
LUCAS PSEUDOPRIMES OF SPECIAL TYPES

LAWRENCE SOMER

Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms
p(p + 2), p(2p − 1), and p(2p + 3), where all the terms in the products are odd primes.
Assuming Dickson’s conjecture on prime k-tuples, we generalize this result by finding an
infinite class of Lucas sequences, each having infinitely many Lucas pseudoprimes of the five
types: p(p + 2), p(2p− 3), p(2p− 1), p(2p + 1), and p(2p + 3).

1. Introduction

It is well-known that if n is an odd prime, then

Fn−(D/n) ≡ 0 (mod n) (1.1)

(see [3, p. 150]), where D = 5 is the discriminant of {Fn} and (D/n) denotes the Jacobi
symbol. In rare instances, there exist odd composite integers n such that n also satisfies
congruence (1.1). These integers are called Fibonacci pseudoprimes. In [7], Rotkiewicz
proved the following theorem.

Theorem 1.1. (Rotkiewicz): Let p and q be odd primes.

(i) If q = p + 2, then pq is a Fibonacci pseudoprime if and only if p ≡ 7 (mod 10).
(ii) If q = 2p− 1, then pq is a Fibonacci pseudoprime if and only if p ≡ 1 (mod 10).
(iii) If q = 2p + 3, then pq is a Fibonacci pseudoprime if and only if p ≡ 3 (mod 10).

We note that the smallest Fibonacci pseudoprime is 323 = 17 · 19, which is of the form
given in Theorem 1.1 (i). Dickson [2] in 1904 conjectured the following.

Conjecture 1.2. (Prime k-tuples conjecture): If a1, b1, . . . , ak, bk are integers with each
ai > 0, each gcd(ai, bi) = 1, and for each prime p ≤ k, there is some integer n with no
ain + bi divisible by p, then there are infinitely many positive integers n with each ain + bi

prime.

Assuming Conjecture 1.2, which is widely believed, for the case k = 2, one sees that if
p and q are odd primes, then there are infinitely many Fibonacci pseudoprimes satisfying
each of conditions (i), (ii), and (iii) of Theorem 1.1. We will generalize Theorem 1.1 to more
general pseudoprimes called Lucas pseudoprimes with parameters P and Q. First we need
the following definitions and results. Let U(P, Q) and V (P,Q) denote the Lucas sequences
satisfying the second-order recursion relation

Wk+2 = PWk+1 −QWk, (1.2)

where P and Q are integers, Q 6= 0, and U0 = 0, U1 = 1, V0 = 2, V1 = P . Associated with
both U(P, Q) and V (P, Q) is the characteristic polynomial

f(x) = x2 − Px + Q
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with characteristic roots α and β. Let D = P 2 − 4Q = (α − β)2 be the discriminant of
U(P, Q). We assume that D 6= 0. By the Binet formulas,

Uk =
αk − βk

α− β
(1.3)

and
Vk = αk + βk. (1.4)

It follows from (1.3) that if m|n, then Um|Un. The Lucas sequence U(P,Q) is called de-
generate if α/β is a root of unity. In particular, if P = 0, then U(P, Q) is degenerate. It
follows from the Binet formula (1.3) that Uk can equal 0 for some k > 0 only if U(P, Q) is
degenerate. The following theorem is fundamental.

Theorem 1.3. Let U(P,Q) be a Lucas sequence and let p be an odd prime such that p - PQ.
Then

p|Up−(D/p). (1.5)

Moreover,
p|U(p−(D/p))/2 if and only if (Q/p) = 1. (1.6)

Proof. Proofs of (1.5) are given in [6, pp. 290, 296, 297] and [1, pp. 44-45]. A proof of (1.6)
is given in [5, p. 441]. ¤

2. The Main Theorems

We now present our main results.

