POWER SUM IDENTITIES WITH GENERALIZED STIRLING NUMBERS

KHRISTO N. BOYADZHIEV

Abstract

We prove several combinatorial identities involving Stirling functions of the second kind with a complex variable. The identities also involve Stirling numbers of the first kind, binomial coefficients and harmonic numbers.

1. Introduction

Butzer, Kilbas and Trujillo [2] defined the Stirling functions of the second kind by

$$
\begin{equation*}
S(\alpha, k)=\frac{1}{k!} \sum_{j=1}^{k}(-1)^{k-j}\binom{k}{j} j^{\alpha} \tag{1.1}
\end{equation*}
$$

for all complex numbers $\alpha \neq 0$ and all positive integers k. This definition is consistent with the definition given by Flajolet and Prodinger [5]. When $\alpha=n$ is a positive integer, $S(n, k)$ are the classical Stirling numbers of the second kind [3]. The purpose of this note is to prove the five power sum identities (2.3), (2.14), (2.17), (2.20) and (2.21) below involving the Stirling functions $S(\alpha, k)$. In fact, we describe a general method for obtaining such identities.

Recall that the binomial transform of a sequence a_{1}, a_{2}, \ldots is a new sequence b_{1}, b_{2}, \ldots, such that for every positive integer k,

$$
\begin{equation*}
b_{k}=\sum_{j=1}^{k}(-1)^{k-j}\binom{k}{j} a_{j}, \quad \text { with inversion } a_{k}=\sum_{j=1}^{k}\binom{k}{j} b_{j} \tag{1.2}
\end{equation*}
$$

[8, (5.48), p. 192], [9, 10]. In equation (1.2), we tacitly assume that $a_{0}=b_{0}=0$. Equation (1.1) shows that the sequences $k!S(\alpha, k)$ and k^{α} are related by the binomial transform. The inversion formula then yields

$$
\begin{equation*}
k^{\alpha}=\sum_{j=1}^{k}\binom{k}{j} j!S(\alpha, j), \tag{1.3}
\end{equation*}
$$

for any positive integer k.

2. The Identities

We start with a simple lemma.
Lemma 2.1. Let c_{1}, c_{2}, \ldots, be a sequence of complex numbers. Then for every positive integer m we have

$$
\begin{equation*}
\sum_{k=1}^{m} k^{\alpha} c_{k}=\sum_{j=1}^{m} j!S(\alpha, j) \sum_{k=j}^{m}\binom{k}{j} c_{k} . \tag{2.1}
\end{equation*}
$$

POWER SUM IDENTITIES WITH GENERALIZED STIRLING NUMBERS

Proof. For the proof we just need to use (1.3) for k^{α} and then change the order of summation on the right hand side

$$
\begin{equation*}
\sum_{k=1}^{m} k^{\alpha} c_{k}=\sum_{k=1}^{m} c_{k} \sum_{j=1}^{k}\binom{k}{j} j!S(\alpha, j)=\sum_{j=1}^{m} j!S(\alpha, j) \sum_{k=j}^{m}\binom{k}{j} c_{k} . \tag{2.2}
\end{equation*}
$$

This lemma helps to generate power sum identities by using various upper summation identities. We present here five examples arranged in four propositions.

Proposition 2.2. For every positive integer m and every two complex numbers $\alpha \neq 0, x$,

$$
\begin{equation*}
\sum_{k=1}^{m} k^{\alpha} x^{k}=\sum_{j=1}^{m} j!S(\alpha, j) \sigma(x, m, j) \tag{2.3}
\end{equation*}
$$

where $\sigma(x, m, j)$ is the (upper summation) polynomial

$$
\begin{equation*}
\sigma(x, m, j)=\sum_{k=j}^{m}\binom{k}{j} x^{k}=x^{j} \sum_{r=0}^{m-j}\binom{r+j}{j} x^{r} . \tag{2.4}
\end{equation*}
$$

In particular, when $x=1$ one has

$$
\begin{equation*}
\sum_{k=1}^{m} k^{\alpha}=\sum_{j=1}^{m}\binom{m+1}{j+1} j!S(\alpha, j) . \tag{2.5}
\end{equation*}
$$

Proof. We use the lemma with $c_{k}=x^{k}$. When $x=1$ we use the upper summation identity

$$
\begin{equation*}
\sum_{k=j}^{m}\binom{k}{j}=\binom{m+1}{j+1} \tag{2.6}
\end{equation*}
$$

