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Abstract. We describe the initial terms in the continued fraction expansion of numbers
of the form k

√
an+k

an
. Here, (an) is a sequence satisfying an+1 = ban + an−1 for a positive

integer b, and k is a term in the sequence Fb,n satisfying the same recurrence relation, with
Fb,0 = 0 and Fb,1 = 1. Our results generalize previous work of the second author concerning

the initial terms in the continued fraction expansion of 5

√
Fn+5
Fn

.

1. Introduction

In [1], the second author looked at the continued fractions of numbers of the form 5

√
Fn+5

Fn
,

where Fn denotes the nth Fibonacci number. Using Binet’s formula, one can see that for
any integer k,

lim
n→∞

k

√
Fn+k

Fn

= φ,

where φ is the golden ratio. Since the continued fraction expansion of φ consists of an endless

sequence of 1’s, the continued fraction of k

√
Fn+k

Fn
begins with a large number of 1’s, when n

is large. But when k = 5, something unusual happens. Using the compact notation

[a0, a1, a2, . . .] = a0 +
1

a1 + 1
a2+···

for continued fractions, we list below the beginning terms of the continued fractions of 5

√
Fn+5

Fn
,

for values of n ranging from 1 to 6.

[1, 1, 1, 15, 2, 2, . . .]

[1, 1, 2, 30, 2, 3, . . .]

[1, 1, 1, 1, 1, 91, 2, 48, . . .]

[1, 1, 1, 1, 2, 229, 2, 12, . . .]

[1, 1, 1, 1, 1, 1, 1, 612, 1, 1, . . .]

[1, 1, 1, 1, 1, 1, 2, 1593, 2, 18, . . .].

When n is odd, we see a sequence of n+2 1’s followed by a large number; when n is even,
we see a sequence of n 1’s, followed by a 2, followed by a large number. In fact, the second
author [1] proved the following theorem.
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Theorem 1.1.

5

√
Fn+5

Fn

=





[

n+2 1’s︷ ︸︸ ︷
1, 1, · · · , 1, F2n+5 + 2, · · · ] n odd

[

n 1’s︷ ︸︸ ︷
1, 1, · · · , 1, 2, F2n+5 − 4, · · · ] n even.

After seeing this theorem, people typically wonder what is so special about the number
5. Does one see anything interesting when one considers the continued fraction expansion of
k

√
Fn+k

Fn
for larger values of k?

There are also other possible generalizations that one might imagine. It is natural to

consider the continued fraction expansion of k

√
an+k

an
, where the sequence (an) satisfies the

Fibonacci recurrence relation an+1 = an + an−1, but a0 and a1 are integers different from 0
and 1; for example, the Lucas numbers are generated in this way with a0 = 2 and a1 = 1.

Finally, suppose b is a positive integer, and let Fb,n be the sequence defined by Fb,n+1 =
bFb,n + Fb,n−1, where Fb,0 = 0 and Fb,1 = 1. Then, the continued fraction expansion of
Fb,n+1/Fb,n consists of n b’s. One might expect that for certain interesting values of k, the

continued fraction expansion of k

√
Fb,n+k

Fb,n
begins with a string of b’s, followed by a large

number.
Our paper is organized as follows. In Section 2, we list some examples, and describe

our initial guesses about what these continued fractions look like in general. We hope that
this section will give the reader a good sense of the questions involved in this paper. Our
two main theorems, Theorems 3.1 and 3.2 are described in Section 3. These two theorems
together cover all the cases that we consider in Section 2, and we show how they confirm
our initial guesses. In Section 4, we sketch some of the background needed to prove our
theorems, and we give proofs of each of these in Sections 5 and 6.

2. Explorations and guesses

The author of [1] made some observations (without proof) concerning the continued frac-

tion expansions of k

√
Fn+k

Fn
for larger values of k.

(1) For n ≥ 15, 13

√
Fn+13

Fn
= [

n+2︷ ︸︸ ︷
1, 1, . . . , 1, 2, 1, 377, . . .].

(2) For n ≥ 19, 34

√
Fn+34

Fn
= [

n+4︷ ︸︸ ︷
1, 1, . . . , 1, 12921, . . .].

(3) For n ≥ 21, 89

√
Fn+34

Fn
= [

n+4︷ ︸︸ ︷
1, 1, . . . , 1, 2, 1, 17710, . . .].

(4) For n ≥ 27, 233

√
Fn+233

Fn
= [

n+6︷ ︸︸ ︷
1, 1, . . . , 1, 606966, . . .].