Theorem 2.1. Let U(P,Q) be a Lucas sequence with discriminant D. Let p and q be distinct
odd primes such that gcd(pq, QD) = 1. Then pq is a Lucas pseudoprime with parameters P
and Q in the following cases:

(i) q = p+2, (D/p) = −1, and (D/q) = 1. Then p(p+2) is called a Lucas pseudoprime
of type 1.

(ii) q = 2p − 3, (Q/q) = 1, (D/p) = 1, and (D/q) = −1. Then p(2p − 3) is called a
Lucas pseudoprime of type 2.

(iii) q = 2p− 1, (Q/q) = 1, (D/p) = 1, and (D/q) = 1. Then p(2p− 1) is called a Lucas
pseudoprime of type 3.

(iv) q = 2p + 1, (Q/q) = 1, (D/p) = −1, and (D/q) = −1. Then p(2p + 1) is called a
Lucas pseudoprime of type 4.

(v) q = 2p+3, (Q/q) = 1, (D/p) = −1, and (D/q) = 1. Then p(2p+3) is called a Lucas
pseudoprime of type 5.

Proof.

(i) By (1.5), p|Up−(D/p) = Up+1 and q|Uq−(D/q) = Up+1. Hence, pq|Up+1. Note that

pq − (D/pq) = p(p + 2) + 1 = (p + 1)2.

It now follows that pq|Upq−(D/pq), and pq is a Lucas pseudoprime with parameters P
and Q.

(ii) By (1.5) and (1.6), we see that p|Up−1 and q|U(q−(D/q))/2 = Up−1. Thus, pq|Up−1.
Moreover,

pq − (D/pq) = p(2p− 3) + 1 = (p− 1)(2p− 1).

Hence, pq|Upq−(D/pq), implying that pq is a Lucas pseudoprime.
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(iii) We observe that p|Up−1 and q|U(q−1)/2 = Up−1. Consequently, pq|Up−1. Furthermore,

pq − (D/pq) = p(2p− 1)− 1 = (p− 1)(2p + 1).

Thus, pq|Upq−(D/pq), and pq is a Lucas pseudoprime.
(iv) Notice that p|Up+1 and q|U(q−(D/q))/2 = Up+1. Therefore, pq|Up+1. Also,

pq − (D/pq) = p(2p + 1)− 1 = (p + 1)(2p− 1).

Hence, pq|Upq−(D/pq), and pq is a Lucas pseudoprime.
(v) Note that p|Up+1 and q|U(q−(D/q))/2 = Up+1. Thus, pq|Up+1. Moreover,

pq − (D/pq) = p(2p + 3) + 1 = (p + 1)(2p + 1).

Hence, pq|Upq−(D/pq), and pq is a Lucas pseudoprime.

¤
Recall that p is a Sophie Germain prime of the second kind if both p and 2p−1 are primes.

Using the standard definition, we let ω(n) denote the number of distinct prime divisors of n.

Corollary 2.2. Let U(P, Q) be a Lucas sequence. Let D = D2
0 and Q = Q2

0 for some positive
integers D0 and Q0. Then p(2p − 1) is a Lucas pseudoprime of type 3 with parameters P
and Q for every odd prime p which is a Sophie Germain prime of the second kind such that
gcd(p(2p − 1), D0) = gcd(2p − 1, Q0) = 1. Moreover, if Q0 > 1 is a fixed integer, there
exist 2ω(Q0) distinct Lucas sequences U(P, Q2

0) such that gcd(P, Q0) = 1 and D is a nonzero
square.

Proof. Let p be a Sophie Germain prime of the second kind such that
gcd(p(2p− 1), D0) = gcd(2p− 1, Q0) = 1. Since (D2

0/p) = (D2
0/2p− 1) = (Q2

0/2p− 1) = 1,
we see by Theorem 2.1 (iii) that p(2p− 1) is a Lucas pseudoprime of type 3 with parameters
P and Q. It follows from [8] that there exist 2ω(Q0) Lucas sequences U(P, Q2

0) such that
gcd(P, Q0) = 1 and D is a nonzero square. ¤

Assuming that Conjecture 1.2 is true, we will show in Theorems 2.3 and 2.6 that for
infinitely many values of D, there exist infinitely many Lucas pseudoprimes with parameters
P and Q of each of the types 1 - 5 for any nondegenerate Lucas sequence U(P,Q) with
discriminant D.

