POWER SUM IDENTITIES WITH GENERALIZED
STIRLING NUMBERS

KHRISTO N. BOYADZHIEV

ABSTRACT. We prove several combinatorial identities involving Stirling functions of the
second kind with a complex variable. The identities also involve Stirling numbers of the
first kind, binomial coefficients and harmonic numbers.

1. INTRODUCTION

Butzer, Kilbas and Trujillo [2] defined the Stirling functions of the second kind by

k
Slo, k) = %Z(—N‘j (I;)y“ (L.1)

for all complex numbers o # 0 and all positive integers k. This definition is consistent with
the definition given by Flajolet and Prodinger [5]. When « = n is a positive integer, S(n, k)
are the classical Stirling numbers of the second kind [3]. The purpose of this note is to
prove the five power sum identities (2.3), (2.14), (2.17), (2.20) and (2.21) below involving
the Stirling functions S(«, k). In fact, we describe a general method for obtaining such
identities.

Recall that the binomial transform of a sequence aq,as, ... is a new sequence by, bo, . . .,
such that for every positive integer k,
- (& e
b = Z(—l)k*j (j)aj, with inversion aj = Z (j)bj (1.2)
j=1 j=1

8, (5.48), p. 192], [9, 10]. In equation (1.2), we tacitly assume that ay = by = 0. Equation
(1.1) shows that the sequences k!S(«, k) and k* are related by the binomial transform. The

inversion formula then yields
k
kN . .
E= (j)J!S(Oé,J), (1.3)

for any positive integer k.

2. THE IDENTITIES

We start with a simple lemma.

Lemma 2.1. Let ci,ca,..., be a sequence of compler numbers. Then for every positive
integer m we have
m m ‘ ' m k
S ke = Y15y ( ) 2.1)
k=1 j=1 i \J
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Proof. For the proof we just need to use (1.3) for £“ and then change the order of summation
on the right hand side

Zka :icki() i1S(a, j) = ngsa] ;(’;) (2.2)

k=1 ]:1
U

This lemma helps to generate power sum identities by using various upper summation
identities. We present here five examples arranged in four propositions.

Proposition 2.2. For every positive integer m and every two complex numbers o # 0, z,

Zkak—Z]'Saj (x,m,j), (2.3)

k=1

where o(x,m, j) is the (upper summatzon) polynomial

oz, m, j) = i (k) o= o m:_: (T * j) ) (2.4)

=y \J

In particular, when x =1 one has
" m+1
k* = 1S (a, ). 2.5
S =3 (71 )istas 25

Proof. We use the lemma with ¢, = 2*. When 2 = 1 we use the upper summation identity

£()- (20

(see, for instance, [7, 1.52] or [8, p. 174]). Thus (2.3) turns into (2.5). O
Remark 2.3. Identity (2.5) was proved in [2] in the equivalent form
Zka—z(j)@—wsmﬂ 7) (2.7)
7=1

by induction. The equivalence follows from the properties
Sla+1,k) =kS(a, k) + S(a, k — 1) (2.8)
(see [2, 1.16]), and the well-known binomial identity [8, p. 174],
m m m+1
(1) () - (") e

Remark 2.4. With complex powers a # 0 as in (2.3) we have the flexibility to write

m k‘ m
D =2 d18(=an (e, m, ). (2.10)
k=1 j=1

When a = n is a positive integer, identity (2.5) (or (2.7), to that matter) is well-known
and has a long history. In the early 18th century, Bernoulli evaluated Y, k™ in terms
of the numbers known today as Bernoulli numbers. Continuing Bernoulli’s work, Leonard
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Euler [4, paragraphs 173, 176] evaluated sums of the form Y ", k™z*, essentially by applying
n times the operator m% to the identity

m 1 m+1
>oak = f (2.11)
1 — T — T

(x # 1). This led him to the discovery of a special sequence of polynomials Ag(z) called today
FEulerian polynomials [1, 3, 6]. In terms of these polynomials one has

(d>" L _ Ao n=01,..., (2.12)

i) 1—a (1 —z)ntt’

and therefore, with some help from the Leibniz rule

iknxk _ ( Ap () _ gl i <n) (m + 1)n7kAk<$). (2.13)

— 1 — x)n-‘rl — k (1 _ x)k—f—l

This identity, however, cannot be extended to complex powersn — o € C for obvious reasons.

The next identity can be viewed as the binomial transform of the sequence k®z* extending
equation (1.1).

Proposition 2.5. For every positive integer m and every two complexr numbers o # 0, x,

i @) ket = Zm: (m>ﬂ5<a,j>x]’ (1+ )™, (2.14)

k=1 =1 \J

m
k

kzm: (TZ) (j) ot = (7) 2 (1 4 )" (2.15)

which is listed as number 3.118 on p. 36 in [7]. To prove this identity one can start by
reducing both sides by z? and then expanding (1 + x)™ 7. O

Note that when x = —1, (2.14) turns into (1.1).

Proof. We apply the lemma with ¢, = ( )a:k The result then follows from the interesting

identity

Remark 2.6. Identity (2.14) for positive integers o = r can also be found in the treasure
chest [7). It is listed there (as number 1.126 on p.16) in the form

2": (Z) Kt = (14 x)" i(—l)j (?) a fm)j z]:(—l)’“ (2) K (2.16)

k=0 §=0 k=0

Note that in (2.16) the number r has to be a positive integer, because it stands for the upper
limit of the first sum on the RHS. For the case x = 1, (2.16) was recently rediscovered by
Spivey [10].

The next identity involves the unsigned Stirling numbers of the first kind {Z] 8].

Proposition 2.7. For every positive integer m and every complexr o # 0 we have

m

> [ﬂ k= éﬂS(a,j) [Till] : (2.17)

k=1
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Proof. The proof uses the lemma with ¢, = [ZL] and also the upper summation identity [8,

(6.16), p. 265]
() -[741]
S = | . (2.18)
P (] k ] +1
OJ
We finish this note with two identities involving the harmonic numbers
1 1
H.=14+=-+---+— (k=1,2,...). (2.19)

2 k’
Proposition 2.8. For every positive integer m and every complex power « # 0,

“ “ m+1 1
Hok® =S 15, )" Hyppy — —— ) 2.20
> k=3t D) (How - 1) (2:20)

- kK Ny ~(m+1
Z—m_k+1 :ZJ!S(O%J)( j )(Hm+1—Hj). (2.21)
Proof. This follows from the lemma with ¢, = Hy and ¢y = ————— correspondingly

m —k +
and also from the two upper summation identities [8, (6.70), p. 280 and p. 354,

£ (- (220) (o 1)
i( )m P (m;rl) (Hmir = Hj). (2.23)

k=j

OJ

In conclusion, the author expresses his gratitude to the referee for a valuable remark that
helped improve the paper.
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