Note that in each case, k = F2t+1 for some t. (We have listed the cases where t runs from
3 to 6.) Some readers might notice that 377 is a Fibonacci number and 17710 is one less
than a Fibonacci number, though it is more difficult to see the relation between the numbers
12921 and 606966 and the Fibonacci numbers. This result contrasts with the result of [1] in
that for a fixed value of k, letting n get larger, the large numbers in the continued fraction
expansions eventually stabilize to a single value, rather than growing with n.
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The examples seem to fall into two cases according to the parity of t; instead, one might
look at the case in which k = F4t−1 separately from the case where k = F4t+1. In the case
k = F4t−1, t ≥ 2, the first few large numbers one sees in the continued fraction expansions
are

377, 17710, 832039, 39088168, 1836311902.

In the case k = F4t+1, t ≥ 2, the first few large numbers are

12921, 606966, 28514436, 1339571481, 62931345126.

The data suggests that for k = F4t−1, t ≥ 2, the continued fraction expansion of k

√
Fn+k

Fn

• begins with n + 2t− 2 1’s
• followed by 2, 1
• followed by F8t−2 − 1 (unless t = 2, when we get F8t−2 = 377).

Likewise, for k = F4t+1, t ≥ 2, the corresponding continued fraction

• begins with n + 2t 1’s
• followed by 5 · F8t+2 + 1.

We next consider Lucas numbers, and we list below the continued fraction expansion of
5

√
Ln+5

Ln
where n varies from 1 to 10, and Ln denotes the nth Lucas number.

[1, 1, 3, 1, . . .]

[1, 1, 1, 2, 1, 6, . . .]

[1, 1, 1, 1, 3, 16, . . .]

[1, 1, 1, 1, 1, 2, 1, 46, . . .]

[1, 1, 1, 1, 1, 1, 3, 121, . . .]

[1, 1, 1, 1, 1, 1, 1, 2, 1, 319, . . .]

[1, 1, 1, 1, 1, 1, 1, 1, 3, 835, . . .]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2189, . . .]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5730, . . .]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 15004, . . .].

As in the case of fifth roots involving Fibonacci numbers, the large number one encounters
grows with n. One sees similar behavior if one defines a sequence an using the Fibonacci
recurrence relation, but letting a0 and a1 be another pair of integers. For example, if a0 = 5

and a1 = 3, the continued fraction of 5

√
a25

a20
begins as follows:

[

21︷ ︸︸ ︷
1, 1, . . . , 1, 2, 1, 1, 1, 43802030, . . .].

After looking at a lot of data, we guessed that if

• a0 and a1 are relatively prime, and
• a0 > a1 > 0

then, in general, when n is sufficiently large, the continued fraction of 5

√
an+5

an

• begins with n + 1 1’s
• followed by one of the two continued fractions for a2

a1
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• followed by a number close to
a2

n+2+a2
n+3

(a0a2−a2
1)2

.

We also looked at the continued fraction expansions of numbers like k

√
Ln+k

Ln
for some larger

values of k:

(1) For n ≥ 15, 13

√
Ln+13

Ln
= [

n+3︷ ︸︸ ︷
1, 1, . . . , 1, 1892, . . .].

(2) For n ≥ 18, 34

√
Ln+34

Ln
= [

n+3︷ ︸︸ ︷
1, 1, . . . , 1, 2, 1, 2583, . . .].

(3) For n ≥ 24, 89

√
Ln+89

Ln
= [

n+5︷ ︸︸ ︷
1, 1, . . . , 1, 88556, . . .].

(4) For n ≥ 26, 233

√
Ln+233

Ln
= [

n+5︷ ︸︸ ︷
1, 1, . . . , 1, 2, 1, 121392, . . .].

Again, we looked at the general case of a sequence an satisfying the recurrence relation
an+1 = an + an−1, and also satisfying the conditions mentioned earlier (gcd(a0, a1) = 1 and
a0 > a1 > 0). We found that when k = F4t+1, t ≥ 2, then for n sufficiently large, the

continued fraction expansion of k

√
an+k

an

• begins with n + 2t− 1 1’s,
• followed by one of the two continued fractions of a2

a1

• followed by a number close to 5F8t+2

|a0a2−a2
1|
.

For k = F4t−1, t ≥ 2, the continued fraction of k

√
an+k

an

• begins with n + 2t− 2 1’s,
• followed by one of the continued fractions of a3+a1

a2+a0
(which may itself begin with a

string of 1’s)

• followed by a number close to gcd(a3+a1,a2+a0)2F8t+2

|a0a2−a2
1|

.

As another direction for generalizing Theorem 1.1, suppose b is a positive integer, and
consider the sequence Fb,n introduced in Section 1. As we mentioned there, the continued
fraction expansion of Fb,n+1/Fb,n consists of n b’s. One might expect that for certain inter-

esting values of k, the continued fraction expansion of k

√
Fb,n+k

Fb,n
begins with a string of b’s,

followed by a large number. We list some examples below where we suppose b = 3.

