SEQUENCES $\left\{H_{n}\right\}$ FOR WHICH H_{n+1} / H_{n} APPROACHES THE GOLDEN RATIO

F. GATTA AND A. D'AMICO

Abstract. The Golden Ratio Φ can be obtained as the limit n goes to $+\infty$ of the ratio H_{n+1} / H_{n} for an infinite number of sequences $\left\{H_{n}\right\}$.

1. Introduction

One of the properties of the Fibonacci sequence $\left\{F_{n}\right\}$ is

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\Phi=\frac{1+\sqrt{5}}{2}
$$

the Golden Ratio. It is well-known that $\Phi \approx 1.6180339$ has the unique property that Φ and Φ^{-1} have the same decimal part since $\Phi=1+\Phi^{-1}$.

Also, if $\left\{H_{n}\right\}$ satisfies the Fibonacci recursion with $H_{1}=a, H_{2}=b$, then $H_{n}=a F_{n-1}+$ $b F_{n-2}$ and the ratio H_{n+1} / H_{n} also approaches Φ as a limit $[1,2,3,4]$. This note demonstrates that an infinite number of other sequences have the property that the ratio of the $n+1$ th to nth terms approaches the Golden Ratio.

2. Properties of the Sequences $\left\{H_{n}\right\}$

Theorem 2.1. Let the sequence $\left\{H_{n}\right\}$ start with three arbitrary real numbers H_{1}, H_{2}, and H_{3} such that $\Phi^{2} H_{3}-\Phi H_{1}-H_{2} \neq 0$. If

$$
\begin{equation*}
H_{n}=\frac{H_{n+1}+H_{n-2}}{2}, \text { for all } n \geq 3 \tag{2.1}
\end{equation*}
$$

then $\left\{H_{n}\right\}$ has the property that

$$
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\Phi=\frac{1+\sqrt{5}}{2} \approx 1.6180339
$$

Proof. Let us rewrite Equation (2.1) as follows:

$$
\begin{equation*}
H_{n+1}=2 H_{n}-H_{n-2} \tag{2.2}
\end{equation*}
$$

From Equation (2.2) and for $n \geq 3$, it is possible to calculate all the terms of the sequence:

$$
\begin{aligned}
H_{4} & =2 H_{3}-H_{1} \\
H_{5} & =2 H_{4}-H_{2}=4 H_{3}-2 H_{1}-H_{2} \\
H_{6} & =2 H_{5}-H_{3}=7 H_{3}-4 H_{1}-2 H_{2}
\end{aligned}
$$

It is also possible to express H_{n+1} as a number only dependent on n and on the three initial numbers H_{1}, H_{2}, H_{3} :

$$
\begin{equation*}
H_{n+1}=\alpha_{n} H_{3}-\alpha_{n-1} H_{1}-\alpha_{n-2} H_{2}, \text { for all } n \geq 3 \tag{2.3}
\end{equation*}
$$

In the expression (2.3), $\left\{\alpha_{n}\right\}$ is the strictly increasing sequence of integers $\alpha_{1}=0, \alpha_{2}=1$, $\alpha_{3}=2, \alpha_{4}=4, \ldots$, with

$$
\begin{equation*}
\alpha_{n+1}=\alpha_{n}+\alpha_{n-1}+1 \text { with } n \geq 2 \tag{2.4}
\end{equation*}
$$

By using Equations (2.3) and (2.4) we evaluate the ratio H_{n+1} / H_{n} as $n \rightarrow \infty$. Hence we have,

$$
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\lim _{n \rightarrow+\infty} \frac{\alpha_{n} H_{3}-\alpha_{n-1} H_{1}-\alpha_{n-2} H_{2}}{\alpha_{n-1} H_{3}-\alpha_{n-2} H_{1}-\alpha_{n-3} H_{2}}
$$

Dividing both the numerator and the denominator by α_{n-1} we get

$$
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\lim _{n \rightarrow+\infty} \frac{\frac{\alpha_{n}}{\alpha_{n-1}} H_{3}-H_{1}-\frac{\alpha_{n-2}}{\alpha_{n-1}} H_{2}}{H_{3}-\frac{\alpha_{n-2}}{\alpha_{n-1}} H_{1}-\frac{\alpha_{n-3}}{\alpha_{n-1}} H_{2}} .
$$

Substituting

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\alpha_{n+1}}{\alpha_{n}}=\lim _{n \rightarrow+\infty} \frac{\alpha_{n}}{\alpha_{n-1}}=\lim _{n \rightarrow+\infty} \frac{\alpha_{n-1}}{\alpha_{n-2}}=\ldots=\lim _{n \rightarrow+\infty} \chi \tag{2.5}
\end{equation*}
$$

we get,

$$
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\lim _{n \rightarrow+\infty} \frac{\chi H_{3}-H_{1}-\chi^{-1} H_{2}}{H_{3}-\chi^{-1} H_{1}-\chi^{-2} H_{2}}
$$

