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Abstract. We prove several combinatorial identities involving Stirling functions of the
second kind with a complex variable. The identities also involve Stirling numbers of the
first kind, binomial coefficients and harmonic numbers.

1. Introduction

Butzer, Kilbas and Trujillo [2] defined the Stirling functions of the second kind by

S(α, k) =
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jα, (1.1)

for all complex numbers α 6= 0 and all positive integers k. This definition is consistent with
the definition given by Flajolet and Prodinger [5]. When α = n is a positive integer, S(n, k)
are the classical Stirling numbers of the second kind [3]. The purpose of this note is to
prove the five power sum identities (2.3), (2.14), (2.17), (2.20) and (2.21) below involving
the Stirling functions S(α, k). In fact, we describe a general method for obtaining such
identities.

Recall that the binomial transform of a sequence a1, a2, . . . is a new sequence b1, b2, . . . ,
such that for every positive integer k,

bk =
k∑

j=1

(−1)k−j

(
k

j

)
aj, with inversion ak =

k∑
j=1

(
k

j

)
bj (1.2)

[8, (5.48), p. 192], [9, 10]. In equation (1.2), we tacitly assume that a0 = b0 = 0. Equation
(1.1) shows that the sequences k!S(α, k) and kα are related by the binomial transform. The
inversion formula then yields

kα =
k∑

j=1

(
k

j

)
j!S(α, j), (1.3)

for any positive integer k.

2. The Identities

We start with a simple lemma.

Lemma 2.1. Let c1, c2, . . . , be a sequence of complex numbers. Then for every positive
integer m we have

m∑

k=1

kαck =
m∑

j=1

j!S(α, j)
m∑

k=j

(
k

j

)
ck. (2.1)
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Proof. For the proof we just need to use (1.3) for kα and then change the order of summation
on the right hand side

m∑

k=1

kαck =
m∑

k=1

ck

k∑
j=1

(
k

j

)
j!S(α, j) =

m∑
j=1

j!S(α, j)
m∑

k=j

(
k

j

)
ck. (2.2)

¤
This lemma helps to generate power sum identities by using various upper summation

identities. We present here five examples arranged in four propositions.

Proposition 2.2. For every positive integer m and every two complex numbers α 6= 0, x,
m∑

k=1

kαxk =
m∑

j=1

j!S(α, j)σ(x,m, j), (2.3)

where σ(x,m, j) is the (upper summation) polynomial

σ(x,m, j) =
m∑

k=j

(
k

j

)
xk = xj

m−j∑
r=0

(
r + j

j

)
xr. (2.4)

In particular, when x = 1 one has
m∑

k=1

kα =
m∑

j=1

(
m + 1

j + 1

)
j!S(α, j). (2.5)

Proof. We use the lemma with ck = xk. When x = 1 we use the upper summation identity
m∑

k=j

(
k

j

)
=

(
m + 1

j + 1

)
(2.6)

(see, for instance, [7, 1.52] or [8, p. 174]). Thus (2.3) turns into (2.5). ¤
Remark 2.3. Identity (2.5) was proved in [2] in the equivalent form

m∑

k=1

kα =
m∑

j=1

(
m

j

)
(j − 1)!S(α + 1, j) (2.7)

by induction. The equivalence follows from the properties

S(α + 1, k) = kS(α, k) + S(α, k − 1) (2.8)

(see [2, 1.16]), and the well-known binomial identity [8, p. 174],(
m

k

)
+

(
m

k − 1

)
=

(
m + 1

k

)
. (2.9)

Remark 2.4. With complex powers α 6= 0 as in (2.3) we have the flexibility to write
m∑

k=1

xk

kα
=

m∑
j=1

j!S(−α, j)σ(x,m, j). (2.10)

When α = n is a positive integer, identity (2.5) (or (2.7), to that matter) is well-known
and has a long history. In the early 18th century, Bernoulli evaluated

∑m
k=1 kn in terms

of the numbers known today as Bernoulli numbers. Continuing Bernoulli’s work, Leonard
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Euler [4, paragraphs 173, 176] evaluated sums of the form
∑m

k=1 knxk, essentially by applying
n times the operator x d

dx
to the identity

m∑

k=1

xk =
1

1− x
− xm+1

1− x
(2.11)

(x 6= 1). This led him to the discovery of a special sequence of polynomials Ak(x) called today
Eulerian polynomials [1, 3, 6]. In terms of these polynomials one has(

x
d

dx

)n
1

1− x
=

An(x)

(1− x)n+1
, n = 0, 1, . . . , (2.12)

and therefore, with some help from the Leibniz rule
m∑

k=1

knxk =
An(x)

(1− x)n+1
− xm+1

n∑

k=0

(
n

k

)
(m + 1)n−kAk(x)

(1− x)k+1
. (2.13)

This identity, however, cannot be extended to complex powers n → α ∈ C for obvious reasons.

