
ON CONTINUED FRACTION EXPANSIONS OF FIBONACCI AND
LUCAS DIRICHLET SERIES

TAKAO KOMATSU

Abstract. We find (non-regular) continued fraction expansions for infinite reciprocal sums
of Fibonacci and Lucas numbers. We give continued fraction expansions of some more
related series. Moreover, we prove that Fibonacci and Lucas Dirichlet series like

∑∞
n=1 1/F s

n

define hypertranscendental functions, and we investigate the approximates of the series
modulo positive integers.

1. Introduction

In this paper we shall consider the so-called Fibonacci and Lucas Zeta functions ,

ζF (s) =
∞∑

n=1

1

F s
n

, ζL(s) =
∞∑

n=0

1

Ls
n

.

In particular we are interested in the special values for s = 1 and s = 2, respectively,

ζF (1) =
∞∑

n=1

1

Fn

, ζF (2) =
∞∑

n=1

1

F 2
n

, ζL(1) =
∞∑

n=0

1

Ln

, ζL(2) =
∞∑

n=0

1

L2
n

.

The Fibonacci and Lucas zeta functions are special Dirichlet series
∑∞

n=1 ann−s. Such
series typically converge in half-planes Re(s) > σ0 and they can often extend to meromorphic
functions on C like the Riemann zeta function ζ(s) =

∑∞
n=1 n−s. Other series, e.g.

∑
p−s,

where p runs over the primes, cannot extend beyond any point on the imaginary axis. So
it is natural to ask for the analytic continuation of our Fibonacci and Lucas Zeta functions
defined above, for their poles and zeros, and for the residue of their poles. Some interesting
work in this direction has been made by L. Navas in [5]. We cite some of his main results.
Let ϕ = (1 +

√
5)/2.

Proposition 1.1.

• The Dirichlet series
∑∞

n=1 F−s
n can be continued analytically to a meromorphic func-

tion on C, whose singularities are simple poles at s = −2k+πi(2n+k)/ log ϕ, k ≥ 0,

n ∈ Z, with residue (−1)k5s/2
(−s

k

)
/ log ϕ. The series has trivial zeros at −m, where

m ≥ 0, m ≡ 2 mod 4, and the values at other negative integers are rational numbers.
• The Dirichlet series

∑∞
n=1 (−1)nF−s

n can be continued analytically to a meromorphic
function on C, whose singularities are simple poles at s = −2k+πi(2n+k+1)/ log ϕ,

k ≥ 0, n ∈ Z, with residue (−1)k5s/2
(−s

k

)
/ log ϕ. The series has simple poles at −m,

where m > 0, m ≡ 2 mod 4, and trivial zeros at −m, where m ≥ 0, m ≡ 0 mod 4.
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• The Dirichlet series
∑∞

n=1 F−s
2n+1 can be continued analytically to a meromorphic func-

tion on C, whose singularities are simple poles at s = −2k+πin/ log ϕ, k ≥ 0, n ∈ Z.
Hence, the series has simple poles at all even negative integers. The odd negative in-
tegers are trivial zeros of this function.

• The Dirichlet series
∑∞

n=1 F−s
2n can be continued analytically to a meromorphic func-

tion on C having the same singularities as
∑∞

n=1 F−s
2n+1 , and rational values at the

odd negative integers.

Recently, Elsner, Shimomura and Shiokawa showed algebraic dependence and indepen-
dence results for Fibonacci and Lucas zeta functions. Using Nesterenko’s theorem on the
Ramanujan functions, it is shown in [1] that the numbers

∞∑
n=1

1

F 2
n

,

∞∑
n=1

1

F 4
n

,

∞∑
n=1

1

F 6
n

(
respectively,

∞∑
n=1

1

L2
n

,

∞∑
n=1

1

L4
n

,

∞∑
n=1

1

L6
n

)

are algebraically independent, and that each

∞∑
n=1

1

F 2s
n

(
respectively,

∞∑
n=1

1

L2s
n

)
(s = 4, 5, 6, . . . )

is written as a rational (respectively, algebraic) function of these three numbers over Q, e.g.

