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Abstract. The Great Internet Mersenne Prime Search (GIMPS) has been coordinating a
rigorous search for new Mersenne Prime discoveries. This paper provides a quick overview
of Mersenne prime history, discusses the methods used by GIMPS to discover new primes,
and presents the latest search results including two new Mersenne primes, M43112609 and
M37156667.

1. Introduction

There is a long, rich history [11] in the search for primes of the form Mp = 2p − 1, named
Mersenne primes. In the early years the study of Mersenne primes led to several important
advances in number theory. Since 1952, the computer has become instrumental in the search
for these large primes leading to several algorithmic advances. Robinson, Riesel, Hurwitz,
Gillies, Tuckerman, and Noll & Nickel, Colquitt & Welsh, Slowinski, sometimes partnering
with Nelson or Gage all used the most powerful computers of their day to find new Mersenne
primes. In 1996, George Woltman wrote software that allowed ordinary personal computers
to search for these large prime numbers. In 1997, Woltman partnered with Scott Kurowski
to coordinate these personal computers in a distributed computing architecture to accelerate
the search.

For more than a dozen years, Chris Caldwell has maintained the Prime Pages web site
(see [3]) with a superb and more complete history of Mersenne Primes and their discoverers.

2. Methodology

It can be trivially proven that Mp can be prime only if p is prime. There are 4 steps to
efficiently determine whether a candidate Mp is prime or composite [13]. The first step is a
brute force search for a small factor of Mp. The second step is to search for a factor using
Pollard’s P-1 factoring method. The third step is to run a Lucas-Lehmer primality test. The
last step is to rerun the Lucas-Lehmer test to double-check the first test.

Brute force factoring. The brute force factoring step efficiently eliminates candidates
by finding small factors. It is well-known that factors of Mp must be of the form q = 2kp+1
and q ≡ 1 or 7 (mod 8) for odd p. We use these facts to form a set of potential factors
for a Mersenne number. We then use a small prime sieve on these potential factors to
eliminate most of the composite ones. The remaining potential factors are then tested using
a left-to-right binary powering function [8]. We stop brute force factoring when the “time
it takes to test a potential factor” > “the chance the potential factor divides Mp” times
“the time it takes to run 2 Lucas-Lehmer tests”. This is highly dependent on the machine
architecture and code optimizations. For candidates we are currently testing we cease brute
force factoring at 268. More than 60% of candidates are eliminated in this step.
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Pollard P-1 factoring. The Pollard P-1 factoring step [10] seeks a factor q where q − 1
is smooth. This method is well suited to Mersenne numbers because factors of Mp are
q = 2kp + 1. Thus 2 and p divide q− 1, meaning we succeed whenever the smaller value k is
smooth. We pick stage 1 and stage 2 bounds to maximize CPU time saved if a factor is found.
That is, maximize “the chance of finding a factor using proposed bounds” times “cost of 2
Lucas-Lehmer primality tests” minus “cost of P-1 factoring using proposed bounds”. Knuth
[8] tells us how to use Dickman’s function to compute the chance we will find a smooth k.
This step eliminates about 5% of the remaining candidates.

Lucas-Lehmer testing. We use the Lucas-Lehmer primality test [7] and [8], which
defines a sequence starting with S1 = 4, and iterates Sn+1 = S2

n - 2 (mod Mp) through the
index n = p− 1. Mp is prime if and only if Sp−1 = 0 (mod Mp).

The main operation in this test is that of squaring numbers of size p bits. Schon̈hage and
Strassen [12] showed that a Fast Fourier Transform (FFT) can be used to square a p-bit
number in O(p log p log log p) bit operations. In the early 1990s, Richard Crandall [4] found
a way to halve the size of the FFT by eliminating the zero-padding that multiplication using
an FFT requires, conveniently producing a result mod Mp. We implement this irrational
base discrete weighted transform (IBDWT) algorithm in assembly language for maximum
speed.

For best performance on today’s personal computers we use floating-point FFTs rather
than all-integer FFTs. It is a common misconception that all-integer FFTs are better because
they are error-free. At the conclusion of each multiplication using floating point FFTs each
FFT element must be rounded to the nearest integer. If the errors accumulated due to the
inexact nature of floating point computations result in an element being off by more than
0.5, then we will round the element to the wrong integer. While all-integer FFTs are not
subject to this roundoff error, all-integer FFTs are still be subject to the much more common
memory corruption, overheating, overclocking, and other hardware errors that bedevil PCs
of highly variable quality.