The next identity can be viewed as the binomial transform of the sequence kαxk extending
equation (1.1).

Proposition 2.5. For every positive integer m and every two complex numbers α 6= 0, x,
m∑

k=1

(
m

k

)
kαxk =

m∑
j=1

(
m

j

)
j!S(α, j)xj(1 + x)m−j. (2.14)

Proof. We apply the lemma with ck =
(

m
k

)
xk. The result then follows from the interesting

identity
m∑

k=j

(
m

k

)(
k

j

)
xk =

(
m

j

)
xj(1 + x)m−j, (2.15)

which is listed as number 3.118 on p. 36 in [7]. To prove this identity one can start by
reducing both sides by xj and then expanding (1 + x)m−j. ¤

Note that when x = −1, (2.14) turns into (1.1).

Remark 2.6. Identity (2.14) for positive integers α = r can also be found in the treasure
chest [7]. It is listed there (as number 1.126 on p.16) in the form

n∑

k=0

(
n

k

)
krxk = (1 + x)n

r∑
j=0

(−1)j

(
n

j

)
xj

(1 + x)j

j∑

k=0

(−1)k

(
j

k

)
kr. (2.16)

Note that in (2.16) the number r has to be a positive integer, because it stands for the upper
limit of the first sum on the RHS. For the case x = 1, (2.16) was recently rediscovered by
Spivey [10].

The next identity involves the unsigned Stirling numbers of the first kind

[
n
k

]
[8].

Proposition 2.7. For every positive integer m and every complex α 6= 0 we have
m∑

k=1

[
m
k

]
kα =

m∑
j=1

j!S(α, j)

[
m + 1
j + 1

]
. (2.17)
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Proof. The proof uses the lemma with ck =

[
m
k

]
and also the upper summation identity [8,

(6.16), p. 265]
m∑

k=j

(
k

j

)[
m
k

]
=

[
m + 1
j + 1

]
. (2.18)

¤
We finish this note with two identities involving the harmonic numbers

Hk = 1 +
1

2
+ · · ·+ 1

k
, (k = 1, 2, . . . ). (2.19)

Proposition 2.8. For every positive integer m and every complex power α 6= 0,
m∑

k=1

Hkk
α =

m∑
j=1

j!S(α, j)

(
m + 1

j + 1

)(
Hm+1 − 1

j + 1

)
, (2.20)

m∑

k=1

kα

m− k + 1
=

m∑
j=1

j!S(α, j)

(
m + 1

j

)
(Hm+1 −Hj). (2.21)

Proof. This follows from the lemma with ck = Hk and ck =
1

m− k + 1
correspondingly

and also from the two upper summation identities [8, (6.70), p. 280 and p. 354],
m∑

k=j

(
k

j

)
Hk =

(
m + 1

j + 1

)(
Hm+1 − 1

j + 1

)
(2.22)

m∑

k=j

(
k

j

)
1

m− k + 1
=

(
m + 1

j

)
(Hm+1 −Hj). (2.23)

¤
In conclusion, the author expresses his gratitude to the referee for a valuable remark that

helped improve the paper.

References

[1] K. N. Boyadziev, Apostol-Bernoulli Functions, Derivative Polynomials and Eulerian Polynomials, Ad-
vances and Applications in Discrete Mathematics, 1.2 (2008), 109–122.

[2] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Stirling Functions of the Second Kind in the Setting of
Difference and Fractional Calculus, Numerical Functional Analysis and Optimization, 24.7-8 (2003),
673–711.

[3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht,
Netherlands: Reidel, pp. 137–139, 1974.

[4] L. Eulero, Institutiones Calculi Differentialis cum ejus usu in Analysi Finitorum ac Doctrina Serierum,
Impensis Academiae Imperialis Scientiarum Petropolitanae, 1755. Also, another edition, Ticini: in
Typographeo Petri Galeatii Superiorum Permissu, 1787. (Opera Omnis Ser. I (Opera Math.), Vol. X,
Teubner, 1913). Online at http://www.math.dartmouth.edu/∼euler/pages/E212.html.

[5] P. Flajolet and H. Prodinger, On Stirling Numbers for Complex Arguments and Hankel Contours, SIAM
J. Discrete Math, 12.2 (1999), 155–159.
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