(see, for instance, [7, 1.52] or [8, p. 174]). Thus (2.3) turns into (2.5).
Remark 2.3. Identity (2.5) was proved in [2] in the equivalent form

$$
\begin{equation*}
\sum_{k=1}^{m} k^{\alpha}=\sum_{j=1}^{m}\binom{m}{j}(j-1)!S(\alpha+1, j) \tag{2.7}
\end{equation*}
$$

by induction. The equivalence follows from the properties

$$
\begin{equation*}
S(\alpha+1, k)=k S(\alpha, k)+S(\alpha, k-1) \tag{2.8}
\end{equation*}
$$

(see $[2,1.16])$, and the well-known binomial identity $[8$, p. 174],

$$
\begin{equation*}
\binom{m}{k}+\binom{m}{k-1}=\binom{m+1}{k} . \tag{2.9}
\end{equation*}
$$

Remark 2.4. With complex powers $\alpha \neq 0$ as in (2.3) we have the flexibility to write

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{x^{k}}{k^{\alpha}}=\sum_{j=1}^{m} j!S(-\alpha, j) \sigma(x, m, j) \tag{2.10}
\end{equation*}
$$

When $\alpha=n$ is a positive integer, identity (2.5) (or (2.7), to that matter) is well-known and has a long history. In the early 18th century, Bernoulli evaluated $\sum_{k=1}^{m} k^{n}$ in terms of the numbers known today as Bernoulli numbers. Continuing Bernoulli's work, Leonard

THE FIBONACCI QUARTERLY

Euler [4, paragraphs 173, 176] evaluated sums of the form $\sum_{k=1}^{m} k^{n} x^{k}$, essentially by applying n times the operator $x \frac{d}{d x}$ to the identity

$$
\begin{equation*}
\sum_{k=1}^{m} x^{k}=\frac{1}{1-x}-\frac{x^{m+1}}{1-x} \tag{2.11}
\end{equation*}
$$

$(x \neq 1)$. This led him to the discovery of a special sequence of polynomials $A_{k}(x)$ called today Eulerian polynomials $[1,3,6]$. In terms of these polynomials one has

$$
\begin{equation*}
\left(x \frac{d}{d x}\right)^{n} \frac{1}{1-x}=\frac{A_{n}(x)}{(1-x)^{n+1}}, \quad n=0,1, \ldots \tag{2.12}
\end{equation*}
$$

and therefore, with some help from the Leibniz rule

$$
\begin{equation*}
\sum_{k=1}^{m} k^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}-x^{m+1} \sum_{k=0}^{n}\binom{n}{k} \frac{(m+1)^{n-k} A_{k}(x)}{(1-x)^{k+1}} . \tag{2.13}
\end{equation*}
$$

This identity, however, cannot be extended to complex powers $n \rightarrow \alpha \in \mathbb{C}$ for obvious reasons.
The next identity can be viewed as the binomial transform of the sequence $k^{\alpha} x^{k}$ extending equation (1.1).

Proposition 2.5. For every positive integer m and every two complex numbers $\alpha \neq 0, x$,

$$
\begin{equation*}
\sum_{k=1}^{m}\binom{m}{k} k^{\alpha} x^{k}=\sum_{j=1}^{m}\binom{m}{j} j!S(\alpha, j) x^{j}(1+x)^{m-j} \tag{2.14}
\end{equation*}
$$

Proof. We apply the lemma with $c_{k}=\binom{m}{k} x^{k}$. The result then follows from the interesting identity

$$
\begin{equation*}
\sum_{k=j}^{m}\binom{m}{k}\binom{k}{j} x^{k}=\binom{m}{j} x^{j}(1+x)^{m-j} \tag{2.15}
\end{equation*}
$$

which is listed as number 3.118 on p. 36 in [7]. To prove this identity one can start by reducing both sides by x^{j} and then expanding $(1+x)^{m-j}$.

Note that when $x=-1$, (2.14) turns into (1.1).
Remark 2.6. Identity (2.14) for positive integers $\alpha=r$ can also be found in the treasure chest [7]. It is listed there (as number 1.126 on p.16) in the form

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} k^{r} x^{k}=(1+x)^{n} \sum_{j=0}^{r}(-1)^{j}\binom{n}{j} \frac{x^{j}}{(1+x)^{j}} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} k^{r} . \tag{2.16}
\end{equation*}
$$

Note that in (2.16) the number r has to be a positive integer, because it stands for the upper limit of the first sum on the RHS. For the case $x=1$, (2.16) was recently rediscovered by Spivey [10].