(1) For n ≥ 6, 10

√
F3,n+10

F3,n
= [

n+1︷ ︸︸ ︷
3, 3, . . . , 3, 1, 1, 1, 359, . . .].

(2) For n ≥ 11, 109

√
F3,n+109

F3,n
= [

n+2︷ ︸︸ ︷
3, 3, . . . , 3, 556884, . . .].

(3) For n ≥ 14, 1189

√
F3,n+1189

F3,n
= [

n+3︷ ︸︸ ︷
3, 3, . . . , 3, 1, 1, 1, 5097242, . . .].

(4) For n ≥ 19, 12970

√
F3,n+12970

F3,n
= [

n+4︷ ︸︸ ︷
3, 3, . . . , 3, 7884878043, . . .].

In this case, the numbers 10, 109, 1189, 12970 are all of the form Fb,2t+1 for some t. Note
that one might also look at a sequence an defined using the same recurrence relation, but
with different starting values.
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We refrain from describing our initial guesses in these cases, believing instead that the
reader is ready to see some results.

3. Results

We wish to consider nontrivial sequences (an) of integers that satisfy the recurrence relation
an+1 = ban + an−1 for some positive integer b, but whose initial two terms are not specified.
Note that multiplying or dividing all the terms of a given sequence by a single integer does not

change the numbers k

√
an+k

an
. Also, note that if gcd(a0, a1) 6= 1, then because of the recurrence

relation, this common divisor must also divide all the other terms in the sequence. These two
comments imply that we can restrict our attention to sequences satisfying gcd(a0, a1) = 1.

Also, it is easy to check that limn→∞ an must be either ∞ or −∞. Dividing all the terms
in a sequence in the latter class by −1 yields a sequence in the former class. Once again,

since such division does not change the numbers k

√
an+k

an
, we can restrict our attention to

sequences which tend to positive infinity. By shifting index, we can then assume that a0 ≥ 0
and a1 > 0.

We call a sequence of integers (an) Fibonacci-like provided that

• there is a positive integer b so that an+1 = ban + an−1 for all n,
• gcd(a0, a1) = 1, and
• a0 ≥ 0 and a1 > 0.

For example, both the classical Fibonacci sequence and the Lucas sequence are Fibonacci-
like, with b = 1.

Recall now that any rational number greater than 1 has two distinct continued fraction
expansions, one of odd length and one of even length. We will only use [1] as the continued
fraction expansion of 1 itself; that is, we will not consider [0, 1].

Theorem 3.1. Suppose (an) is a Fibonacci-like sequence, with b some positive integer, and
suppose k = Fb,4t+1 for some positive integer t. Also, suppose that either b or t is greater

than 1 (so k > 5). Then for n sufficiently large, the continued fraction expansion of k

√
an+k

an

takes the form

[

n+2t−1 b’s︷ ︸︸ ︷
b, b, · · · , b, c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] is one of the two continued fraction expansions of a2

a1
. In particular, if

a0a2 − a2
1 > 0, then l is even, while if a0a2 − a2

1 < 0, then l is odd.
Finally, the distance between cl+1 and

⌊
φk

b · k ·
√

b2 + 4

Fb,k−4t−1|a0a2 − a2
1|
− 1

⌋

is at most 1.
If k = Fb,4t−1 for some positive integers b and t, then for n sufficiently large, the continued

fraction expansion of k

√
an+k

an
takes the form

[

n+2t−3 b’s︷ ︸︸ ︷
b, b, · · · , b, c1, c2, . . . , cl, cl+1, . . .]
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where [c1, c2, . . . , cl] is one of the two continued fraction expansions of a4+a2

a3+a1
. In particular,

if a0a2 − a2
1 > 0, then l is even, while if a0a2 − a2

1 < 0, then l is odd.
Finally, the distance between cl+1and

⌊
φk

b · k · gcd(a3 + a1, a2 + a0)
2

√
b2 + 4 · Fb,k−4t+1|a0a2 − a2

1|
− 1

⌋

is at most 1.

Note that in the second case of the theorem above, we always have a4+a2

a3+a1
> 1, so that this

fraction always has two continued fraction expansions. In the first case, we only have a2

a1
≥ 1.

However, if a2

a1
= 1, so that a2

a1
has only one continued fraction expansion of odd length, then

since gcd(a1, a2) = 1, we must have a1 = a2 = 1. Since a0 ≥ 0 and a2 = ba1 + a0, we must
also have a0 = 0 and b = 1. Thus, a0a2 − a2

1 must equal −1, and the requirement of the
theorem that l be odd can be achieved.

We also observe that the continued fraction expansion of a2

a1
or a4+a2

a3+a1
may themselves begin

with a b, but this is not always the case. For example, if b = 1, a1 = 1, and a2 = 4, then
a2

a1
= 4 and a4+a2

a3+a1
= 13

6
.