Theorem 2.3. Let U(P, Q) be a nondegenerate Lucas sequence with discriminant D < 0. If
Conjecture 1.2 is true, then there are infinitely many Lucas pseudoprimes pq with parameters
P and Q of each of the types 1 - 5, where p and q are distinct odd primes.

Proof. Since D < 0, we have Q > P 2/4 > 0. Let D = −2γD2
0D1 and Q = 2λQ2

0Q1, where
γ = 0 or 1, λ = 0 or 1, and both D1 and Q1 are positive, odd, and square-free. Let
A = 2γD1 and H = lcm(2γD1, 2

λQ1). Note that A|H. In parts (i) - (v) of this proof, we
will successively generate infinitely many Lucas pseudoprimes with parameters P and Q of
each of the types 1 - 5, assuming that Conjecture 1.2 is true. We will use Conjecture 1.2
to choose p ≡ ±1 (mod 4B), where B = A for part (i) and B = H for parts (ii) - (v).
If p ≡ ±1 (mod 4A), q ≡ ±1 (mod 4A), and γ = 1, then p ≡ ±1 (mod 8) and q ≡ ±1
(mod 8). Hence,

(2γ/p) = (2γ/q) = 1, (2.1)

whether γ = 0 or γ = 1. Similarly, if p = ±1 (mod 4H) and q = ±1 (mod 4H), then

(2λ/p) = (2λ/q) = 1 (2.2)

200 VOLUME 46/47, NUMBER 3



LUCAS PSEUDOPRIMES OF SPECIAL TYPES

for both the cases in which λ = 0 or λ = 1. By the law of quadratic reciprocity for the
Jacobi symbol, we see that

(D1/p) = (D1/q) = 1 (2.3)

when both p = ±1 (mod 4A) and q = ±1 (mod 4A). Analogously,

(Q1/q) = 1 (2.4)

when q = ±1 (mod 4H). From (2.1) - (2.4), we obtain

(D/p) = (D2
0/p)(−1/p)(2γ/p)(D1/p) = (1)(−1/p)(1)(1) = (−1/p) (2.5)

when p ≡ ±1 (mod 4A),

(D/q) = (D2
0/q)(−1/q)(2γ/q)(D1/q) = (−1/q) (2.6)

when q ≡ ±1 (mod 4A), and

(Q/q) = (Q2
0/q)(2

λ/q)(Q1/q) = 1 (2.7)

when q = ±1 (mod 4H).

(i) By Conjecture 1.2, we can choose infinitely many pairs of primes p and q such that
p ≡ −1 (mod 4A) and q = p + 2 ≡ 1 (mod 4A). Then by (2.5) and (2.6),

(D/p) = (−1/p) = −1 and (D/q) = (−1/q) = 1,

and p(p+2) is a Lucas pseudoprime of type 1 with parameters P and Q by Theorem
2.1 (i).

(ii) Choose p ≡ 1 (mod 4H). Then q = 2p− 3 ≡ −1 (mod 4H). Hence, by (2.5), (2.6),
and (2.7), we see that (D/p) = (−1/p) = 1, (D/q) = (−1/q) = −1, and (Q/q) = 1.
Therefore, by Theorem 2.1 (ii), p(2p− 3) is a Lucas pseudoprime of type 2.

(iii) Choose p ≡ 1 (mod 4H). Then q = 2p− 1 ≡ 1 (mod 4H). Thus, by (2.5) - (2.7), it
follows that (D/p) = (−1/p) = 1, (D/q) = (−1/q) = 1, and (Q/q) = 1. By Theorem
2.1 (iii), we see that p(2p− 1) is a Lucas pseudoprime of type 3.