The next identity involves the unsigned Stirling numbers of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right][8]$.
Proposition 2.7. For every positive integer m and every complex $\alpha \neq 0$ we have

$$
\sum_{k=1}^{m}\left[\begin{array}{c}
m \tag{2.17}\\
k
\end{array}\right] k^{\alpha}=\sum_{j=1}^{m} j!S(\alpha, j)\left[\begin{array}{c}
m+1 \\
j+1
\end{array}\right] .
$$

Proof. The proof uses the lemma with $c_{k}=\left[\begin{array}{l}m \\ k\end{array}\right]$ and also the upper summation identity $[8$, (6.16), p. 265]

$$
\sum_{k=j}^{m}\binom{k}{j}\left[\begin{array}{c}
m \tag{2.18}\\
k
\end{array}\right]=\left[\begin{array}{c}
m+1 \\
j+1
\end{array}\right] .
$$

We finish this note with two identities involving the harmonic numbers

$$
\begin{equation*}
H_{k}=1+\frac{1}{2}+\cdots+\frac{1}{k}, \quad(k=1,2, \ldots) . \tag{2.19}
\end{equation*}
$$

Proposition 2.8. For every positive integer m and every complex power $\alpha \neq 0$,

$$
\begin{align*}
& \sum_{k=1}^{m} H_{k} k^{\alpha}=\sum_{j=1}^{m} j!S(\alpha, j)\binom{m+1}{j+1}\left(H_{m+1}-\frac{1}{j+1}\right), \tag{2.20}\\
& \sum_{k=1}^{m} \frac{k^{\alpha}}{m-k+1}=\sum_{j=1}^{m} j!S(\alpha, j)\binom{m+1}{j}\left(H_{m+1}-H_{j}\right) . \tag{2.21}
\end{align*}
$$

Proof. This follows from the lemma with $c_{k}=H_{k}$ and $c_{k}=\frac{1}{m-k+1}$ correspondingly and also from the two upper summation identities [8, (6.70), p. 280 and p. 354],

$$
\begin{gather*}
\sum_{k=j}^{m}\binom{k}{j} H_{k}=\binom{m+1}{j+1}\left(H_{m+1}-\frac{1}{j+1}\right) \tag{2.22}\\
\sum_{k=j}^{m}\binom{k}{j} \frac{1}{m-k+1}=\binom{m+1}{j}\left(H_{m+1}-H_{j}\right) . \tag{2.23}
\end{gather*}
$$

In conclusion, the author expresses his gratitude to the referee for a valuable remark that helped improve the paper.

References

[1] K. N. Boyadziev, Apostol-Bernoulli Functions, Derivative Polynomials and Eulerian Polynomials, Advances and Applications in Discrete Mathematics, 1.2 (2008), 109-122.
[2] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Stirling Functions of the Second Kind in the Setting of Difference and Fractional Calculus, Numerical Functional Analysis and Optimization, 24.7-8 (2003), 673-711.
[3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 137-139, 1974.
[4] L. Eulero, Institutiones Calculi Differentialis cum ejus usu in Analysi Finitorum ac Doctrina Serierum, Impensis Academiae Imperialis Scientiarum Petropolitanae, 1755. Also, another edition, Ticini: in Typographeo Petri Galeatii Superiorum Permissu, 1787. (Opera Omnis Ser. I (Opera Math.), Vol. X, Teubner, 1913). Online at http://www.math.dartmouth.edu/~euler/pages/E212.html.
[5] P. Flajolet and H. Prodinger, On Stirling Numbers for Complex Arguments and Hankel Contours, SIAM J. Discrete Math, 12.2 (1999), 155-159.
[6] D. Foata, Les Polynômes Eulériens, d'Euler à Carlitz, Leonhard Euler, Mathématicien, Physicien et Théoricien de la Musique (Conference proceedings, IRMA Strasbourg, November 15-16, 2007, ed. X. Hascher and A. Papadopoulos).

THE FIBONACCI QUARTERLY

[7] H. W. Gould, Combinatorial Identities, Published by the author, Revised edition, 1972.
[8] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Co., New York, 1994.
[9] D. E. Knuth, The Art of Computer Programming Vol. 3, Addison-Wesley, Reading, MA, (1973).
[10] M. Z. Spivey, Combinatorial Sums and Finite Differences, Discrete Math., 307 (2007), 3130-3146.
MSC2000: 11B73, 05A20
Department of Mathematics, Ohio Northern University, Ada, OH 45810
E-mail address: k-boyadzhiev@onu.edu