ζF (8)− 15

14
ζF (4) =

1

378(4u + 5)2

(
256u6 − 3456u5 + 2880u4 + 1792u3v

− 11100u3 + 20160u2v − 10125u2 + 7560uv + 3136v2 − 1050v
)

,

where u = ζF (2) and v = ζF (6). Similar results are obtained in [1] for the alternating sums

∞∑
n=1

(−1)n+1

F 2s
n

(
respectively,

∞∑
n=1

(−1)n+1

L2s
n

)
(s = 1, 2, 3, . . . ) .

From the main theorem in [2] it follows that for any positive distinct integers s1, s2, and
s3, the numbers ζF (2s1), ζF (2s2), and ζF (2s3) are algebraically independent if and only if at
least one of s1, s2, and s3 is even.

One goal of this paper is to find non-regular continued fraction expansions for ζF (1),
ζL(1) and some more extended series, and to compute rational approximations to these
numbers from those expansions. We are also interested in the analytical properties of the
Fibonacci and Lucas zeta functions as functions in s. We shall prove that these functions are
hypertranscendental , i.e., they satisfy no algebraic differential equation. Actually, we gain
a slightly stronger result by applying Reich’s theorem from [7] on Dirichlet series satisfying
holomorphic difference - differential equations. Let D denote the set of all ordinary Dirichlet
series f(s) =

∑∞
n=1 ann

−s satisfying the following two conditions:

• The abscissa of absolute convergence is finite: there is some σa(f) < ∞, such that∑∞
n=1 ann

−s converges absolutely for s ≥ σa(f);
• The set of all divisors of indices n with an 6= 0 contains infinitely many prime numbers.

Furthermore, we introduce the following notation: For f ∈ D and any non-negative integer
ν we write

f [ν](s) =
(
f(s), f ′(s), . . . , f (ν)(s)

)
.
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Proposition 1.2. (A. Reich, [7])
Assume that f ∈ D. Let h0 < h1 < · · · < hm be any real numbers, and let ν0, ν1, . . . , νm be
any non-negative integers. Let σ0 > σa(f) − h0. Put k = m + 1 + ν0 + ν1 + · · · + νm. If
Φ : Ck → C is holomorphic and if the difference-differential equation

Φ
(
f [ν0](s + h0), f

[ν1](s + h1), . . . , f
[νm](s + hm)

)
= 0

holds for all s with Re(s) > σ0, then Φ vanishes identically.

Let A = (an)n≥1 be a bounded sequence of integers. In order to apply Proposition 1.2 to
the Fibonacci and Lucas Dirichlet series

ζF,A(s) :=
∞∑

n=1

an

F s
n

and ζL,A(s) :=
∞∑

n=1

an

Ls
n

(an ∈ Z) ,

respectively, it suffices to show that the sets

MF (A) :=
{

p ∈ P :
(
∃n ≥ 1 : an 6= 0, p|Fn

)}
,

ML(A) :=
{

p ∈ P :
(
∃n ≥ 1 : an 6= 0, p|Ln

)}

are not bounded.

Corollary 1. Let A = (an)n≥1 be a sequence with an ∈ {−1, 0, 1} for n ≥ 1 and |MF (A)| =
|ML(A)| = ∞. Then both the functions ζF,A(s) and ζL,A(s) are hypertranscendental.

In section 4 below (see Theorem 4.1) we shall apply this corollary to various sequences
(an)n≥1 and to the corresponding Dirichlet series, which have nonregular continued fraction
expansions. First, we treat such expansions in the subsequent Sections 2 and 3.

2. Auxiliary Results for Nonregular Continued Fractions

A (nonregular infinite) continued fraction is given by

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .
+

an

bn + . . .