Note that Equation (2.5) is true because $\left\{\alpha_{n}\right\}$ is a strictly increasing sequence of integers. Finally, multiplying and dividing by χ^{2}, we obtain:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\lim _{n \rightarrow+\infty} \chi \frac{\chi^{2} H_{3}-\chi H_{1}-H_{2}}{\chi^{2} H_{3}-\chi H_{1}-H_{2}}=\lim _{n \rightarrow+\infty} \chi \tag{2.6}
\end{equation*}
$$

where we observe that the last simplification is valid only if $\chi^{2} H_{3}-\chi H_{1}-H_{2} \neq 0$. Also, it is worth pointing out that the following relationships hold:

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \chi & =\lim _{n \rightarrow+\infty} \frac{\alpha_{n+1}}{\alpha_{n}} \\
& =\lim _{n \rightarrow+\infty} \frac{\alpha_{n}+\alpha_{n-1}+1}{\alpha_{n}} \\
& =\lim _{n \rightarrow+\infty} 1+\frac{\alpha_{n-1}}{\alpha_{n}}+\frac{1}{\alpha_{n}} \\
& =\lim _{n \rightarrow+\infty} 1+\frac{\alpha_{n-1}}{\alpha_{n-1}+\alpha_{n-2}+1} \\
& =\lim _{n \rightarrow+\infty} 1+\frac{1}{1+\frac{\alpha_{n-2}}{\alpha_{n-1}}+\frac{1}{\alpha_{n-1}}} \\
& =1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{!}}}=\Phi .}
\end{aligned}
$$

This result appears fully consistent with the preliminary assumption of the theorem here reported: $\Phi^{2} H_{3}-\Phi H_{1}-H_{2} \neq 0$.

THE FIBONACCI QUARTERLY

Corollary 2.2. Consider three arbitrary real numbers H_{1}, H_{2} and H_{3} with the following constraint:

$$
\begin{equation*}
H_{3}=H_{1}+H_{2}+k \text { with } k \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

Then the numeric sequences are built according to the following formulas:

$$
\begin{equation*}
H_{n}=\frac{H_{n+1}+H_{n-2}}{2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n+1}=H_{n}+H_{n-1}+k \tag{2.9}
\end{equation*}
$$

are coincident.
Proof. If we consider Equation (2.8) for $n=3$ and apply the relationship (2.7) in order to get H_{4} such that the average of H_{4} and H_{1} equals H_{3} we can write:

$$
\begin{align*}
H_{4} & =2 H_{3}-H_{1} \\
& =2 H_{1}+2 H_{2}+2 k-H_{1} \\
& =H_{2}+\left(H_{1}+H_{2}+k\right)+k \\
& =H_{2}+H_{3}+k \tag{2.10}
\end{align*}
$$

Applying the iterative process to Equation (2.10) we get Equation (2.9):

$$
H_{n+1}=H_{n}+H_{n-1}+k .
$$

This general expression converges toward the Fibonacci sequence once k, H_{1} and H_{2} are respectively chosen as 0,0 and 1 !

Given a k-value without any restriction apart from the one expressed as

$$
\Phi^{2}\left(H_{1}+H_{2}+k\right)-\Phi H_{1}-H_{2} \neq 0
$$

and the initial values H_{1} and H_{2}, we can obtain an infinite number of sequences for which

$$
\lim _{n \rightarrow+\infty} \frac{H_{n+1}}{H_{n}}=\Phi=\frac{1+\sqrt{5}}{2} \approx 1.6180339
$$

Examples. Let us consider $k=3, H_{1}=1$ and $H_{2}=2$. Applying Equation (2.9) we get:

$$
\begin{array}{lllllllllllllll}
1 & 2 & 6 & 11 & 20 & 34 & 57 & 94 & 154 & 251 & 408 & 662 & 1073 & 1738 & \ldots
\end{array}
$$

and, as it is easy to recognize, the ratio of H_{n+1} to H_{n} approaches Φ.
As a second example, let $k=0.6, H_{1}=0.2$, and $H_{2}=5$. In this case the sequence is:
$\begin{array}{llllllllllllll}0.2 & 5 & 5.8 & 11.4 & 17.8 & 29.8 & 48.2 & 78.6 & 127.4 & 206.6 & 334.6 & 541.8 & 877 & \ldots\end{array}$ and again, the ratio of H_{n+1} to H_{n} approaches Φ.

3. Conclusions

We have found and proved a general relationship which determines the existence of infinite sequences $\left\{H_{n}\right\}$ for which the ratio H_{n+1} / H_{n} approaches the Golden Ratio as n goes to ∞. The Fibonacci sequence appears as a particular case of this general relationship.

SEQUENCES $\left\{H_{n}\right\}$ FOR WHICH H_{n+1} / H_{n} APPROACHES THE GOLDEN RATIO

References

[1] G. Ferri, M. Faccio, and A. D'Amico, A New Numerical Triangle Showing Links with Fibonacci Numbers, The Fibonacci Quarterly, 29 (1991), 316-321.
[2] P. Filipponi, A Curious Property of the Golden Section, Int. J. Math. Educ. Sci. Tecnol., 23 (1992), 785-811.
[3] V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Fibonacci Association, (1972).
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, Inc., New York, (2001).
MSC2000: 11B39
Dept. Ing. Elettronica, University of Tor Vergata, via del Politecnico, 100133 Roma E-mail address: francesco.gatta@gmail.com
Dept. Ing. Elettronica, University of Tor Vergata, via del Politecnico, 100133 Roma E-mail address: damico@eln.uniroma2.it

