RELATIVELY PRIME PARTITIONS WITH TWO AND THREE PARTS

MOHAMED EL BACHRAOUI

Abstract

A set A of positive integers is relatively prime if $\operatorname{gcd}(A)=1$. A partition of n is relatively prime if its parts form a relatively prime set. The number of partitions of n into exactly k parts is denoted by $p(n, k)$ and the number of relatively prime partitions into exactly k parts is denoted by $p_{\Psi}(n, k)$. In this note we give explicit formulas for $p_{\Psi}(n, 2)$ and $p_{\Psi}(n, 3)$ in terms of the prime divisors of n.

1. Introduction

In 1964, Gould [5] investigated compositions of positive integers whose parts are relatively prime. In 1990, Schmutz [7] considered the number a_{n} of partitions of a positive integer whose parts are pairwise relatively prime and found asymptotic estimates for $\log a_{n}$. In 2000, Nathanson [6] studied partitions with parts belonging to a nonempty finite set whose elements are relatively prime. Recently, Andrews [2] considered k-compositions with up to k copies of each part and the parts form a relatively prime set. Our main purpose in this work is to count the number of partitions of a positive integer into exactly three relatively prime parts.

Throughout, k and n will denote positive integers such that $k \leq n$ and p will range over prime numbers. We will use $\lfloor x\rfloor$ to denote the floor of x and $\langle x\rangle$ to denote the integer closest to x. A set A of positive integers is relatively prime if $\operatorname{gcd}(A)=1$, and accordingly a partition of n is relatively prime if its parts form a relatively prime set. The number of partitions of n into exactly k parts is denoted by $p(n, k)$ and the number of relatively prime partitions into exactly k parts is denoted by $p_{\Psi}(n, k)$. Formulas for $p(n, k)$ for some small value of k can be found in [3]. It is immediately seen that $p(q, 3)=p_{\Psi}(q, 3)$ whenever q is a prime number. The following result is quite clear.

Theorem 1.1. If $n>2$, then

$$
p_{\Psi}(n, 2)=\frac{1}{2} \phi(n),
$$

where ϕ is the Euler totient function,

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Proof. The following identities are straightforward:

$$
\begin{aligned}
p_{\Psi}(n, 2) & =\#\{(a, b): a<b, \operatorname{gcd}(a, b)=1, \text { and } a+b=n\} \\
& =\#\{a: a<n-a \text { and } \operatorname{gcd}(a, n)=1\} \\
& =\frac{1}{2} \#\{a: a<n \text { and } \operatorname{gcd}(a, n)=1\} \\
& =\frac{1}{2} \phi(n) .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

This completes the proof.
Corollary 1.2. If n and m are relatively prime positive integers such that $n m>2$, then

$$
p_{\Psi}(n m, 2)=2 p_{\Psi}(n, 2) p_{\Psi}(m, 2) .
$$

However, formulas for $p_{\Psi}(n, k)$ for larger values of k are far from straightforward. In this paper we derive an identity for $p_{\Psi}(n, 3)$ in terms of the prime factors of n. It is clear that

$$
p(n, k)=\sum_{d \mid n} p_{\Psi}\left(\frac{n}{d}, k\right)
$$

which by Möbius inversion is equivalent to

$$
\begin{equation*}
p_{\Psi}(n, k)=\sum_{d \mid n} \mu(d) p\left(\frac{n}{d}, k\right), \tag{1.1}
\end{equation*}
$$

where $\mu(d)$ is the Euler μ function. Furthermore, it is well-known that the generating function for $p(n, k)$ is

$$
\begin{equation*}
\sum_{n \geq k} p(n, k) q^{n}=\frac{q^{k}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)} \tag{1.2}
\end{equation*}
$$

see for instance [1]. We shall combine (1.1) and (1.2) to get the formula for $p_{\Psi}(n, 3)$. We note that a combination of (1.1) and (1.2) can also be used to give an alternate proof for Theorem 1.1 on $p_{\Psi}(n, 2)$. This approach does not easily extend to $p_{\Psi}(n, k)$ for higher k since the formulas for $p(n, k)$ obtained from the generating function (1.2) are not so neatly seen as functions of n, see [3]. We recall the following formula on so-called Jordan totient function of order 2 which can be found for instance in [4],

$$
\begin{equation*}
J_{2}(n):=\sum_{d \mid n} \mu(d) \frac{n^{2}}{d^{2}}=n^{2} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right) \tag{1.3}
\end{equation*}
$$

2. Main Result

For $k=3$, the generating function (1.2) yields,

$$
\begin{equation*}
p(n, 3)=\frac{n^{2}}{12}-\frac{7}{72}-\frac{1}{8}(-1)^{n}+\frac{2}{9} \cos \frac{2 n \pi}{3}=\left\langle\frac{n^{2}}{12}\right\rangle \tag{2.1}
\end{equation*}
$$