(2.1)

with real numbers aν and bν . In addition, let
∑

ν≥0 cν be an absolutely convergent series
with cν 6= 0. Seidel [8] called such a series and a continued fraction (2.1) equivalent if

c0 + c1 + · · ·+ cν = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .
+

aν

bν

(ν = 0, 1, . . . ) .
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Define the fraction An/Bn (n = 0, 1, . . . ) by

An

Bn

= b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .
+

an

bn

. (2.2)

From [6, Section 2] we get the well-known recurrence formulas:

Aν = bνAν−1 + aνAν−2 (ν ≥ 2), A0 = b0, A1 = b0b1 + a1;

Bν = bνBν−1 + aνBν−2 (ν ≥ 2), B0 = 1, B1 = b1 .

With Seidel’s terminology we use the following Lemma in order to obtain our results on
nonregular continued fraction expansions of specific values of Fibonacci and Lucas Dirichlet
series (see Section 3).

Lemma 2.1. The series
∑

ν≥0 cν with cν 6= 0 for ν ≥ 1 and the continued fraction

c0 +
c1

1− c2

c1 + c2 − c1c3

c2 + c3 − c2c4

c3 + c4 − c3c5

. . . − cncn+2

cn+1cn+2 − . . .

are equivalent.

Proof. See Satz 7 and formula (3) in [6, Section 45]. ¤

Consider generalized Fibonacci numbers {Gn}n≥1 defined by

Gn = Gn−1 + Gn−2 (n ≥ 2)

with positive integral initial values G1 and G2. Let

ζG(s) =
∞∑

n=1

1

Gs
n

, ζ∗G(s) =
∞∑

n=1

(−1)n−1

Gs
n

.

Then we have two Lemmas by using Lemma 2.1.

Lemma 2.2.

ζG(s) =
1

Gs
1 −

G2s
1

Gs
1 + Gs

2 −
G2s

2

Gs
2 + Gs

3 −
G2s

3

Gs
3 + Gs

4 − ... − G2s
n−1

Gs
n−1 + Gs

n − . . .

.
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Proof. By Lemma 2.1 we have

ζG(s) =
G−s

1

1− G−s
2

G−s
1 + G−s

2 − G−s
1 G−s

3

G−s
2 + G−s

3 − G−s
2 G−s

4

G−s
3 + G−s

4 − . . .

=
1

Gs
1 −

Gs
1G

−s
2

G−s
1 + G−s

2 − G−s
1 G−s

3

G−s
2 + G−s

3 − G−s
2 G−s

4

G−s
3 + G−s

4 − . . .

=
1

Gs
1 −

G2s
1

Gs
1 + Gs

2 −
Gs

2G
−s
3

G−s
2 + G−s

3 − G−s
2 G−s

4

G−s
3 + G−s

4 − . . .

=
1

Gs
1 −

G2s
1

Gs
1 + Gs

2 −
G2s

2

Gs
2 + Gs

3 −
Gs

3G
−s
4

G−s
3 + G−s

4 − . . .

,

which implies the identity stated in Lemma 2.2. ¤

Lemma 2.3.

ζ∗G(s) =
1

Gs
1 +

G2s
1

−Gs
1 + Gs

2 +
G2s

2

−Gs
2 + Gs

3 +
G2s

3

−Gs
3 + Gs

4 + ... +
G2s

n−1

−Gs
n−1 + Gs

n + . . .

.
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Proof. By Lemma 2.1 we have

ζ∗G(s) =
G−s

1

1− −G−s
2

G−s
1 −G−s

2 − G−s
1 G−s

3

−G−s
2 + G−s

3 − G−s
2 G−s

4

G−s
3 −G−s

4 − . . .

=
1

Gs
1 −

−Gs
1G

−s
2

G−s
1 −G−s

2 − G−s
1 G−s

3

−G−s
2 + G−s

3 − G−s
2 G−s

4

G−s
3 −G−s

4 − . . .

=
1

Gs
1 +

G2s
1

−Gs
1 + Gs

2 +
Gs

2G
−s
3

G−s
2 −G−s

3 +
G−s

2 G−s
4

G−s
3 −G−s

4 − . . .