(iv) Choose p ≡ −1 (mod 4H). Then q = 2p + 1 ≡ −1 (mod 4H). Therefore, (D/p) =
(−1/p) = −1, (D/q) = (−1/q) = −1, and (Q/q) = 1. Hence, p(2p + 1) is a Lucas
pseudoprime of type 4 by Theorem 2.1 (iv).

(v) Choose p ≡ −1 (mod 4H). Then q = 2p+3 ≡ 1 (mod 4H). Consequently, (D/p) =
(−1/p) = −1, (D/q) = (−1/q) = 1, and (Q/q) = 1. Thus, p(2p + 3) is a Lucas
pseudoprime of type 5 by Theorem 2.1 (v).

¤
Corollary 2.4. Let U(P,Q) be a nondegenerate Lucas sequence. If Conjecture 1.2 is true,
there exist infinitely many Lucas pseudoprimes of type 3 with parameters P and Q.

Proof. Let D = (−1)µD2
02

γD1 and Q = (−1)νQ2
02

λQ1, where both D1 and Q1 are positive,
odd, and square-free, and each of µ, ν, γ, and λ is equal to 0 or 1. As in the proof of Theorem
2.3, let H = lcm(2γD1, 2

λQ1). Using Conjecture 1.2, choose odd primes p and q such that
p ≡ 1 (mod 4H) and q = 2p− 1 ≡ 1 (mod 4H). By the proof of Theorem 2.3, one sees that

(D/p) = ((−1)µ/p) = 1, (D/q) = ((−1)µ/q) = 1, and (Q/q) = ((−1)ν/q) = 1.

By Theorem 2.3 (iii), it follows that p(2p−1) is a type 3 Lucas pseudoprime with parameters
P and Q. ¤
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Example 2.5. Consider the nondegenerate Lucas sequence U(5, 9) with discriminant -11.
We list all Lucas pseudoprimes with parameters 5 and 9 of types 1 - 5, which are less than
106.
Type 1 Pseudoprimes: 29 · 31, 101 · 103, 197 · 199, 227 · 229, 431 · 433, 461 · 463, 659 ·
661, 821 · 823, 827 · 829, 857 · 859.
Type 2 Pseudoprimes: 23 · 43, 67 · 131, 71 · 139, 137 · 271, 181 · 359, 331 · 659, 577 ·
1151, 617 · 1231, 643 · 1283, 661 · 1319.
Type 3 Pseudoprimes: 157·313, 199·397, 331·661, 379·757, 577·1153, 619·1237, 661·1321.
Type 4 Pseudoprimes: 41 · 83, 83 · 167, 131 · 263, 173 · 347, 239 · 479, 281 · 563, 593 ·
1187, 659 · 1319.
Type 5 Pseudoprimes: 17 ·37, 43 ·89, 127 ·257, 193 ·389, 197 ·397, 307 ·617, 439 ·881, 523 ·
1049, 659 · 1321.

Theorem 2.6. Let U(P, Q) be a nondegenerate Lucas sequence for which D = D2
0D1 and

Q = Q2
0Q1, where D1 is a prime greater than or equal to 7, and either Q1 = 1 or Q1 = −D1.

If Conjecture 1.2 is true, then there exist many Lucas pseudoprimes with parameters P and
Q of each of the types 1 - 5.

Remark 2.7. We demonstrate that there do indeed exist infinitely many Lucas sequences
U(P, Q) for which D1 and Q1 satisfy the hypotheses of Theorem 2.6. First suppose that
D1 ≥ 7 is a prime and Q1 = 1. Let Q = Q2

0. It is well-known that the Pell equation

x2 −D1y
2 = 4

has infinitely many solutions in positive integers. For a given solution (xi, yi), let P = Q0xi.
Then

D = P 2 − 4Q = Q2
0x

2
i − 4Q2

0 = Q2
0(x

2
i − 4) = (Q0yi)

2D1,

as desired.

