SEQUENCES $\{H_n\}$ FOR WHICH H_{n+1}/H_n APPROACHES THE GOLDEN RATIO

F. GATTA AND A. D'AMICO

ABSTRACT. The Golden Ratio Φ can be obtained as the limit n goes to $+\infty$ of the ratio H_{n+1}/H_n for an infinite number of sequences $\{H_n\}$.

1. INTRODUCTION

One of the properties of the Fibonacci sequence $\{F_n\}$ is

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \Phi = \frac{1 + \sqrt{5}}{2},$$

the Golden Ratio. It is well-known that $\Phi \approx 1.6180339$ has the unique property that Φ and Φ^{-1} have the same decimal part since $\Phi = 1 + \Phi^{-1}$.

Also, if $\{H_n\}$ satisfies the Fibonacci recursion with $H_1 = a$, $H_2 = b$, then $H_n = aF_{n-1} + bF_{n-2}$ and the ratio H_{n+1}/H_n also approaches Φ as a limit [1, 2, 3, 4]. This note demonstrates that an infinite number of other sequences have the property that the ratio of the n + 1th to *n*th terms approaches the Golden Ratio.

2. PROPERTIES OF THE SEQUENCES $\{H_n\}$

Theorem 2.1. Let the sequence $\{H_n\}$ start with three arbitrary real numbers H_1 , H_2 , and H_3 such that $\Phi^2 H_3 - \Phi H_1 - H_2 \neq 0$. If

$$H_n = \frac{H_{n+1} + H_{n-2}}{2}, \text{ for all } n \ge 3$$
(2.1)

then $\{H_n\}$ has the property that

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \Phi = \frac{1 + \sqrt{5}}{2} \approx 1.6180339.$$

Proof. Let us rewrite Equation (2.1) as follows:

$$H_{n+1} = 2H_n - H_{n-2}. (2.2)$$

From Equation (2.2) and for $n \ge 3$, it is possible to calculate all the terms of the sequence:

$$\begin{array}{rcl} H_4 &=& 2H_3-H_1 \\ H_5 &=& 2H_4-H_2=4H_3-2H_1-H_2 \\ H_6 &=& 2H_5-H_3=7H_3-4H_1-2H_2. \end{array}$$

VOLUME 46/47, NUMBER 3

346

SEQUENCES $\{H_n\}$ FOR WHICH H_{n+1}/H_n APPROACHES THE GOLDEN RATIO

It is also possible to express H_{n+1} as a number only dependent on n and on the three initial numbers H_1 , H_2 , H_3 :

$$H_{n+1} = \alpha_n H_3 - \alpha_{n-1} H_1 - \alpha_{n-2} H_2, \text{ for all } n \ge 3.$$
(2.3)

In the expression (2.3), $\{\alpha_n\}$ is the strictly increasing sequence of integers $\alpha_1 = 0$, $\alpha_2 = 1$, $\alpha_3 = 2$, $\alpha_4 = 4$,..., with

$$\alpha_{n+1} = \alpha_n + \alpha_{n-1} + 1 \text{ with } n \ge 2.$$

$$(2.4)$$

By using Equations (2.3) and (2.4) we evaluate the ratio H_{n+1}/H_n as $n \to \infty$. Hence we have,

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \lim_{n \to +\infty} \frac{\alpha_n H_3 - \alpha_{n-1} H_1 - \alpha_{n-2} H_2}{\alpha_{n-1} H_3 - \alpha_{n-2} H_1 - \alpha_{n-3} H_2}.$$

Dividing both the numerator and the denominator by α_{n-1} we get

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \lim_{n \to +\infty} \frac{\frac{\alpha_n}{\alpha_{n-1}} H_3 - H_1 - \frac{\alpha_{n-2}}{\alpha_{n-1}} H_2}{H_3 - \frac{\alpha_{n-2}}{\alpha_{n-1}} H_1 - \frac{\alpha_{n-3}}{\alpha_{n-1}} H_2}.$$

Substituting

$$\lim_{n \to +\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to +\infty} \frac{\alpha_n}{\alpha_{n-1}} = \lim_{n \to +\infty} \frac{\alpha_{n-1}}{\alpha_{n-2}} = \dots = \lim_{n \to +\infty} \chi$$
(2.5)

we get,

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \lim_{n \to +\infty} \frac{\chi H_3 - H_1 - \chi^{-1} H_2}{H_3 - \chi^{-1} H_1 - \chi^{-2} H_2}$$

Note that Equation (2.5) is true because $\{\alpha_n\}$ is a strictly increasing sequence of integers. Finally, multiplying and dividing by χ^2 , we obtain:

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \lim_{n \to +\infty} \chi \frac{\chi^2 H_3 - \chi H_1 - H_2}{\chi^2 H_3 - \chi H_1 - H_2} = \lim_{n \to +\infty} \chi$$
(2.6)

where we observe that the last simplification is valid only if $\chi^2 H_3 - \chi H_1 - H_2 \neq 0$. Also, it is worth pointing out that the following relationships hold:

$$\lim_{n \to +\infty} \chi = \lim_{n \to +\infty} \frac{\alpha_{n+1}}{\alpha_n}$$

$$= \lim_{n \to +\infty} \frac{\alpha_n + \alpha_{n-1} + 1}{\alpha_n}$$

$$= \lim_{n \to +\infty} 1 + \frac{\alpha_{n-1}}{\alpha_n} + \frac{1}{\alpha_n}$$

$$= \lim_{n \to +\infty} 1 + \frac{\alpha_{n-1}}{\alpha_{n-1} + \alpha_{n-2} + 1}$$

$$= \lim_{n \to +\infty} 1 + \frac{1}{1 + \frac{\alpha_{n-2}}{\alpha_{n-1}} + \frac{1}{\alpha_{n-1}}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1$$

This result appears fully consistent with the preliminary assumption of the theorem here reported: $\Phi^2 H_3 - \Phi H_1 - H_2 \neq 0$.

AUGUST 2008/2009

347

Corollary 2.2. Consider three arbitrary real numbers H_1 , H_2 and H_3 with the following constraint:

$$H_3 = H_1 + H_2 + k \text{ with } k \in \mathbb{R}$$

$$(2.7)$$

Then the numeric sequences are built according to the following formulas:

$$H_n = \frac{H_{n+1} + H_{n-2}}{2} \tag{2.8}$$

and

$$H_{n+1} = H_n + H_{n-1} + k (2.9)$$

are coincident.

Proof. If we consider Equation (2.8) for n = 3 and apply the relationship (2.7) in order to get H_4 such that the average of H_4 and H_1 equals H_3 we can write:

$$H_{4} = 2H_{3} - H_{1}$$

= $2H_{1} + 2H_{2} + 2k - H_{1}$
= $H_{2} + (H_{1} + H_{2} + k) + k$
= $H_{2} + H_{3} + k$ (2.10)

Applying the iterative process to Equation (2.10) we get Equation (2.9):

 $H_{n+1} = H_n + H_{n-1} + k.$

This general expression converges toward the Fibonacci sequence once k, H_1 and H_2 are respectively chosen as 0, 0 and 1!

Given a k-value without any restriction apart from the one expressed as

$$\Phi^2(H_1 + H_2 + k) - \Phi H_1 - H_2 \neq 0$$

and the initial values H_1 and H_2 , we can obtain an infinite number of sequences for which

$$\lim_{n \to +\infty} \frac{H_{n+1}}{H_n} = \Phi = \frac{1 + \sqrt{5}}{2} \approx 1.6180339.$$

Examples. Let us consider k = 3, $H_1 = 1$ and $H_2 = 2$. Applying Equation (2.9) we get:

 $1 \quad 2 \quad 6 \quad 11 \quad 20 \quad 34 \quad 57 \quad 94 \quad 154 \quad 251 \quad 408 \quad 662 \quad 1073 \quad 1738 \quad \dots$

and, as it is easy to recognize, the ratio of H_{n+1} to H_n approaches Φ .

As a second example, let k = 0.6, $H_1 = 0.2$, and $H_2 = 5$. In this case the sequence is:

0.2 5 5.8 11.4 17.8 29.8 48.2 78.6 127.4 206.6 334.6 541.8 877 ... and again, the ratio of H_{n+1} to H_n approaches Φ .

3. Conclusions

We have found and proved a general relationship which determines the existence of infinite sequences $\{H_n\}$ for which the ratio H_{n+1}/H_n approaches the Golden Ratio as n goes to ∞ . The Fibonacci sequence appears as a particular case of this general relationship.

VOLUME 46/47, NUMBER 3

348

SEQUENCES $\{H_n\}$ FOR WHICH H_{n+1}/H_n APPROACHES THE GOLDEN RATIO

References

- G. Ferri, M. Faccio, and A. D'Amico, A New Numerical Triangle Showing Links with Fibonacci Numbers, The Fibonacci Quarterly, 29 (1991), 316–321.
- [2] P. Filipponi, A Curious Property of the Golden Section, Int. J. Math. Educ. Sci. Tecnol., 23 (1992), 785–811.
- [3] V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Fibonacci Association, (1972).
- [4] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, Inc., New York, (2001).

MSC2000: 11B39

Dept. Ing. Elettronica, University of Tor Vergata, via del Politecnico,1 00133 Roma *E-mail address:* francesco.gatta@gmail.com

DEPT. ING. ELETTRONICA, UNIVERSITY OF TOR VERGATA, VIA DEL POLITECNICO,1 00133 ROMA *E-mail address:* damico@eln.uniroma2.it

AUGUST 2008/2009