Recall that in Section 2, we guessed the structure of the continued fraction for k

√
Fn+k

Fn
,

where k = F4t+1 or k = F4t−1. This is the case of Theorem 3.1 where b = 1, a1 = 1
and a2 = 1. We will just consider the case k = F4t+1; the other one is similar. In this
case, a2

a1
= 1, so that according to the theorem, the continued fraction should begin with

(n + 2t− 1) + 1 = n + 2t 1’s, as we anticipated in our initial guess. Now, the large number
appearing in Theorem 3.1 simplifies to

⌊
φk · k · √5

Fk−4t−1

− 1

⌋
.

We had expected to see a number close to 5 · F8t+2 + 1. Using Binet’s formula, we observe
that

5F8t+2 + 1 ≈
√

5φ8t+2 + 1 =
√

5(
√

5φ4t+1k − 1) + 1

=
√

5

(
φk · k

φk−4t−1/
√

5
− 1

)
+ 1 ≈

√
5

(
φk · k

Fk−4t−1

− 1

)
+ 1

=

(
φk · k · √5

Fk−4t−1

− 1

)
− (
√

5− 2).

Here, we have used the symbol≈ to indicate that we have made an approximation, dropping a
large power of φ̄. Thus, the difference between the term we anticipated, which was 5F8t+2+1,

and the term given by the theorem, which is
(

φk·k·√5
Fk−4t−1

− 1
)
, is approximately

√
5−2, or about

0.236.
In Section 2, we also looked at the structure of the continued fraction for k

√
an+k

an
, where

(an) is a sequence satisfying an+1 = an + an−1, and a0 > a1 > 0, and k = F4t+1 or k = F4t−1.
This case is covered by Theorem 3.1 where b = 1. We again just consider the case k = F4t+1.
Then, the initial terms in the continued fraction expansion predicted by the theorem agree
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with our guess. Moreover, the large number appearing in the theorem now simplifies to
⌊

φk · k · √5

Fk−4t−1|a0a2 − a2
1|
− 1

⌋
.

We had expected to see a number close to 5F8t+2

|a0a2−a2
1|
. Once again, using the same techniques

as above, we obtain

5F8t+2

|a0a2 − a2
1|
≈

(
φk · k · √5

Fk−4t−1|a0a2 − a2
1|
− 1

)
+

(
1−

√
5

|a0a2 − a2
1|

)
.

Thus, the difference between the term we anticipated and the term given by the theorem is

approximately 1−
√

5
|a0a2−a2

1|
. Since a0 > a1, |a0a2− a2

1| is at least 5, and this difference is less

than 1.
The first case of Theorem 3.1 is not applicable if b = t = 1. Indeed, in this case, k =

Fb,4t+1 = 5 and Fb,k−4t−1 = 0. Notice that the expression for cl+1 in Theorem 3.1 has the term
Fb,k−4t−1 appearing in the denominator! We consider this situation in our next theorem.

Theorem 3.2. Suppose (an) is a Fibonacci-like sequence where b = 1. For n sufficiently

large, the continued fraction expansion of 5

√
an+5

an
takes the form

[

n 1’s︷ ︸︸ ︷
1, 1, · · · , 1, c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] = a3

a2
and the parity of l is opposite to that of n.

Finally, the distance between cl+1 and

⌊
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ (−1)n 7/

√
5

a0a2 − a2
1

− 1

⌋

is at most 1.

Note that the continued fraction expansion of a3

a2
will typically begin with a 1 itself, but

this will not be the case for the ordinary Fibonacci numbers. Then a3

a2
= 2, so that if n is

even, the continued fraction expansion for a3

a2
needed for the statement of the theorem must

consist of a single 2.

In Section 2, we looked at the structure of the continued fraction for 5

√
an+5

an
, where (an)

is a sequence satisfying an+1 = an + an−1, but a0 > a1, so that (an) is not the Fibonacci
sequence. This case is covered by Theorem 3.2. In this case, the continued fraction expansion
of a3

a2
begins with a 1, followed by the continued fraction expansion of a2

a1
. Thus, the Theorem

predicts n+1 1’s, followed by the continued fraction expansion of a2

a1
(as we saw in our initial

guess). Moreover, the expression (−1)n 7/
√

5

a0a2−a2
1
− 1 is less than 5, and substantially smaller

when the sequence (an) is not just a shift of the Fibonacci sequence. Thus, the theorem
confirms our guess in Section 2.
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Remark 3.3. In Theorem 3.1, in the case k = Fb,4t+1, we wrote the continued fraction

expansion of k

√
an+k

an
in the form

[

n+2t−1 b’s︷ ︸︸ ︷
b, b, · · · , b, c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] is one of the two continued fraction expansions of a2

a1
. We could instead

write this continued fraction expansion in the form

[c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] is one of the two continued fraction expansions of an+2t+1/an+2t. In this
case, if a0a2 − a2

1 > 0, then we would need n + 2t − 1 + l to be even (i.e. n + l to be odd),
while if a0a2 − a2

1 < 0, then we would need n + 2t− 1 + l to be odd (i.e. n + l to be even).
Similarly, in the case k = Fb,4t−1, we could write the continued fraction expansion of

k

√
an+k

an
in the form

[c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] is one of the continued fraction expansions of an+2t+1+an+2t−1

an+2t+an+2t−2
. As above,

if a0a2 − a2
1 > 0, then we would need n + l to be odd, while if a0a2 − a2

1 < 0, then we would
need n + l to be even.

