theorem 3.4.

By Theorem 3.3, we complete the proof of Theorem 3.4.

Theorem 3.5. Let p be an odd prime, a and k be positive integers. Then for any nonnegative integer n we have

$$E_{k\phi(p^{a})+2n} - kp^{a-1}E_{p-1+2n} \equiv (1-kp^{a-1})\left(1-(-1)^{\frac{p-1}{2}}p^{2n}\right)E_{2n} \pmod{p^{a+1}}.$$

VOLUME 46/47, NUMBER 3

232

Proof. For the case n = 0, the result is immediate by Theorem 3.4. Now, we consider $n \ge 1$. By Lemma 2.5 and (3.5), we have

$$E_{k\phi(p^{a})+2n} - kp^{a-1}E_{p-1+2n} \equiv (1-kp^{a-1})\sum_{l=0}^{p^{a+1}-1} (-1)^{l}(2l+1)^{2n} \left(\frac{2l+1}{p}\right)^{2}$$

$$= (1-kp^{a-1}) \left(\sum_{l=0}^{p^{a+1}-1} (-1)^{l}(2l+1)^{2n} - p^{2n}\sum_{l=0}^{p^{a}-1} (-1)^{\frac{p-1}{2}+lp}(2l+1)^{2n}\right)$$

$$= (1-kp^{a-1}) \left(\sum_{l=0}^{p^{a+1}-1} (-1)^{l}(2l+1)^{2n} - (-1)^{\frac{p-1}{2}}p^{2n}\sum_{l=0}^{p^{a}-1} (-1)^{l}(2l+1)^{2n}\right) \pmod{p^{a+1}}.$$

By Lemma 2.5, there exist integers s and t such that

$$\sum_{l=0}^{p^{a+1}-1} (-1)^l (2l+1)^{2n} = E_{2n} + sp^{a+1} \quad \text{and} \quad \sum_{l=0}^{p^a-1} (-1)^l (2l+1)^{2n} = E_{2n} + tp^a.$$

It follows that

$$E_{k\phi(p^a)+2n} - kp^{a-1}E_{p-1+2n} \equiv (1 - kp^{a-1})\left(1 - (-1)^{\frac{p-1}{2}}p^{2n}\right)E_{2n} \pmod{p^{a+1}}.$$

This completes the proof of Theorem 3.5.

Using a similar proof of Theorem 3.5, we can easily obtain the following theorem.

Theorem 3.6. Let p be an odd prime, a and k be positive integers. Then for any nonnegative integer n we have

$$E_{k\phi(p^a)+2n} \equiv \left(1 - (-1)^{\frac{p-1}{2}} p^{2n}\right) E_{2n} \pmod{p^a}.$$

References

- [1] K. W. Chen, Congruences for Euler Numbers, The Fibonacci Quarterly, 42 (2004), 128–140.
- K. Dilcher, L. Skula and I. S. Slavutski, Bernoulli Numbers-Bibliography (1713–1990), Queen's Papers, Pure Appl. Math., 87 (1991), 71–175.
- [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univiversity, New York, (1979).
- [4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Graduate Texts in Mathematics), 2nd ed., Springer, New York, (1990).
- [5] S. Jakubec, Connection Between Fermat Quotients and Euler Numbers, Math. Slovaca, 58 (2008), 19–30.
- [6] W. Johnson, P-adic Proofs of Congruences for the Bernoulli numbers, J. Number Theory, 7 (1975), 251–265.
- [7] G. D. Liu, The Solution of a Problem on Euler Numbers, Acta Math. Sinca, Chinese Ser., 47 (2004), 825–828.
- [8] K. Mahler, Introduction to P-adic Numbers and Their Functions, Cambridge Univ., Cambridge, (1973).
- [9] P. Ribenboim, Thirteen Lectures On Fermat's Last Theorem, Springer, New York, (1979).
- [10] Z. W. Sun, General Congruences for Bernoulli Polynomials, Discrete Math., 262 (2003), 253–276.
- [11] Z. W. Sun, Introduction to Bernoulli and Euler Polynomials, A lecture given in Taiwan, (2002).
- [12] S. S. Wagstaff, Prime Divisors of the Bernoulli and Euler Numbers, M. A. Bennett et. al. (Eds.), Number Theory for the Millennium, Vol. III (Urbana, IL, 2000), A K Peters, Natick, MA, (2002), 357–374.

AUGUST 2008/2009

- [13] J. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, (1979).
- [14] P. Z. Yuan, A Conjecture on Euler Numbers, Proc. Japan Acad. Ser. A, 80 (2004), 180-181.
- [15] W. P. Zhang, Some Identities Involving the Euler and the Central Factorial Numbers, The Fibonacci Quarterly, 36 (1998), 154–157.
- [16] W. P. Zhang and Z. F. Xu, On a Conjecture of the Euler Numbers, J. Number Theory, 127 (2007), 283–291.

MSC2000: 11B68

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan, 610068, PR China

E-mail address: hyphe@yahoo.com.cn

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan, 610068, PR China

E-mail address: Liao_qunying@yahoo.com.cn

VOLUME 46/47, NUMBER 3