Now suppose that D1 ≥ 7 is a prime and Q1 = −D1. Let P1 be a positive integer such
that P 2

1 < 4D1 and P1 ≡ ε (mod 2), where ε = 1 if D1 ≡ 1 (mod 4) and ε = 2 if D1 ≡ 3
(mod 4). Let Q2 = (P 2

1 − ε2D1)/4. By the Binet formulas (1.3) and (1.4),

V 2
2n(P1, Q2)− 4Q2n

2 = (P 2
1 − 4Q2)U

2
2n(P1, Q2) = ε2D1U

2
2n(P1, Q2) (2.8)

for n ≥ 1. Let Q = Q2n
2 Q1 = −Q2n

2 D1 and P = εD1U2n(P1, Q2). Then by (2.8), we see that

D = P 2 − 4Q = ε2D2
1U

2
2n(P1, Q2) + 4Q2n

2 D1 = V 2
2n(P1, Q2)D1,

as desired.

Example 2.8. Consider the nondegenerate Lucas sequence U(7, 9) with discriminant 13.
We list all Lucas pseudoprimes with parameters 7 and 9 of types 1 - 5, which are less than
106.
Type 1 Pseudoprimes: 41 · 43, 59 · 61, 137 · 139, 197 · 199, 281 · 283, 431 · 433, 821 ·
823, 827 · 829.
Type 2 Pseudoprimes: 17 · 31, 43 · 83, 113 · 223, 181 · 359, 191 · 379, 233 · 463, 251 ·
499, 311 · 619, 347 · 691, 373 · 743, 433 · 863, 563 · 1123, 641 · 1279.
Type 3 Pseudoprimes: 79 · 157, 139 · 277, 157 · 313, 337 · 673, 547 · 1093, 607 · 1213.
Type 4 Pseudoprimes: 41 · 83, 233 · 467, 293 · 587, 431 · 863, 509 · 1019, 683 · 1367.
Type 5 Pseudoprimes: 7 · 17, 137 · 277, 337 · 677, 397 · 797, 467 · 937.
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In order to prove Theorem 2.6, we will need the following two theorems. From here on,
we let εi = ±1 for i ≥ 1.

Theorem 2.9. Let p be an odd prime such that either p ≡ 3 (mod 4) and p ≥ 11 or
p ≡ 1 (mod 4) and p ≥ 29. Let δ(n) = (n/p), where n is an integer. If (ε1, ε2, ε3) is
any 3-tuple of +1’s and -1’s, then there exists an integer n such that 1 ≤ n ≤ p − 3 and
(δ(n), δ(n + 1), δ(n + 2)) = (ε1, ε2, ε3).

Proof. This is proved in [4, pp. 156-158]. ¤
Theorem 2.10. Let p ≥ 7 be a prime. Let δ(n) be defined as in Theorem 2.9. For any given
ordered pair (ε1, ε2), there exists an integer n such that 1 ≤ n ≤ p− 1 and (δ(n), δ(n + 3)) =
(ε1, ε2).

Proof. Let a0 = 0, ai+1 ≡ ai + 3 (mod p), and 0 ≤ ai ≤ p − 1 for 0 ≤ i ≤ p − 1. Since
gcd(3, p) = 1, we have ai 6= aj for 0 ≤ i < j ≤ p − 1 Thus it suffices to find an integer n
such that (δ(an), δ(an+1)) = (ε1, ε2). First suppose that p ≡ 1 (mod 4) and p ≥ 13. Since
there exist (p− 1)/2 quadratic residues and (p− 1)/2 quadratic nonresidues, it is clear that
there exists an integer m such that 1 ≤ m ≤ p − 1 and (δ(am), δ(am+1)) = (ε3, ε4), where
ε3 6= ε4. Then (δ(ap−m−1), δ(ap−m)) = (ε4, ε3). Moreover, there exists an integer i such that
1 ≤ i ≤ p− 1, ai = 1, ai+1 = 4, ap−i−1 = p− 4, and ap−i = p− 1. Then

(δ(ai), δ(ai+1)) = (δ(ap−i−1), δ(ap−i)) = (1, 1).