Further it is easy to check that,

$$
\left\langle\frac{n^{2}}{12}\right\rangle= \begin{cases}\frac{n^{2}}{12} & \text { if } n \equiv 0 \bmod 6 \tag{2.2}\\ \frac{n^{2}-1}{12} & \text { if } n \equiv 1 \operatorname{or} n \equiv 5 \bmod 6, \\ \frac{n^{2}-4}{12} & \text { if } n \equiv 2 \operatorname{or} n \equiv 4 \bmod 6, \\ \frac{n^{2}+3}{12} & \text { if } n \equiv 3 \bmod 6\end{cases}
$$

Throughout, we will be using (2.2) and the basic facts that the function μ is multiplicative, that $\mu(n)=0$ whenever n has a nontrivial square factor, and that $\sum_{d \mid n} \mu(d)=0$ whenever $n>1$. We need the following lemma.
Lemma 2.1. If $n \geq 4$, then

$$
\sum_{d \mid n} \mu(d)\left\langle\frac{n^{2}}{12 d^{2}}\right\rangle=\frac{1}{12} \sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right)^{2}
$$

RELATIVELY PRIME PARTITIONS WITH TWO AND THREE PARTS

Proof. We proceed by induction on n. For $n=4$ the statement is trivial. Suppose now that the identity holds for all $4 \leq k<n$. We only show the result for the cases $n \equiv 1 \bmod 6, n \equiv$ $5 \bmod 6$, and $n \equiv 3 \bmod 6$ and note that the remaining cases follow by similar arguments.

Case 1. Assume that $n \equiv 1 \bmod 6$ or $n \equiv 5 \bmod 6$. Then $\frac{n}{d} \equiv 1 \bmod 6$ or $\frac{n}{d} \equiv 5 \bmod 6$ for all $d \mid n$, and so by identity (2.2),

$$
\begin{aligned}
\sum_{d \mid n} \mu(d)\left\langle\frac{n^{2}}{12 d^{2}}\right\rangle & =\sum_{d \mid n} \mu(d) \frac{\frac{n^{2}}{d^{2}}-1}{12} \\
& =\frac{1}{12} \sum_{d \mid n} \mu(d)\left(\frac{n^{2}}{d^{2}}\right)-\frac{1}{12} \sum_{d \mid n} \mu(d) \\
& =\frac{1}{12} \sum_{d \mid n} \mu(d)\left(\frac{n^{2}}{d^{2}}\right) .
\end{aligned}
$$

Case 2. Suppose that $n \equiv 3 \bmod 6$, say $n=3^{l} m$ with $2 \nmid m, 3 \nmid m$, and $l \geq 1$. If $l>1$, then as $\frac{3^{l-1} m}{d} \equiv \frac{3^{l} m}{d} \equiv 3 \bmod 6$ for all $d \mid m$, we have by (2.2),

$$
\left\langle\frac{\left(3^{l-1} m\right)^{2}}{12 d^{2}}\right\rangle=\frac{\frac{\left(3^{l-1} m\right)^{2}}{d^{2}}+3}{12} \text { and }\left\langle\frac{\left(3^{l} m\right)^{2}}{12 d^{2}}\right\rangle=\frac{\frac{\left(3^{l} m\right)^{2}}{d^{2}}+3}{12} .
$$

Then

$$
\begin{aligned}
\sum_{d \mid 3^{l} m} \mu(d)\left\langle\frac{\left(3^{l} m\right)^{2}}{12 d^{2}}\right\rangle & =\sum_{d \mid m} \mu(3 d)\left\langle\frac{\left(3^{l} m\right)^{2}}{12(3 d)^{2}}\right\rangle+\sum_{d \mid m} \mu(d)\left\langle\frac{\left(3^{l} m\right)^{2}}{12 d^{2}}\right\rangle \\
& =-\sum_{d \mid m} \mu(d)\left\langle\frac{\left(3^{l-1} m\right)^{2}}{12 d^{2}}\right\rangle+\sum_{d \mid m} \mu(d)\left\langle\frac{\left(3^{l} m\right)^{2}}{12 d^{2}}\right\rangle \\
& =-\sum_{d \mid m} \mu(d) \frac{\frac{\left(3^{l-1} m\right)^{2}}{d^{2}}+3}{12}+\sum_{d \mid m} \mu(d) \frac{\frac{\left(3^{l} m\right)^{2}}{d^{2}}+3}{12} \\
& =-\frac{1}{12}\left(\sum_{d \mid m} \mu(d) \frac{\left(3^{l-1} m\right)^{2}}{d^{2}}+\sum_{d \mid m} \mu(d) \frac{\left(3^{l} m\right)^{2}}{d^{2}}\right) \\
& =\frac{1}{12}\left(\sum_{d \mid m} \mu(3 d) \frac{\left(3^{l} m\right)^{2}}{(3 d)^{2}}+\sum_{d \mid m} \mu(d) \frac{\left(3^{l} m\right)^{2}}{d^{2}}\right) \\
& =\frac{1}{12} \sum_{d \mid 3^{l} m} \mu(d) \frac{\left(3^{l} m\right)^{2}}{d^{2}}
\end{aligned}
$$