Finally, in Theorem 3.2, we could write the continued fraction expansion of 5

√
an+5

an
in the

form

[c1, c2, . . . , cl, cl+1, . . .]

where [c1, c2, . . . , cl] is the continued fraction expansion of an+3

an+2
with l odd.

Remark 3.4. In fact, Theorem 3.1 holds for a given Fibonacci-like sequence (an) if and
only if it holds for the shifted Fibonacci-like sequence (a′n) given by a′n = an+1. To see this,
first observe that for any Fibonacci-like sequence, the expression (−1)n(anan+2 − a2

n+1) is
independent of n, since

(−1)n+1(an+1an+3 − a2
n+2)

= (−1)n+1(an+1(ban+2 + an+1)− an+2(ban+1 + an))

= (−1)n+1(a2
n+1 − anan+2) = (−1)n(anan+2 − a2

n+1).

Moreover, gcd(an+5 + an+3, an+4 + an+2) does not depend on n. Indeed,

an+5 + an+3 = b(an+4 + an+2) + an+3 + an+1,

so

gcd(an+5 + an+3, an+4 + an+2) = gcd(an+4 + an+2, an+3 + an+1).

In particular, it suffices to prove that the continued fraction expansion of k

√
an+k

an
takes the

required form when n is odd and sufficiently large. Indeed, if n is even, then the result for

k

√
an+k

an
follows from the corresponding result for k

√
a′n−1+k

a′n−1
.

The same reasoning applies to Theorem 3.2, too.
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Remark 3.5. Using Binet’s formula, we obtain
⌊

F 2
n+2 + F 2

n+3

(F0F2 − F 2
1 )2

+ (−1)n 7/
√

5

F0F2 − F 2
1

− 1

⌋
=

{
F2n+5 + 2 n odd

F2n+5 − 5 n even.

Notice that F2n+5 − 5 is within 1 of F2n+5 − 4. Hence, in the case of Fibonacci numbers
themselves, Theorem 3.2 follows from the main result in [1].

4. Preliminaries

Given a sequence of positive integers a1, a2, . . . , al and real number α > 1, we will also use
the notation [a1, a2, . . . , al, α] to denote

a1 +
1

a2 + · · ·+ 1
al+

1
α

.

The actual continued fraction expansion of [a1, a2, . . . , al, α] would then be the concatenation
of the sequence a1, a2, . . . , al with the continued fraction of α.

The following lemma follows immediately from Theorems 1.3 and 1.4 in Olds’ text [2] on
continued fractions, or one could consult virtually any text on elementary number theory.

Lemma 4.1. Suppose c1, c2, . . . , cl are positive integers. For 1 ≤ i ≤ n, let pi

qi
be equal to

[c1, c2, . . . , ci], written in lowest terms. Then for 2 ≤ i ≤ l, piqi−1 − pi−1qi = (−1)i and for
any positive real number α,

[c1, c2, . . . , cl, α] =
plα + pl−1

qlα + ql−1

.

Corollary 4.2. With the hypotheses and notations of Lemma 4.1, we have

[c1, c2, . . . , cl, α] =
pl

ql

+
(−1)l+1

q2
l

(
α + ql−1

ql

) =
plql

(
α + ql−1

ql

)
+ (−1)l+1

q2
l

(
α + ql−1

ql

) .

Proof. Using Lemma 4.1, we have

[c1, c2, . . . , cl, α]− pl

ql

=
plα + pl−1

qlα + ql−1

− pl

ql

=
pl−1ql − plql−1

ql(qlα + ql−1)
=

(−1)l+1

q2
l (α + ql−1

ql
)
.

¤

Now suppose (an) satisfies the recurrence relation an+1 = ban + an−1. Let φb = b+
√

b2+4
2

,

and let φ̄b = b−√b2+4
2

= −1/φb. These are the roots of the polynomial x2 − bx− 1. We thus
have the following analogue of Binet’s formula.

Lemma 4.3.

an =
(a1 − φ̄ba0)φ

n
b − (a1 − φba0)φ̄

n
b√

b2 + 4
=

(a1 + φ−1
b a0)φ

n
b − (−1)n(a1 − φba0)φ

−n
b√

b2 + 4
.