Since the four integers 1, 4, p - 4, and p - 1 are all different and the number of quadratic
residues equals the number of quadratic nonresidues modulo p, it is easily seen that there
must exist an integer j such that 1 ≤ j ≤ p− 1 and (δ(aj), δ(aj+1)) = (−1,−1). The result
now follows in this case.

Now suppose that p ≡ 3 (mod 4). If p = 7 or 11, it is seen by inspection that the theorem
is true. Suppose that p ≥ 19. Then there exists an integer m such that am = 1 and am+1 = 4,
which implies that ap−m−1 = p− 4 and ap−m = p− 1. Then

(δ(am), δ(am+1)) = (1, 1) and (δ(ap−m−1), δ(ap−m)) = (−1,−1).

We now consider the case in which p ≥ 19, p ≡ 1 (mod 3) and p ≡ 3 (mod 4). Then
a(2p+1)/3 = 1, which implies that a(p−1)/3 = p−1, Noting that a3 = 9, we see that the 3-tuple

(δ(a3), δ(a(p−1)/3), δ(a(2p+1)/3)) = (1,−1, 1).

Since 3 < (p − 1)/3 < (2p + 1)/3, it follows that there exist integers i and j such that
3 ≤ i < (p− 1)/3, (p− 1)/3 ≤ j < (2p + 1)/3, and both

(δ(ai), δ(ai+1)) = (1,−1) and (δ(aj), δ(aj+1)) = (−1, 1).

Finally, we consider the case in which p ≥ 23, p ≡ 2 (mod 3), and p ≡ 3 (mod 4). For
1 ≤ n ≤ p − 1, note that an ≡ 1 (mod 3) if and only if (p + 1)/3 ≤ n ≤ (2p − 1)/3, and
an ≡ 2 (mod 3) if and only if (2p + 2)/3 ≤ n ≤ p − 1. Note also that a(p+1)/3 = 1 and
a(2p−1)/3 = p− 1. Then the ordered pair

(δ(a(p+1)/3), δ(a(2p−1)/3)) = (1,−1).

It thus suffices to find an integer k such that 1 ≤ k ≤ p− 1, k ≡ 2 (mod 3), and δ(k) = 1.
Then ai = k for some i such that (2p + 2)/3 ≤ i ≤ p − 1, and it would follow that
there exist integers j and m such that (p + 1)/3 ≤ j ≤ (2p − 1)/3, (2p + 2)/3 ≤ m ≤
p− 1, (δ(aj), δ(aj+1)) = (1,−1), and (δ(am − 1), δ(am)) = (−1, 1) Let p = b√pc2 + `, where
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1 ≤ ` ≤ 2b√pc. Then the next two squares greater than p are p + 2b√pc + 1 − ` and
p + 4b√pc+ 4− `. Thus, there are two consecutive squares between p and 2p if

p > 4b√pc+ 3. (2.9)

It is easily seen that inequality (2.9) holds if p ≥ 23. At least one of the two consecutive
squares p + 2b√pc+ 1− ` and p + 4b√pc+ 4− ` is congruent to 1 (mod 3). Call this square
N . Then p ≤ N ≤ 2p. Hence, 1 ≤ N − p ≤ p− 1, δ(N − p) = δ(N) = 1, and

N − p ≡ 1− 2 ≡ 2 (mod 3),

as desired. ¤
Proof of Theorem 2.6: Let δ(n) = (n/D1). Assume that Conjecture 1.2 is true. In

parts (i) - (v) of this proof, we will generate in turn infinitely many Lucas pseudoprimes
with parameters P and Q of each of the types 1 - 5.