Double-checking. The double-checking step essentially re-runs the Lucas-Lehmer pri-
mality test. While Mersenne primes are immediately double-checked by third parties using
different hardware and software, resource limitations require that Mersenne composites are
retested using the same software. To double-check composites, the last 64 bits of Sp−1 from
the first test are saved and the last 64 bits of the double-checking test are also saved for
comparison. A candidate is successfully double-checked when we get two matching 64 bit
results. One note, rather than start the sequence with S1 = 4, the client shifts S1 by a
random number of bits. The Lucas-Lehmer test is run and then Sp−1 is adjusted to undo
the initial random shift. This helps guard against programming error as the shift causes the
FFT to operate on different data, making it highly unlikely that a bug in our FFT code
would yield the same 64 bit result.

Distributed computing. The task of finding new Mersenne primes is an enormous
undertaking. Lucas-Lehmer tests can require weeks of computer time and there are hundreds
of thousands of candidates to test. The long computations and low bandwidth requirements
make this ideal for distributed computing where a central server coordinates the work of
thousands of clients. The server hands out a candidate for a client to test, the client processes
the candidate and reports the result back to the server, and the process repeats.
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Thus, in 1996, the distributed computing project Great Internet Mersenne Prime Search
(GIMPS) was founded. The project was one of the pioneers [2] in creating supercomputer-
scale power out of inexpensive personal computers.

Rather than have each client perform all 4 steps above, the server assigns only one of
the four steps to a client. This allows the server to tailor assignments to each computer’s
capabilities. For example, slower clients can be assigned brute force factoring while more
powerful computers can be assigned the more time-consuming Lucas-Lehmer primality tests.

We mentioned earlier that today’s PCs are not entirely reliable, especially over lengthy
computations. In practice, our error-rate for first-time tests is roughly 2%. This under-
lines the importance of the robustness double-checking provides to a distributed computing
project.

Finally, while not a requirement, the central server provides “bells and whistles” to keep
user interest high. This includes reports so the user can watch project progress or keep track
of his own progress. A top producers report so that users can “compete” against one another
for recognition. Teams allow users with common interests to pool their machines to compete
against other teams.

3. Results

On August 23, 2008 the 45th known Mersenne prime, 243112609 − 1, was discovered by
Edson Smith on a computer in the UCLA Mathematics Department. This prime number
is 12978189 decimal digits long. It took 34 days on a 2.4 GHz Intel Core 2 Duo E6600
computer to prove this number prime. As of this writing, the prime is the largest known
explicit prime of any type.

On September 6, 2008 the 46th known Mersenne prime, 237156667 − 1, was discovered by
Hans-Michael Elvenich on his personal computer in Langenfeld near Cologne, Germany. This
prime number is 11185272 decimal digits long. The test took 7 months running part-time
on a 2.83 Ghz Intel Core 2 Duo CPU E8300.

The two primes were independently verified by Tom Duell and Rob Giltrap at Sun Mi-
crosystems using Ernst Mayer’s publicly available Mlucas [9] program. They were also ver-
ified by Tony Reix of Bull SAS in Grenoble, France and Jeff Gilchrist using Guillermo
Ballester Valor’s publicly available Glucas [1] program.

There are now 46 known Mersenne primes, of which the last 12 were found by the GIMPS
project. Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,
132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609.

At the time of this writing, double-checking has shown there are no undiscovered Mersenne
primes below 18000000. The current status of the search is frequently updated at
http://www.mersenne.org/report milestones.

4. The future

The Electronic Frontier Foundation’s Cooperative Computing Awards is offering $150,000
for the discovery of a prime with 100 million digits [6]. Today’s fastest quad core PC takes
about 2 years to test a single 100 million digit candidate. Hardware advances will be required
before any serious attempts can be made. Such advances are on the way. In the last decade
Intel introduced SSE for vector processing of 2 single-precision floats and SSE2 for vector

196 VOLUME 46/47, NUMBER 3



ON THE DISCOVERY OF THE 45TH AND 46TH KNOWN MERSENNE PRIMES

processing of 2 double-precision floats. Intel has announced AVX, which promises vectors of
4, 8, and 16 double-precision floats in the future. Intel, Nvidia, and ATI have all promised
graphics chips that will support even more double-precision vector processing power.

It took 9 years to advance from a 1 million digit prime discovery to a 10 million digit
prime discovery. I suspect it will take at least that long before a 100 million digit prime
is found. In the meantime, GIMPS will continue methodically searching for smaller new
Mersenne primes.
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