=
1

Gs
1 +

G2s
1

−Gs
1 + Gs

2 +
G2s

2

−Gs
2 + Gs

3 +
Gs

3G
−s
4

G−s
3 −G−s

4 − . . .

,

which implies the identity stated in Lemma 2.3. ¤

3. Results on Nonregular Continued Fraction Expansions of Fibonacci and
Lucas Dirichlet Series

Theorem 3.1. We have

ζF (1) =
1

F2 − F 2
1

F3 − F 2
2

F4 − F 2
3

. . . − F 2
n−1

Fn+1 − . . .

and
n∑

ν=1

1

Fν

=
An

Bn

,

where {Aν}ν≥0 and {Bν}ν≥0 are determined by the recurrence formulas:

Aν = Fν+1Aν−1 − F 2
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = Fν+1Bν−1 − F 2
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = 1 .
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Proof. Set Gn = Fn with F1 = F2 = 1 and s = 1 in Lemma 2.2. Since Fn + Fn+1 = Fn+2

(n ≥ 1) and F1 = F2 by the definition, we get the result. ¤
The following table contains 15 continued fraction expansions of certain Fibonacci and

Lucas Dirichlet series including the result from Theorem 3.1. In Table 1 we denote the
nonregular continued fraction expansion (2.1) of such a series by

∞∑
ν=1

· · · = a0 +
b1

a1 +
b2

a2 +
b3

a3 + ...

= a0 +
b1

a1 +

b2

a2 +

b3

a3 + · · · .

Let the n-th convergent of the series be defined by
n∑

ν=1

· · · = An

Bn

= a0 +
b1

a1 +

b2

a2 +

b3

a3 + · · ·+
bn

an

.

Both the sequences (An)n≥0 and (Bn)n≥0 satisfy the same linear three term recurrence for-
mula

Xν = HνXν−1 + KνXν−2 (ν ≥ 2)

with initial values A0 = 0, A1 = 1 and B0 = 1, B1 ∈ {1, 3}, and with specific functions Hν , Kν

quoted in Table 1. In Table 2 we refer to the identities used to simplify the denominators of
the continued fractions quoted in Table 1.
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series expansion Hν Kν B1

∞∑
ν=1

1

Fν

1

F2 −
F 2

1

F3 − · · ·−
F 2

n−1

Fn+1 − . . .
Fν+1 −F 2

ν−1 1

∞∑
ν=1

1

F 2
ν

1

F1 −
F 4

1

F3 − · · ·−
F 4

n−1

F2n−1 − . . .
F2ν−1 −F 4

ν−1 1

∞∑
ν=1

1

F 3
ν

1

1−
F 6

1

F3 + F 3
0 − · · ·−

F 6
n−1

F3n−3 + F 3
n−2 − . . .