(i) By Theorem 2.1 (i) and the properties of the Legendre symbol, p(p + 2) is a Lucas
pseudoprime of type 1 with parameters P and Q if p and p + 2 are odd primes such
that

(D/p) = (D1/p) = −1 and (D/p + 2) = (D1/p + 2) = 1. (2.10)

By the law of quadratic reciprocity, if p ≡ 1 (mod 4), then (2.10) holds if and only if

(p/D1) = −1 and (p + 2/D1) = (−1)(D1−1)/2. (2.11)

By inspection, one sees that if D1 = 7, 13, or 17, then there exists an integer n1 such
that 1 ≤ n1 ≤ D1 − 1 and both

δ(n1) = 1 and δ(n1 + 2) = (−1)(D1−1)/2. (2.12)

By Theorem 2.9, it now follows that (2.12) holds for some integer n1 such that
1 ≤ n1 ≤ D1 − 1 whenever D1 ≥ 7. By the prime k-tuples conjecture and the
Chinese Remainder Theorem, there exist infinitely many primes p such that p ≡ 1
(mod 4), p ≡ n1 (mod D1), and p + 2 is a prime. It now follows that there exist
many Lucas pseudoprimes of type 1 with parameters P and Q.

(ii) By Theorem 2.1 (ii), p(2p− 3) is a Lucas pseudoprime of type 2 with parameters P
and Q if p and 2p− 3 are odd primes such that

(D/p) = (D1/p) = 1, (2.13)

(D/2p− 3) = (D1/2p− 3) = −1, (2.14)

and
(Q/2p− 3) = 1. (2.15)

If Q1 = 1, then (2.15) clearly holds. If Q1 = −D1, then (2.14) implies that (2.15) is
satisfied, since 2p − 3 ≡ 3 (mod 4). Suppose further that p ≡ 1 (mod 4). Then by
the law of quadratic reciprocity, (2.13) and (2.14) both hold if and only if

(p/D1) = 1 and (2p− 3/D1) = (−1)(D1+1)/2. (2.16)

We now observe that (p/D1) = 1 if and only if

(2p/D1) = (2/D1). (2.17)

By Theorem 2.10, there exists an integer n2 such that 1 ≤ n2 ≤ D1 − 1 and both

δ(n2) = (−1)(D1+1)/2 and δ(n2 + 3) = (2/D1). (2.18)
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By Conjecture 1.2 and the Chinese Remainder Theorem, there exist infinitely many
primes p such that p ≡ 1 (mod 4), p ≡ (n2 + 3)(D1 + 1)/2 (mod D1), and 2p − 3
is also a prime. Note that if p ≡ (n2 + 3)(D1 + 1)/2 (mod D1), then 2p − 3 ≡ n2

(mod D1) and 2p ≡ (n2 + 3) (mod D1). It now follows that p(2p − 3) is a Lucas
pseudoprime of type 2 with parameters P and Q for each p satisfying the above
conditions.

(iii) By Corollary 2.4, there exist infinitely many Lucas pseudoprimes p(2p− 1) of type 3
with parameters P and Q.

(iv) By Theorem 2.1 (iv), p(2p + 1) is a Lucas pseudoprime of type 4 with parameters P
and Q if p and 2p + 1 are odd primes such that

(D/p) = (D1/p) = −1, (2.19)

(D/2p + 1) = (D1/2p + 1) = −1, (2.20)

and

(Q/2p + 1) = 1. (2.21)

It is evident that (2.21) is satisfied if Q1 = 1, while if Q1 = −D1, then (2.20) implies
that (2.21) also holds, since 2p + 1 ≡ 3 (mod 4). Suppose additionlly that p ≡ 1
(mod 4). Then by the law of quadratic reciprocity, (2.19) and (2.20) are both satisfied
if and only if

(p/D1) = −1 and (2p + 1/D1) = (−1)(D1+1)/2. (2.22)

Notice that (p/D1) = −1 if and only if

(2p/D1) = −(2/D1). (2.23)