Proof. The sequence on the right side of the first equation satisfies both the initial conditions
and the recurrence relation given for the sequence an. The second expression for an then
follows since φbφ̄b = −1. ¤
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5. Theorem 3.1

We will prove the equivalent version of Theorem 3.1 given in Remark 3.3. This version,
while it hides the initial structure of the the continued fraction expansions, is easier to work
with for the sake of proving the theorem.

We first outline the proof in the case when k = Fb,4t+1. We will only consider odd values
for n, as we can do by Remark 3.4. If a0a2− a2

1 > 0, let σ = 1. If a0a2− a2
1 < 0, let σ = −1.

Now, for a given odd value of n, let [c1, c2, . . . , cl] be the continued fraction expansion of
an+2t+1

an+2t
, where the parity of l is determined by (−1)l = σ. (Thus, since n is odd, l + n is odd

if a0a2 − a2
1 > 0 and l + n is even if a0a2 − a2

1 < 0.) Note that c1, c2, . . . , cl all depend on n,
but we suppress this dependence in our notation.

We will show that if

z =

⌊
φk

b · k ·
√

b2 + 4

Fb,k−4t−1|a0a2 − a2
1|
− 1

⌋
,

then for l even (i.e. σ = 1), and n sufficiently large, we have

[c1, c2, . . . , cl, z − 1] < k

√
an+k

an

< [c1, c2, . . . , cl, z + 2] (5.1)

while for l odd (i.e. σ = −1), and n sufficiently large, we have

[c1, c2, . . . , cl, z + 2] < k

√
an+k

an

< [c1, c2, . . . , cl, z − 1]. (5.2)

Observe that this implies that the continued fraction expansion of k

√
an+k

an
is of the form

[c1, c2, . . . , cl, cl+1, . . .], where cl+1 is equal to either z − 1, z, or z + 1, which is the statement
of Theorem 3.1 (in the case k = Fb,4t+1).

Now, using the notation from Lemma 4.1 and the result of Corollary 4.2, inequality (5.1)
reduces to

plql

(
z − 1 + ql−1

ql

)
− σ

q2
l

(
z − 1 + ql−1

ql

) < k

√
an+k

an

<
plql

(
z + 2 + ql−1

ql

)
− σ

q2
l

(
z + 2 + ql−1

ql

) ,

while inequality (5.2) reduces to the reverse inequalities. Equivalently, inequality (5.1) re-
duces to the pair of inequalities

an

(
plql

(
z − 1 +

ql−1

ql

)
− σ

)k

− an+k

(
q2
l

(
z − 1 +

ql−1

ql

))k

< 0, (5.3)

and

0 < an

(
plql

(
z + 2 +

ql−1

ql

)
− σ

)k

− an+k

(
q2
l

(
z + 2 +

ql−1

ql

))k

(5.4)

while inequality (5.2) reduces to the reverse inequalities.
Now let d be a positive parameter, and consider the expression

an(plqld− σ)k − an+k(q
2
l d)k. (5.5)

Let d0 =
φk

b ·k·
√

b2+4

Fb,k−4t−1|a0a2−a2
1|
. We will show that for n sufficiently large and odd, expression (5.5)

has the same sign as σ(d− d0). For example, if σ = 1, then for n sufficiently large and odd,
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(5.5) is negative if d < d0 and positive if d > d0. Since z = bd0 − 1c and 0 ≤ ql−1

ql
≤ 1, we

have
z − 1 +

ql−1

ql

< d0 < z + 2 +
ql−1

ql

.

Thus, for n odd and sufficiently large, inequalities (5.3) and (5.4) (or the opposite inequalities
if σ = −1) must hold, so that cl+1 must be either z − 1, z, or z + 1.

In order to show that d0 has the needed property, we use Lemma 4.3 to consider (5.5) as
a Laurent polynomial f(x), where x = φn

b . In particular, since n is odd,

an =
(a1 + φ−1

b a0)x + (a1 − φba0)x
−1

√
b2 + 4

.

Similarly,

an+k =
(a1 + φ−1

b a0)φ
k
bx + (−1)k(a1 − φba0)φ

−k
b x−1

√
b2 + 4

.

Also, pl = an+2t+1 and ql = an+2t, so we have

pl =
(a1 + φ−1

b a0)φ
2t+1
b x− (a1 − φba0)φ

−2t−1
b x−1

√
b2 + 4

,

and

ql =
(a1 + φ−1

b a0)φ
2t
b x + (a1 − φba0)φ

−2t
b x−1

√
b2 + 4

.

Notice that the exponents of f(x) are all odd and range between −2k − 1 and 2k + 1. In
fact, the coefficients of x2k+1 in an(plqld− σ)k and an+k(q

2
l d)k are both equal to

(a1 + φ−1
b a0)

2k+1

√
b2 + 4

2k+1
φ

(4t+1)k
b dk.