F3ν−3 + F 3
ν−2 −F 6

ν−1 1

∞∑
ν=1

(−1)ν−1

Fν

1

1 +

F 2
1

F0 + · · ·+
F 2

n−1

Fn−2 + . . .
Fν−2 F 2

ν−1 1

∞∑
ν=1

1

Lν

1

1−
L2

1

L3 − · · ·−
L2

n−1

Ln+1 − . . .
Lν+1 −L2

ν−1 1

∞∑
ν=1

1

L2
ν

1

1−
L4

1

5F3 − · · ·−
L4

n−1

5F2n−1 − . . .
5F2ν−1 −L4

ν−1 1

∞∑
ν=1

(−1)ν−1

Lν

1

1 +

L2
1

L0 + · · ·+
L2

n−1

Ln−2 + . . .
Lν−2 L2

ν−1 1

∞∑
ν=1

1

F2ν

1

L1 −
F 2

2

L3 − · · ·−
F 2

2n−2

L2n−1 − . . .
L2ν−1 −F 2

2ν−2 1

∞∑
ν=1

1

L2ν

1

3−
L2

2

5F3 − · · ·−
L2

2n−2

5F2n−1 − . . .
5F2ν−1 −L2

2ν−2 3

∞∑
ν=1

1

F2ν−1

1

1−
F 2

1

L2 − · · ·−
F 2

2n−3

L2n−2 − . . .
L2ν−2 −F 2

2ν−3 1

∞∑
ν=1

1

L2ν−1

1

1−
L2

1

5F2 − · · ·−
L2

2n−3

5F2n−2 − . . .
5F2ν−2 −L2

2ν−3 1

∞∑
ν=1

(−1)ν−1

F2ν

1

F1 +

F 2
2

F3 + · · ·+
F 2

2n−2

F2n−1 + . . .
F2ν−1 F 2

2ν−2 1

∞∑
ν=1

(−1)ν−1

L2ν

1

3 +

L2
2

L3 + · · ·+
L2

2n−2

L2n−1 + . . .
L2ν−1 L2

2ν−2 3

∞∑
ν=1

(−1)ν−1

F2ν−1

1

1 +

F 2
1

F2 + · · ·+
F 2

2n−3

F2n−2 + . . .
F2ν−2 F 2

2ν−3 1

∞∑
ν=1

(−1)ν−1

L2ν−1

1

1 +

L2
1

L2 + · · ·+
L2

2n−3

L2n−2 + . . .
L2ν−2 L2

2ν−3 1

Table 1.
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series underlying formula reference

∞∑
ν=1

1

Fν

Fn + Fn+1 = Fn+2

∞∑
ν=1

1

F 2
ν

F 2
n + F 2

n+1 = F2n+1 [4, p.97, formula 30]

∞∑
ν=1

1

F 3
ν

F 3
n + F 3

n+1 = F3n + F 3
n−1 [4, p.97, formula 62]

∞∑
ν=1

(−1)ν−1

Fν

−Fn + Fn+1 = Fn−1

∞∑
ν=1

1

Lν

Ln + Ln+1 = Ln+2

∞∑
ν=1

1

L2
ν

L2
n + L2

n+1 = 5F2n+1 [4, p.97, formula 37]

∞∑
ν=1

(−1)ν−1

Lν

−Ln + Ln+1 = Ln−1

∞∑
ν=1

1

F2ν

F2n + F2n+2 = L2n+1 [4, p.97, formula 32]

∞∑
ν=1

1

L2ν

L2n + L2n+2 = 5F2n+1 [4, p.97, formula 34]

∞∑
ν=1

1

F2ν−1

F2n−1 + F2n+1 = L2n [4, p.97, formula 32]

∞∑
ν=1

1

L2ν−1

L2n−1 + L2n+1 = 5F2n [4, p.97, formula 34]

∞∑
ν=1

(−1)ν−1

F2ν

−F2n + F2n+2 = F2n+1

∞∑
ν=1

(−1)ν−1

L2ν

−L2n + L2n+2 = L2n+1

∞∑
ν=1

(−1)ν−1

F2ν−1

−F2n−1 + F2n+1 = F2n

∞∑
ν=1

(−1)ν−1

L2ν−1

−L2n−1 + L2n+1 = L2n

Table 2.
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4. Hypertranscendence of Fibonacci and Lucas Dirichlet Series

In this section we apply the concept of hypertranscendental functions introduced in Section
1 to our special Dirichlet series.

Theorem 4.1. The Dirichlet series
∞∑

n=1

1

F s
n

,

∞∑
n=1

(−1)n−1

F s
n

,

∞∑
n=1

1

Ls
n

,

∞∑
n=1

(−1)n−1

Ls
n

,

∞∑
n=1

1

F s
2n

,

∞∑
n=1

1

Ls
2n

,

∞∑
n=1

1

F s
2n−1

,

∞∑
n=1

1

Ls
2n−1

,

∞∑
n=1

(−1)n−1

F s
2n

,

∞∑
n=1

(−1)n−1

Ls
2n

,

∞∑
n=1

(−1)n−1

F s
2n−1

,

∞∑
n=1

(−1)n−1

Ls
2n−1

define hypertranscendental functions in s.