If $l=1$, then since $\frac{3 m}{d} \equiv 3 \bmod 6$ for all $d \mid m$, we find by (2.2),

$$
\left\langle\frac{(3 m)^{2}}{12 d^{2}}\right\rangle=\frac{\frac{(3 m)^{2}}{d^{2}}+3}{12}
$$

THE FIBONACCI QUARTERLY

Note that in this case $m>1$ and so $\sum_{d \mid m} \mu(d)=0$. Moreover, the induction hypothesis yields

$$
\sum_{d \mid m} \mu(d)\left\langle\frac{m^{2}}{12 d^{2}}\right\rangle=\frac{1}{12} \sum_{d \mid m} \mu(d) \frac{m^{2}}{d^{2}}
$$

Then

$$
\begin{aligned}
\sum_{d \mid 3 m} \mu(d)\left\langle\frac{(3 m)^{2}}{12 d^{2}}\right\rangle & =\sum_{d \mid m} \mu(3 d)\left\langle\frac{(3 m)^{2}}{12(3 d)^{2}}\right\rangle+\sum_{d \mid m} \mu(d)\left\langle\frac{(3 m)^{2}}{12 d^{2}}\right\rangle \\
& =-\sum_{d \mid m} \mu(d)\left\langle\frac{m^{2}}{12 d^{2}}\right\rangle+\sum_{d \mid m} \mu(d)\left\langle\frac{(3 m)^{2}}{12 d^{2}}\right\rangle \\
& =-\frac{1}{12} \sum_{d \mid m} \mu(d) \frac{m^{2}}{d^{2}}+\sum_{d \mid m} \mu(d) \frac{\frac{(3 m)^{2}}{d^{2}}+3}{12} \\
& =\frac{1}{12} \sum_{d \mid m} \mu(3 d) \frac{(3 m)^{2}}{(3 d)^{2}}+\frac{1}{12} \sum_{d \mid m} \mu(d) \frac{(3 m)^{2}}{d^{2}} \\
& =\frac{1}{12} \sum_{d \mid 3 m} \mu(d) \frac{(3 m)^{2}}{d^{2}} .
\end{aligned}
$$

Theorem 2.2. If $n \geq 4$, then

$$
p_{\Psi}(n, 3)=\frac{n^{2}}{12} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)
$$

Proof. By identities (1.1), (2.1), Lemma 2.1, and identity (1.3) we obtain

$$
\begin{aligned}
p_{\Psi}(n, 3) & =\sum_{d \mid n} \mu(d) p\left(\frac{n}{d}, 3\right) \\
& =\sum_{d \mid n} \mu(d)\left\langle\frac{n^{2}}{12 d^{2}}\right\rangle \\
& =\frac{1}{12} \sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right)^{2} \\
& =\frac{n^{2}}{12} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)
\end{aligned}
$$

This proves the theorem.
Corollary 2.3. If $n>4$, then $p_{\Psi}(n, 3)$ is even.
Corollary 2.4. If n and m are relatively prime positive integers such that $n m \geq 4$, then

$$
p_{\Psi}(n m, 3)=12 p_{\Psi}(n, 3) p_{\Psi}(m, 3) .
$$

Corollary 2.5. If $n \geq 4$, then

$$
\begin{gathered}
\frac{p_{\Psi}(n, 3)}{p_{\Psi}(n, 2)}=\frac{n}{6} \prod_{p \mid n}\left(1+\frac{1}{p}\right) . \\
\text { REFERENCES }
\end{gathered}
$$

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998.
[2] G. E. Andrews, The Theory of Compositions, IV: Multicompositions, The Mathematics Student (Special Centenary Volume), (2007), 25-31.
[3] G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge University Press, 2004.
[4] T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, 1st edition, 1976.
[5] H. W. Gould, Binomial Coefficients, The Bracket Function, and Compositions with Relatively Prime Summands, The Fibonacci Quarterly, 2.3 (1964), 241-260.
[6] M. B. Nathanson, Partitions with Parts in a Finite Set, Proceedings of the American Mathematical Society, 128.5 (2000), 1269-1273.
[7] E. Schmutz, Partitions Whose Parts are Pairwise Relatively Prime, Discrete Mathematics, 81.1 (1990), 87-98.

MSC2000: 11A25, 05A17, 11P83
Department of Mathematical Sciences, United Arab Emirates University, PO Box 17551, Al-Ain, UAE

E-mail address: melbachraoui@uaeu.ac.ae