Thus, the coefficient of x2k+1 in f(x) is 0.
We now consider the coefficient of x2k−1 in f(x).

Lemma 5.1. The coefficient of x2k−1 in f(x) is equal to σα(βd− γ), where

α =
φ

(4tk−4t−1)
b (a1 + φ−1

b a0)
2k−1dk−1

(b2 + 4)k
,

β = Fb,k−4t−1|a0a2 − a2
1|,

γ = φk
bk
√

b2 + 4.

Proof. It is a straightforward computation to show that the coefficient of x2k−1 in an(plqld−σ)
is

(a1 − φba0)√
b2 + 4

· (a1 + φ−1
b a0)

2kφ
(4t+1)k
b

(b2 + 4)k
· dk

+
a1 + φ−1

b a0√
b2 + 4

· k · a1 + φ−1
b a0)

2(k−1)φ
(4t+1)(k−1)
b

(b2 + 4)k−1

·
(

b(a1 + φ−1
b a0)(a1 − φba0)d

b2 + 4
− σ

)

(5.6)
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while the coefficient of x2k−1 in an+k(q
2
l d)k is

(−1)k(a1 − φba0)φ
−k
b√

b2 + 4
· (a1 + φ−1

b a0)
2kφ4tk

b

(b2 + 4)k
· dk

+
(a1 + φ−1

b a0)φ
k
b√

b2 + 4
· k ·

(
(a1 + φ−1

b a0)
2(k−1)φ

4t(k−1)
b

(b2 + 4)k−1

)
· dk−1

·
(

2(a1 + φ−1
b a0)(a1 − φba0)

b2 + 4
· d

)
.

(5.7)

Factoring out σα from the difference of the above two coefficients yields an expression of the
form βd− γ where γ = φk

bk
√

b2 + 4 and β can be written as

−σ(a1 − φba0)(a1 + φ−1
b a0) · −φk+4t+1

b − kbφk
b + (−1)kφ−k+4t+1

b + 2kφk+1
b√

b2 + 4
.

Finally, it is straightforward to show that

−σ(a1 − φba0)(a1 + φ−1
b a0) = |a0a2 − a2

1|,
and

−φk+4t+1
b − kbφk

b + (−1)kφ−k+4t+1
b + 2kφk+1

b√
b2 + 4

= Fb,k−4t−1.

¤
Assuming d is positive, it is clear that α is positive, since a0 ≥ 0 and a1 > 0. It is easy to

show that k = Fb,4t+1 > 4t+1 provided b and t are not both equal to 1. Thus, Fb,k−4t−1 > 0,
and therefore β is also positive.

Now recalling the definition of d0, we see that d0 = γ/β. By Lemma 5.1, if σ = 1, and
d > d0, then for x sufficiently large, we have f(x) > 0. If σ = 1 and d < d0, then for x
sufficiently large, we have f(x) < 0. The opposite statements hold when σ = −1. In short,
for x sufficiently large, f(x) has the same sign as σ(d − d0). Recall that by construction of
f ,

f(φn
b ) = an(plqld− σ)k − an+k(q

2
l d)k.

Thus, for n sufficiently large, an(plqld− σ)k − an+k(q
2
l d)k has the same sign as σ(d− d0).

As we explained earlier, this implies that for n odd and sufficiently large, inequalities (5.3)
and (5.4) (or the opposite inequalities if σ = −1) must hold. In turn, this implies that
inequality (5.1) holds if σ = 1, while inequality (5.2) holds if σ = −1, which completes the
proof of Theorem 3.1 in the case k = Fb,4t+1.

We now outline the proof in the case when k = Fb,4t−1. This proof is very similar to the
proof above, so we will just describe the differences. In this case, for a given odd value of n,
we let [c1, c2, . . . , cl] be the continued fraction expansion of an+2t+1+an+2t−1

an+2t+an+2t−2
, where the parity

of l is determined by (−1)l = σ. Let g = gcd(a3 + a1, a2 + a0). By Remark 3.4,

gcd(an+2t+1 + an+2t−1, an+2t + an+2t−2) = g.

Then, in the notation of Lemma 4.1, we have

pl =
an+2t+1 + an+2t−1

g
and ql =

an+2t + an+2t−2

g
.

NOVEMBER 2008/2009 309



THE FIBONACCI QUARTERLY

Now as before, let d be a positive parameter. We will again consider the expression

an(plqld− σ)k − an+k(q
2
l d)k. (5.8)

If we multiply expression (5.8) by the positive integer g2k, we get

an((plg)(qlg)d− g2σ)k − an+k((qlg)2d)k. (5.9)

We again use Lemma 4.3 to rewrite (5.9) as a Laurent polynomial f(x), where x = φn
b .