Proof. The hypertranscendency of the Dirichlet series
∑∞

n=1 F−s
n was proved in [9, Theorem

1] by using the fact that for distinct odd primes p and q, gcd(Fp, Fq) = Fgcd(p,q) = F1 = 1 [4,
Theorem 16.3]. Then the sequence of Fibonacci numbers Fn catches infinitely many primes
among their divisors. The same holds for Lucas numbers because for distinct relatively prime
positive integers j ≥ 2 and k ≥ 2 with same parity, gcd(Lj, Lk) = 1.

Therefore, by Corollary 1 it suffices to show that

|MF (Aν)| = ∞ and |ML(Bν)| = ∞
for A1 = (F2n)n≥1, A2 = (F2n−1)n≥1, B1 = (L2n)n≥1, B2 = (L2n−1)n≥1. Since for any odd
prime p, Fp|F2p [4, Theorem 16.1], we have |MF (A1)| = ∞. It is clear that |MF (A2)| = ∞ be-
cause gcd(Fp, Fq) = Fgcd(p,q) again. |ML(B1)| = ∞ follows from the fact gcd(L2p/3, L2q/3) =
1 for distinct odd primes p, q. It is clear that |ML(B2)| = ∞ because for any odd distinct
primes p, q, gcd(Lp, Lq) = 1. ¤

5. On the Approximants An/Bn mod t

Finally we consider the sequences {An}n≥0 and {Bn}n≥0 from (2.2) modulo t for any
integer t ≥ 2. Here, we use a result recently obtained by Elsner and the author [3].

Theorem 5.1. Let t ≥ 2 be any integer, and let {Yn}n≥0 be a sequence of integers satisfying
the recurrence relation

Yν = T (ν)Yν−1 + U(ν)Yν−2 (ν ≥ 2)

with sequences {T (ν)}ν≥2 and {U(ν)}ν≥2 of integers, which are periodic modulo t. Then
the sequence {Yn}n≥0 is ultimately periodic modulo t. If U(ν) = 1 for all ν ≥ 2, then the
sequence {Yn}n≥0 is periodic modulo t.

Since the generalized Fibonacci numbers {Gn}n≥0 satisfy the recurrence relation Gν =
Gν−1 + Gν−2, the sequence {Gn}n≥0 mod t is periodic for t ≥ 2. It follows that sequences
like

{Gn+1}n≥2 , {G2n−1}n≥2 , {−G2
n−1}n≥2 , {−G4

n−1}n≥2 , {(−1)nGn−2}n≥2 ,

and so on, are also periodic modulo t. Next, we apply again Theorem 5.1 and the recurrence
formulas for the convergents An/Bn of our Dirichlet series in order to obtain the following
result.

Theorem 5.2. Let An/Bn for n ≥ 0 be the convergents of the series quoted in Table 1. Then,
for any integer t ≥ 2, the sequences (An)n≥0 and (Bn)n≥0 are ultimately periodic modulo t.
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The exact periodicity may be different in each case. For example, for An and Bn in
Theorem 3.1 we have the following.

Theorem 5.3.

(1) For all n ≥ 2k, An ≡ 0 (mod Fk).
(2) For all n ≥ k, Bn ≡ 0 (mod Fk).

Proof. First, by induction we have Bn = F1F2 . . . Fn. Thus,

An = Bn

n∑
ν=1

1

Fν

= F1F2 . . . Fn

n∑
ν=1

1

Fν

.

It is clear that if n ≥ k, then

Bn = F1F2 . . . Fn ≡ 0 (mod Fk) .

Since Fn|F2n (n ≥ 1), we have

F1 . . . Fk . . . F2k . . . Fn

Fν

≡ 0 (mod Fk) (n ≥ 2k, 1 ≤ ν ≤ n) .

Hence, if n ≥ 2k then

An =
n∑

ν=1

F1F2 . . . Fn

Fν

≡ 0 (mod Fk) .

¤
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