By inspection and Theorem 2.9, if p ≥ 7, then there exists an integer n3 such that
1 ≤ n3 ≤ D1 − 1 and both

δ(n3) = −(2/D1) and δ(n3 + 1) = (−1)(D1+1)/2. (2.24)

By Conjecture 1.2 and the Chinese Remainder Theorem, there exist infinitely many
primes p such that p ≡ 1 (mod 4), p ≡ (n3)(D1 + 1)/2 (mod D1), and 2p + 1 is also
a prime. Observe that 2p ≡ n3 (mod D1) and 2p + 1 ≡ (n3 + 1) (mod D1). We now
see that p(2p + 1) is a Lucas pseudoprime of type 4 with parameters P and Q.

(v) The proof that there exist infinitely many Lucas pseudoprimes p(2p + 3) of type 5
with parameters P and Q is similar to the proof of part (ii), upon noting that if p
and 2p + 3 are both odd primes, then 2p + 3 ≡ 1 (mod 4). 2

3. Degenerate Recurrences

For completeness, we now treat the case in which the Lucas sequence U(P,Q) is a degen-
erate recurrence.

Proposition 3.1. The Lucas sequence U(P, Q) is degenerate if and only if exactly one of
the following holds:

(i) α/β = −1, P = 0, Q = N , and D = −4N for some nonzero integer N . Then Uk = 0
if and only if 2|k.

(ii) α/β is a primitive cube root of unity. Then P = N, Q = N2, and D = −3N2 for
some nonzero integer N . Moreover, Uk = 0 if and only if 3|k.
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(iii) α/β is a primitive fourth root of unity. Then P = 2N, Q = 2N2, and D = −4N2

for some nonzero integer N . Furthermore, Uk = 0 if and only if 4|k.
(iv) α/β is a primitive sixth root of unity. Then P = 3N, Q = 3N2, and D = −3N2 for

some nonzero integer N . Moreover, Uk = 0 if and only if 6|k.

Proof. This is proved in [9, p. 613]. ¤
Theorem 3.2. Let U(P, Q) be a degenerate Lucas sequence. Then m > 1 is a Lucas pseudo-
prime with parameters P and Q if m is any odd composite integer such that gcd(m,D) = 1.

Proof. By Proposition 3.1, if α and β are the characteristic roots of U(P, Q), then α/β is a
primitive kth root of unity, where k = 2, 3, 4, or 6. Suppose that k = 2. Then by Proposition
3.1, P = 0, Q = N , and D = −4N for some nonzero integer N . Clearly, 2|m− (D/m), and
hence Um−(D/m) ≡ 0 (mod m). Thus, m is a Lucas pseudoprime with parameters P and Q
in this case.

Now suppose that k = 4. Then P = 2N,Q = 2N2, and D = −4N2 for some nonzero
integer N . Note that m ≡ 1 or 3 (mod 4). By the properties of the Jacobi symbol and law
of quadratic reciprocity for the Jacobi symbol,

(D/m) = (−4N2/m) = (−1/m) = (−1)(m−1)/2.

Hence, m− (D/m) ≡ 0 (mod 4). Thus, Um−(D/m) ≡ 0 (mod m), and m is a Lucas pseudo-
prime.

Finally, suppose that k = 3 or 6. Then D = −3N2 for some nonzero integer N . Observe
that m ≡ 1 or 5 (mod 6). Then

(D/m) = (−3/m)(N2/m) = (−3/m).

Using the properties of the Jacobi symbol and law of quadratic reciprocity for the Jacobi
symbol, it now follows that (−3/m) = 1 if m ≡ 1 (mod 6) for both the cases in which
m ≡ ±1 (mod 4), and (−3/m) = −1 if m ≡ 5 (mod 6) for both the cases in which m ≡ ±1
(mod 4). Therefore, m− (D/m) ≡ 0 (mod 6). Consequently, Um−(D/m) ≡ 0 (mod m), and
m is a Lucas pseudoprime. ¤
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