Once again, the exponents of f(x) are all odd and range between −2k − 1 and 2k + 1. The
coefficients of x2k+1 in an((plg)(qlg)d− g2σ)k and an+k((qlg)2d)k are both equal to

(a1 + φ−1
b a0)

2k+1

√
b2 + 4

φ
(4t−1)k
b dk.

Thus, the coefficient of x2k+1 in f(x) is 0.
We now consider the coefficient of x2k−1 in f(x). We omit the proof of the following

lemma, as it is straightforward and analagous to that of Lemma 5.1.

Lemma 5.2. The coefficient of x2k−1 in expression (5.9) is equal to σα(βd− γ), where

α =
φ

(4tk−4t−2k+1)
b (a1 + φ−1

b a0)
2k−1dk−1

√
b2 + 4

,

β =
√

b2 + 4 · Fb,k−4t+1 · |a0a2 − a2
1|,

γ = φk
b · k · g2.

As before, it is easy to see that α is positive. Also, k = Fb,4t−1 > 4t − 1 provided that b
and t are not both 1; thus Fb,k−4t+1 > 0. If b = t = 1, then k− 4t + 1 = 2− 4 + 1 = −1, and
F1,−1 = 1. Thus, β is positive. The remainder of the proof in this case is entirely analogous
to the case k = Fb,4t+1 proved above.

6. Theorem 3.2

Our proof of Theorem 3.2 is along the same lines as that of Theorem 3.1. Again, we may
assume that n is odd and a0 and a1 are both positive. For a given odd n, we let [c1, c2, . . . , cl]
be the continued fraction expansion of an+3

an+2
, where l is required to be odd. We will show

that if

zn =

⌊
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ (−1)n 7/

√
5

a0a2 − a2
1

− 1

⌋

then we have

[c1, c2, . . . , cl, zn + 2] < 5

√
an+5

an

< [c1, c2, . . . , cl, zn − 1]. (6.1)

This implies that the continued fraction expansion of 5

√
an+5

an
takes the form

[c1, c2, . . . , cl, cl+1, . . .],

where cl+1 is equal to zn − 1, zn, or zn + 1, which is the statement of Theorem 3.2.
Now, by Corollary 4.2, inequality (6.1) reduces to

plql

(
zn + 2 + ql−1

ql

)
+ 1

q2
l

(
zn + 2 + ql−1

ql

) < 5

√
an+5

an

<
plql

(
zn − 1 + ql−1

ql

)
+ 1

q2
l

(
zn − 1 + ql−1

ql

) ,
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or equivalently, to the pair of inequalities

an

(
plql

(
zn + 2 +

ql−1

ql

)
+ 1

)5

− an+5

(
q2
l

(
zn + 2 +

ql−1

ql

))5

< 0, (6.2)

and

0 < an

(
plql

(
zn − 1 +

ql−1

ql

)
+ 1

)5

− an+5

(
q2
l

(
zn − 1 +

ql−1

ql

))5

. (6.3)

Now, let d be a positive parameter, and consider the expression

an

(
plql

(
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ d

)
+ 1

)5

− an+5

(
q2
l

(
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ d

))5

. (6.4)

Let

d0 =
7/
√

5

a0a2 − a2
1

.

We will show that for n sufficiently large and odd, expression (6.4) has the same sign as
d0 − d.

Letting x = φn, expression (6.4) can be written as a Laurent polynomial in x with odd
exponents ranging from −21 to 21. To simplify our computations, we use Mathematica to
find some of these coefficients. The coefficients of x21, x19 and x17 are all zero. Let c15 denote
the coefficient of x15. After simplifying, we obtain

√
5

11
c15 = φ35 a1 + φ−1a0

(a0φ− a1)7
(−7−

√
5(a2

0 + a0a1 − a2
1)d). (6.5)

Note that
(a0φ− a1)(a0φ

−1 + a1) = a2
0 + a0a1 − a2

1,

so that (a0φ − a1) has the same sign as a2
0 + a0a1 − a2

1. Thus, c15 is a decreasing linear
function of d. Setting d = d0 yields c15 = 0, so that c15 has the same sign as d0 − d. Since

zn =

⌊
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ (−1)n 7/

√
5

a0a2 − a2
1

− 1

⌋

and 0 ≤ ql−1

ql
≤ 1, we have

zn − 1 +
ql−1

ql

<
a2

n+2 + a2
n+3

(a0a2 − a2
1)

2
+ (−1)n 7/

√
5

a0a2 − a2
1

< zn + 2 +
ql−1

ql

.

So, if n is odd and sufficiently large, inequalities (6.2) and (6.3) must hold, and hence cl+1

must be either zn − 1, zn, or zn + 1. This completes the proof of Theorem 3.2.
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